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Pseudorabies is a disease that signi	cantly impacts the swine industry. �is disease is caused by Suid Herpesvirus 1 (SuHV-1),
which is a double-stranded DNA virus that belongs to the Herpesviridae family and the Alphaherpesvirinae subfamily and exhibits
a slow rate of genetic evolution. �e aim of this study was to use both full and partial sequences of SuHV-1 genes available in
GenBank to examine the evolution and divergence of viruses isolated in di
erent parts of the world. Partial and complete sequences
of SuHV-1 genes were obtained either from GenBank (i.e., us6, us7, us8, us9, ul14, ul49.5, and ul44) or from genetic sequencing
of Brazilian SuHV-1 samples. �e results of this study corroborate previous phylogenetic studies of SuHV-1 that demonstrated
di
erent evolutionary pro	les of isolates from di
erent parts of the globe, with a rapid genetic dispersion of Chinese isolates. All
of the phylogenetic trees generated in this study demonstrated a large genetic distance between SuHV-1 isolates from the Western
and Eastern regions of the world.

1. Introduction

Pseudorabies (PR) is a disease that signi	cantly impacts the
swine industry. �is disease is caused by Suid Herpesvirus 1
(SuHV-1), which is a double-strandedDNAvirus that belongs
to the Herpesviridae family and the Alphaherpesvirinae
subfamily and exhibits a slow genetic evolution.�e primary
hosts of SuHV-1 are domestic or wild pigs (Sus scrofa). �is
disease also a
ects cows, dogs, and cats, but, in these species,
the disease is fatal in nearly 100%of cases [1]. AlthoughPRhas
been eradicated in domestic swine in many countries, such
as the United States, Germany, and England, this disease still
occurs in wild boars and other feral swine in these countries
[2].

SuHV-1 has only one serotype and can be genetically
typed using methods including whole genome enzymatic
restriction with BamHI, which demonstrates the presence of
four genomic types [3, 4]. However, most recent publications
also use partial sequences of the ul44 gene to evaluate the
genetic variation of SuHV-1 isolates [5–8]. �is gene encodes
glycoprotein C (gC), which is a protein that is considered

to be a potent inducer of the immune response and the
principal component of adhesion to host cell receptors [9].
Phylogenetic analysis of partial sequences of ul44 separates
SuHV-1 into 	ve genotypes, with speci	c clades that include
sequences derived from viruses isolated from domestic pigs
or wild boars [10].

�e us8 gene has also been used for phylogenetic analysis
of SuHV-1 [6, 11, 12]. �is gene is more conserved than
ul44 but can also be used to detect genetic di
erences
between SuHV-1 isolates from di
erent regions. us8 encodes
glycoprotein E (gE). Although gE is not essential for viral
replication, the absence of this protein reduces the virulence
of the virus. us8 is frequently deleted in attenuated SuHV-1
vaccine strains [13].

Sequences from other SuHV-1 genes are available in
GenBank, but these genes are not used in studies of genetic
variability. �e herpesvirus genome is typically highly con-
served [3] and even genes such as ul44 do not have su�cient
variability to generate high-resolution phylogenetic trees [5–
8]. Other genes could also be used, and some genes that
are involved in envelope formation could contain enough
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Table 1: Genetic regions used in this work.

Gene Protein Function Type Quantity Size (base pairs)∗ Position∗

ul44 gC Cellular adhesion Complete 24 1443 53019−54461
us6 gD Binding to surface receptors Complete 16 1197 118873−120075

us7 gI Cell to cell spread
Complete 9 1086 120111−121193
Partial 10 676 120111−120786

us8 gE Cell to cell spread
Complete 22 1734 121297−123030
Partial 48 404 121945−122348

us9 11 kDa Axonal transport Complete 19 321 123088−123384
ul14 ul14 Viral morphogenesis Complete 12 480 75946−76425
ul49.5 gN Viral morphogenesis and membrane fusion Complete 22 297 8840−9136
∗�ese data refer to the complete genome of the Kaplan strain (JF797218).

phylogenetic information to divide the virus into di
erent
groups and providemore information about the transmission
and worldwide distribution of this virus [14].

�is study aimed to use both full and partial sequences of
SuHV-1 genes available in GenBank to examine the evolution
and divergence of strains isolated in di
erent parts of the
world. We focused on alternative genes (i.e., us6, us7, us8,
us9, ul14, and ul49.5) to the commonly used ul44 to verify
the genetic divergence of SuHV-1 from the Occident to the
Orient.

2. Material and Methods

2.1. Genetic Sequences. Partial and complete sequences
of SuHV-1 genes were obtained from GenBank (Table 1)
together with all available information related to host, year,
and country of isolation [6, 8, 11, 12, 15–17]. �e sequences
were named as the denomination of the isolate in GenBank
followed by a three-letter code to identify the country of
origin: Germany (GER), Argentina (ARG), Austria (AUS),
Brazil (BRA), China (CHI), North Korea (SKO), Slovakia
(SLK), Spain (ESP), the United States (USA), Japan (JAP),
Hungary (HUN), Northern Ireland (NIR), Malaysia (MAL),
and Sweden (SWE).

2.2. PCR. �e us9, ul14, and ul49.5 genes of Brazilian SuHV-
1 strains and the standard Shope strain were sequenced in
our laboratory to facilitate comparison. Each 20�L reaction
contained the following reagents: 8% DMSO, 200mmol/L of
DNTPs, 1 pmol/�L of each primer (Table 2), 1.5mmolMgCl2,
0.2U of Jumpstart Taq (Sigma,USA), 4�L ofGreenGoTaq 5x
bu
er (Promega, USA), and 2 �L of DNA. �e thermocycler
was programmed with the following steps and cycling times:
95∘C for 5min, followed by 35 cycles of 95∘C for 50 s, 57∘C
for 50 s, and 72∘C for 50 s and a 	nal extension stage of 72∘C
for 5min. �e results were visualized on 1.5% agarose gels
stained with ethidium bromide a�er running for one hour at
100 volts. �e PCR products were sequenced using ABI 3130
equipment (Lifetech, USA).

2.3. Phylogenetic Analysis. Phylogenetic analysis was per-
formed according to sample complexity. We 	rst recon-
structed all trees using substitution model F81 and Neighbor

Table 2: Primers used in this study for ampli	cation of SuHV-1
genes us9, ul14 e ul49.5.

Gene Primer (5�-3�) Amplicon (pb)

us9
F: GAGAAACCGGAAGTGACGAA

550
R: GGGGCCCATTTATTGTGAC

ul14
F: GCGATGGCAAAGTTGAAAAA

794
R: GTCGAGGGTCGCGTACTG

ul49.5
F: CCCAGGGGAACCTTATAAAATC

447
R: TTTCTCGAGCTGGACATGG

Joining. We then tested other evolutionary models that were
selected using jModelTest so�ware [18]. �e models and
so�ware programs used in this study are presented in Table 3
[19, 20]. All sequences were tested for positive selective
pressure using Selecton so�ware [21]. Because a large number
of us8 sequences are available, we used the programs of
DNASP [22] and Network [23] for phylogenetic network
analysis.

3. Results

Phylogenetic analysis of multiple sequences derived from
di
erent regions of the SuHV-1 genome generated trees with
similar pro	les; however, the us6 gene was an exception (Fig-
ures 1, 2, 3, and 4). �e primary characteristic observed was
the formation of two clusters. Cluster 1 included sequences
from the Occident and a small number of Asian samples, and
Cluster 2 included exclusively sequences from countries in
the East (i.e., China,Malaysia, Taiwan, and South Korea).�e
partial sequences of the us8 gene generated a tree with a lower
degree of di
erentiation. No di
erences in tree information
were observed for the trees generated from the complete and
partial sequences of us7. Some isolates, such as theHungarian
(i.e., Kaplan and Shope) and Brazilian sequences, clustered
together in all trees. �e Rice and Becker samples from the
USA also exhibited similar pro	les.�ebootstrap valueswere
low in most trees, except in cases such as Clusters 1 and 2.

�e Asian SuHV-1 genome sequences presented two
patterns. �e 	rst pattern was close to that of the Western
samples and was distributed among di
erent subgroups,
close to a group of atypical strains that are most frequently
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Table 3: Substitution models, reconstruction of phylogenetic tree and programs used for each group of sequences studied in this work.

Gene Type Evolutionary models Phylogeny So�ware

ul44
Complete

GTR Γ4+I Bayesian Inference Mr.Bayesa

Partial

us6 Complete GTR Maximum Likelihood Seaviewb

us7
Complete

HKY+Γ Maximum Likelihood Seaview
Partial

us8
Complete GTR+Γ Maximum Likelihood Seaview

Partial HKY Maximum Likelihood Seaview

us9 Complete F81 Neighbor Joining Seaview

ul14 Complete F81 Neighbor Joining Seaview

ul49.5 Complete TrN Neighbor Joining Seaview
aHuelsenbeck e Ronquist, 2001 bGouy et al., 2010 [20].
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Figure 1: Phylogenetic trees for genes ul14, ul49.5, us6, and us9. �emodels used in the reconstruction of each tree are listed in Table 3. Only
bootstrap values above 70 are shown. Topologies are similar with the exception from the one constructed from us6, indicating con�icting
signals in the analysis.
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Figure 2: Phylogenetic trees for genes us7 and us8. �e models used in the reconstruction of each tree are listed in Table 3. Only bootstrap
values above 70 are shown.

found in Brazil but also occur in the USA and Europe. �e
second pattern is more distant and acts as a root for all trees
reconstructed in this work, with the exception of us6. In both
cases, the sequences of Asian origin exhibited a greater degree
of genetic variation than sequences within other clades.

Phylogenetic analysis using only partial sequences of the
us8 gene in DNAsp identi	ed a total of 31 haplotypes; 23 of
these haplotypes were formed exclusively by sequences from
China. Only 11 polymorphic sites were observed in Western
haplotypes (i.e., 5 singleton variable sites and 6 parsimony
informative sites). In contrast, 53 polymorphic sites were
observed in Eastern haplotypes (i.e., 38 singleton variable
sites and 15 parsimony informative sites). �e phylogenetic
network demonstrated the divergence of these two main
groups of SuHV-1 (Figure 5).�reemain haplotypes form the
base of the network. �e 	rst haplotype has a low frequency
and is represented by a GenBank isolate named Kaplan,
which is a strain that typically clusters with sequences derived
from SuHV-1 isolates from wild boars. �e other two groups
occur more frequently. �e Western cluster was formed by
15 sequences from Europe (i.e., Italy and Belgium), a single
sequence from the USA, and a single sequence from Brazil.
�e Eastern cluster in the base of the network is formed by
nine sequences from China and one sequence from South
Korea.

4. Discussion

Molecular analyses to characterize SuHV-1 isolates are com-
monly performed using partial sequences of the ul44 gene
[10]; other genes are rarely studied. �e purpose of this study
was to analyze partial and complete sequences of SuHV-1
genes available in GenBank. All of the phylogenetic trees

generated in this study demonstrated a large genetic distance
between strains isolated in the Western and Eastern regions
of the globe.

SuHV-1 has only one serotype, but this virus can be
classi	ed into four genomic types by restriction enzyme
digestion analysis of the complete genome [4]. �is analysis
requires large amounts of viral DNA and can be laborious
and time consuming. For this reason, partial gene sequencing
has been increasingly used to replace full genome sequencing
analysis [5–8, 10–12]. Phylogenetic analysis of partial ul44
sequences demonstrated that SuHV-1 has a slow rate of
genetic evolution and can be divided into 	ve groups that
are designated as A, B, C, D, and E [10]. Genetic groups A
and C are formed by strains isolated from outbreaks of PR
related to feral pigs. Groups B and D are formed by strains
isolated from outbreaks related to domestic pigs. Group E is
the most genetically diverse group and includes strains from
Eastern regions, primarily China. Phylogenetic analysis using
complete sequences of ul44 generated genetic groups similar
to those described in previous studies that used only partial
sequences [10, 12].

Phylogenetic analysis of sequences available in the Gen-
Bank revealed a deep genetic distance between Clusters 1 and
2. Cluster 1 was divided into at least two clades andwas always
separated from the Eastern SuHV-1 genomic sequences. �e
low genetic diversity of these isolates is consistent with
the slow evolution of herpesviruses. In some cases, SuHV-1
strains exhibit the same genetic pro	le for up to twenty years
in the same region [6, 8].�e low genetic diversity of SuHV-1
is also responsible for the low bootstrap values observed in
the trees constructed in this study and in previous studies
[5, 7, 8]. �e smaller size of the partial sequences of the us8
gene generated a tree with a lower degree of di
erentiation,
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Figure 3: Phylogenetic trees for partial sequences of gene us8. �e
models used in the reconstruction of each tree are listed in Table 3.
Only bootstrap values above 70 are shown.
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Figure 4: Phylogenetic trees for complete sequences of the gene
ul44. �e complete sequences of ul44 groups showed similar groups
to those found in trees reconstructed using partial ul44 sequences.

perhaps becausemost of the variability is located in the initial
portion of the gene. Most of the partial sequences of the us8
gene which are available in the Genbank are sequences from
the middle portion of the gene, which is more conserved
than the initial and terminal portions. Altogether, these
data indicate that phylogenetic analyses performed using the
complete gene or the most variable regions of the SuHV-1
genome may be more accurate.

Cluster 2 exhibited a characteristic genetic diversity. �e
high variability observed in the us6, us8, and ul44 genes is
not consistent with the evolution of SuHV-1 described in
other studies [6–8]. Goldberg et al. [5] reported that SuHV-
1 isolates from outbreaks of PR that occurred in the USA in
the state of Illinois in 1989 exhibited greater variability than
isolates from other regions of the world. Nevertheless, the
variability of these isolates was appreciably smaller than the
genetic distance observed in Cluster 2 in this work.

SuHV-1 can infect many species, but pigs and wild boars
are the principal hosts responsible for disease transmission
[24]. Information available in the literature and in GenBank
indicated the type of animals from which the viruses were
isolated, but we could not 	nd any correlation between
clusters, genetic variability, and species (data not shown).
Other studies reported di
erences between strains isolated
from pigs and fromwild boars [10, 12], but no speci	c viruses
have been isolated from cows, dogs, or cats to date [5, 10].
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Figure 5: Phylogenetic network reconstructed using network from
us8 sequences of SuHV-1 isolates. Each circle is colored according
to the number of sequences from di
erent regions grouped in
that haplotype. Red represents sequences from strains isolated in
Asia, green from strains isolated in South America, yellow from
strains isolated in USA, and blue from strains isolated in Europe.
�e base of the network is formed by three haplotypes. Western
and Eastern sequences are connected by the two most frequent
haplotypes present.

Most studies of SuHV-1 phylogeny are based only on
reconstructed phylogenetic trees. We used phylogenetic net-
works to analyze genetic variability in partial us8 sequences.
�ree haplotypes were found in the base of the network;
one haplotype formed exclusively by sequences from Europe,
another haplotype formed by sequences from Europe, the
United States, and South America, and a third haplotype
formed by sequences from China. �e phylogenetic network
generated in this study demonstrates a low dispersion of
SuHV-1 in the Western part of the world and a rapid
dispersion of SuHV-1 from a homogeneous group of samples
to a higher frequency of haplotypes in China. Only the
us8 and ul44 genes exhibited evidence of positive selective
pressure; thus, natural selection alone does not explain the
genetic diversity of SuHV-1 isolates from China. �e high
genetic diversity of Cluster 2 may be associated with the high
prevalence of SuHV-1 in China [25].

5. Conclusion

�e results of this work corroborate other phylogenetic
studies that demonstrated di
erent evolutionary pro	les of
SuHV-1 isolates from the Eastern and the Western regions of
the globe, with a rapid genetic dispersion of Chinese isolates.
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