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Abs t rac t . 

We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in 
its application to molecular systems. The formal correspondence of the imaginary time 
Schrodinger equation to a diffusion equation allows one to calculate quantum mechanical 
expectation values as Monte Carlo averages over an ensemble of random walks. We 
report work on atomic and molecular total energies, as well as properties including elec
tron affinities, binding energies, reaction barriers, and moments of the electronic charge 
distribution. A brief discussion is given on how standard QMC must be modified for cal
culating properties. Calculated energies and properties are presented for a number of 
molecular systems, Including He, F, F~, H,,, N, and N„. Recent progress in extending 
the basic QMC approach to the calculation of "analytic" (as opposed to finite-difference) 
derivatives of the energy is presented, together with an H« potential-energy curve 
obtained using analytic derivatives. 

Key Words: diffusion quantum Monte Carlo, Schrodinger equation, fixed nodes, atomic 
properties, molecular properties, total energies, analytic energy derivatives, excited 
states, quadrupole moments, binding energies, electron affinities. 
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I. Introduction 

In the past few years, quantum mechanical Monte Carlo (QMC) methods have 

begun to be applied in the domain of atomic and molecular physics ( 1 - 6 ' . Long in the 

realm of condensed-matter physics, and more recently nuclear and particle physics, 

Monte Carlo methods play an indispensible role in treating multi-dimensional, and hence 

many-body problems. For obtaining molecular properties, the Monte Carlo technique is 

now showing itself to be equally useful, providing an approach complementary to tradi

tional 06 initio electronic-structure calculations. 

Atomic and molecular QMC applications have been primarily devoted to calcula

tions of ground-state energies. Workers have focused on correlation energies ^ , 2 ' as well 

as on stationary points on potential-energy surfaces " , 4 \ In these studies, total energies 

have been obtained to accuracies of better than 99.9%. Though impressive by most 

standards, an accuracy of 99.9% is only marginally useful for many chemical applica

tions, in \ hich one seeks very small differences of large numbers. Thus better algo

rithms and faster computers are still needed. In Section II we review the use of QMC in 

calculations of ground-state energies, and give an extension to excited states. Results are 

presented for a number of atomic and molecular species. Section III describes the calcu

lation of other molecular properties, including the calculation of energy derivatives, 

which are useful in the study of potential-energy surfaces. 

II. QMC Energy Calculations 

Theory 

The QMC method of obtaining energies of atomic and molecular systems has been 

described in detail elsewhere ' 1~ 8 '. The key point to note here is that a simulation is per

formed in which an ensemble of random walks (the coordinates of which, at any given 

time, represent a configuration of the electrons) evolves to an equilibrium distribution. 
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At any time after equilibrium has been reached, the ensemble of configurations is a ran

dom sample drawn from the probability distribution /&{& ) = * T (£.)$(£) , where the 

coordinate-vector /? is the multi-dimensional vector describing the full many-electron 

system. Here $?{&) is a simple trial wave function used for importance sampling ' 9). 

The function <j>(R) is the lowest-energy eigenfunction of the Schrodinger equation which 

is not orthogonal to tyT. Convergence to the lowest-energy state results from an essen

tial feature of the mapping of the Schrodinger equation into its diffusion equation 

analog—that time in these two equations differs by a factor of i . Thus, when a time-

dependent molecular state vector is expanded in energy eigenfunctions multiplied by 

exp(-i'Ei /fi), in imaginary time one obtains a series in which only the lowest-energy term 

(i.e. 4>) survives at large t , If *&T is orthogonal to the exact lowest-energy state, one pro

jects out the ground state, and convergence will be to the next-lowest energy. In the 

fixed-node approximation ' 1 0 ' , which we use to handle the Fermion problem, the nodes of 

$T are imposed on the solution 4>. 

Although neither <j> nor /„ , is known analytically, one can nevertheless sample 

desired quantities from the equilibrium distribution f^. Averages taken with respect to 

foe are known as mixed averages. For example, sampling a quantity A in equilibrium 

gives (in the limit of large N) the average 

<A>U=<*T M l * > , (i) 
where the Dirac notation being used has the normalization absorbed. The correct expec

tation value of A , for a state 0, is <4> j A \ 4>>\ however, in computing any property 

for which (j> is an eigenstate, there is no difference between these two averages. This fol

lows since the eigenvalue can be taken out of the integral in Eq. 1. In particular, to 

compute the energy one samples the quantity EL(R) = ^T1{B, )// ^T(H )• Then 

<E>f„=<4>\ l I | * r > = £ o , (2) 
where ICQ is defined by // 4>~EQ<? 
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Results 

Table I reports the total energies obtained for a number of atomic and molecular 

species. These energies are compared with Hartree-Fock results, with the best varia

tional calculations to date, and with exact, or experimental values. QMC compares quite 

favorably with the other methods, generally performing better than the best of the other 

calculations. 

When studying excited states of a given symmetry, such as the He states displayed 

in Table I, it is generally not possible to find a trial wave function exactly orthogonal to 

all the lower-energy states of that symmetry. This implies (cf. Eq. 2) that convergence 

will ultimately be to the lowest-energy state; however, the fixed-node approximation 

used to treat the Fermi problem is also of assistance in this context. In the fixed-node 

approximation, the nodes of ty7 are used to divide R,-space into distinct volume ele

ments. The Schrodinger equation is solved separately in each of these elements. This 

results in a solution of the Schrodinger equation with added boundary conditions. 

Viewed this way, the Fermi problem is handled by forcing the generation of an antisym

metric state above the Bose ground state through the placement of nodes in the solution 

4>. In like manner, other excited states can be treated approximately by imposing addi

tional nodes. The accuracy of the approximation will depend on how well these nodes 

are placed. Furthermore, if ^7- is not orthogonal to all lower energy states, the approxi

mation is no longer variational. 

Traditional 06 initio methods generate excited-state wave functions which generally 

contain the correct number and dimensionality of nodal surfaces. Thus such wave func

tions are a good place to begin in choosing a trial wave function A>T . In our work on 

the excited states of He, we have taken a sum of two Slater determinants in ^7- to 

obtain the required spatial symmetry. Although the result for the (ls'Js) S state is not 

as accurate as that for the ls3s state, our calculated energy is nevertheless within 0.66 
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kcal/mol of the experimental value. This is generally considered chemical accuracy. 

HI. QMC Molecular Properties 

Energy-Related Quantities 

Table II reports the results obtained for a number of atomic and molecular proper

ties. The first four columns are properties that are derived from the energy. Thus, for 

example, separate energy calculations of F and F are performed, and the difference 

gives the electron affinity. Most of the properties give impressively close agreement with 

experimental results. The somewhat larger discrepency in the binding energy of N 0 is 

probably attributable to the fixed-node approximation. 

Another important quantity is the potential-energy surface of a molecule, which is 

obtained in the Born-Oppenheimer approximation from the solution of the electronic 

Schrodinger equation. Derivatives of the energy with respect to nuclear coordinates are 

very useful in accurately determining potential-energy surfaces including critical points, 

e.g. transition states and barriers, as well as in determining equilibrium geometries (u\ 

and (by finite difference or higher analytic derivatives) in obtaining vibrational frequen

cies ' 1 2 ' . While advances over the past decade in conventional ab initio approaches allow 

the direct calculation of derivatives, only finite difference approaches have been imple

mented in QMC ' 1 3 ' . In principle there is no reason for this limitation. The energy 

derivative with respect to a nuclear coordinate p, can be written ' 1 4 ' 

j = < " 1 ~ _ > / + <^-^rEL >, - < T ^ T > , < E L >, 
dp Op 'oo (pop >ce 0 Op 'oo 'oo 

1 WT r, 1 d^T 

Although i>~ldt?/dp is unknown, it is possible to sample it. The other terms in Eq. 3 

may be evaluated straight-forwardly during the QMC simulation. Rather than sampling 

o" do/Op, as a first approximation we take 4>~xdQ/dp=ty fxdty T I dp. This turns out to 
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be a good approximation even when V-p *s o n t y °f moderate accuracy. 

Using this approach, we have performed calculations on He, at several nuclear 

separations. Combining the QMC energies and derivatives at only four points leads to 

the curve shown in Figure 1. Compared to the exact curve obtained by Kolos and Wol-

niewicz ^15', our error is less than the thickness of the line. 

Other Expectation Values 

For expectation values of quantities whose operators do not commute with H, the 

mixed average of Eq. (1) is only approximate. One suspects that the mixed average is in 

some sense "half-way" between the exact expectation value (with respect to 4>) and the 

variational expectation value, taken with respect to the trial wave function, i.e. 

< * r \A. | * r > - Taken literally, this implies that <4>\A \if>> = 

2 < t y r \ A | 0 > - < ^ r | A | ^ T >- This result can be formalized to first order in the 

difference 6=<£-^ T (8-1 4). it is, however, difficult to know how significant it is to drop 

terms of order 6". Thus, it is desirable to be able to sample exactly from the distribution 

| <j> | 2 . This can be done, though it entails some changes in the usual QMC algorithm. 

To sample from the distribution | ^ | ", the distribution f^ must be weighted 

locally by ^>{K)/^T{S.)• This quantity is essentially the asymptotic number of sur

vivors of the local configuration /? ^16'. Thus, algorithmically, one must follow each 

configuration into the future before computing any averages. As a walk progresses, one 

must not only keep track of its immediate decendents (which is easy), but also the des-

cendents of its decenderits for a large number of generations. At first sight, this seems 

to be a very difficult task. But the problem can be greatly simplified by visualizing the 

branching process in time as a "tree." The tree expands vertically in time, t , and, as it 

branches, expands horizontally (or sometimes visualized as azimuthally) in the 0 direc

tion The location of each configuration in the tree is uniquely described by the pair of 
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values (6, t). In addition, we require that all branches eminating from (0, t) have 0 in 

the range from 8 to 04-A. No other branches are allowed within this range. This is 

accomplished through a proper choice of A. Following this procedure, the required 

weighting factor for configuration i at some later time is simply the number of 

configurations which lie between 9t and 0,- -f A,- at this later time. Hence the only work 

required is to assign each configuration, at each step in the walk, a value of 9 and A by 

the above scheme, and at a later (asymptotic) time to count the number of walks falling 

in a particular range. This relatively simple algorithm thus allows one to compute pro

perties from the correct probability distribution. A more detailed discussion will be pub

lished elsewhere ^ '. 

Our results using the above algorithm to compute the electric quadrupole moment 

of H 0 (see Table II), show that excellent results may be obtained with QMC by sampling 

from the | 4> \ " distribution. On the other hand, the N 0 results use the approximate 

formula, and are abo of high quality. Thus it appears that one may not always need to 

use the more complicated algorithm. 

In summary, QMC is a powerful and accurate method of calculating energies and 

properties of atomic and molecular systems. The results presented in Tables I and II 

and Fig. 1 demonstrate its utility. In this paper we have demonstrated several new 

capabilities of the method. We have also pointed to areas requiring further develop

ment, such as exactly orthogonal excited-state trial functions, and other approaches to 

excited states. Interestingly, in our approach the fixed-node approximation, which is the 

only obstacle to calculating exact ground-state energies, is the very tool needed in the 

calculation of excited-state energies. We have also shown that QMC can be employed to 

calculate smooth potential-energy surfaces, and near basis-set independent properties. 

These capabilities make QMC an attractive method to use for atomic and molecular cal

culations. 



8 

Acknowledgements 

We thank C. Dateo and R. M. Grimes for helpful comments on the manuscript, 

and abo for discussions during the course of this work. Some of the work described here 

was supported by a grant from the Office of Naval Research. 



9 

References. 

1. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chem. Phys. 77. 
5593 (1982). 

2. J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos, J. Chem. Phys. 77, 349 
(1982). 

3. P. J. Reynolds, R. N. Barnett, and W. A. Lester, Jr., Int. J. Quant. Chem. Symp. 18, 
709 (1984); F. Mentch and J. Anderson, J. Chem. Phys. 80, 2675 (1984); R. N. Barnett, 
P. J. Reynolds, and W. A. Lester, Jr., J. Chem. Phys., 82,2700 (1985). 

4. D. M. Ceperley and B. J. Alder, J. Chem. Phys. 8JL 5833 (1984) 

5. P. J. Reynolds, M. Dupuis, and W. A. Lester, Jr., J. Chem. Phys. 82, 1983 (1985). 

6. See also the article by K. E. Schmidt in this issue. 

7. M. H. Kalos, Phys. Rev. 128, 1791 (1962); J. Comp. Phys. L257 (1967); M. H. Kalos, 
D. Levesque, and L. Verlet, Phys. Rev. A 9, 2178 (1974); D. M. Ceperley in 
Recent Progress in Many-Body Theories, edited by J. G. Zabolitzky, M. de Llano, 
M. Fortes, and J. W. Clark (Springer-Verlag, Berlin, 1981). 

8. D. M. Ceperley and M. H. Kalos in Monte Carlo Methods in Statistical Physics, K. 
Binder, ed. (Springer-Verlag, Berlin, 1979). 

9. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, (Methuen, London, 
1964). 

10. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980); 

11. P. Pulay, in Modern Theoretical Chemistry, Vol. 4, H. F. Schaefer III, ed. (Plenum, 
New York, 1977); M. Dupuis and H. F. King, J. Chem. Phys. 68,3998 (1978). 

12. P. Saxe, Y. Yamaguchi, and H. F. Schaefer HI, J. Chem. Phys. 77,5647 (1982). 

13. B. Holmer and D. M. Ceperley, private communication ; B. Wells, P. J. Reynolds, 
and W. A. Lester, Jr., unpublished ; B. H. Wells, Chem. Phys. Lett. 115,89 (1985)'. 

14. P. J. Reynolds, R. N. Barnett, B. L. Hammond, R. M. Grimes, and W. A. Lester, 
Jr., "Quantum Chemistry by Quantum Monte Carlo: Beyond Ground-State Energy Cal
culations," Int. J. Quant. Chem. in press. 

15. W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2 129 (1965). 

16. M. H. Kalos, Phys. Rev. A 2,250 (1970). 

17. R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., "Molecular Properties by Quan
tum Monte Carlo" in preparation. 

18. Z. Ritter and R. Pauncz, J. Chem. Phys. 32., 1S20 (1960). 



10 

19. From Ref. 18, where this result is attributed to the experimental work of C. E. 
Moore, Natl. Bur. Standards Circ. No. 467. I (1949). 

20. W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32,. 219 (1960). 

21. B. Liu, J. Chem. Phys. 58,1925 (1973). 

22. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974). 

23. P. E. M. Siegbahn, Int. J. Quant. Chem. 23, 1869 (1983). 

24. A. Veillard and E. Clementi, J. Chem. Phys. 49,2415 (1968). 

25. P. A. Christiansen and E. A. McCullough, Jr., J. Chem. Phys. 67, 1877 (1977). 

26. F. Grimaldi, J. Chem. Phys. 43, S59 (1965). 

27. F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 17, 26 (1974). 

28. E. Clementi and A. D. McLean, Phys. Rev. 133. A, 419 (1964). 

29. S. Fraga, J. Karwowski, K. M. S. Saxena, Handbook of Atomic Data (Elsevier, 
Amsterdam, 1976). 

30. B. H. Botch and T. H. Dunning, Jr., J. Chem. Phys. 7JL. 6046 (1982). 

31. R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., "Electron Affinity of Fluorine: 
A Quantum Monte Carlo Study" J. Chem. Phys. submitted. 

32. H. Hotop and VV. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975). 

33. A. Lofthus and P. H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977). 

34. B. Liu, J. Chem. Phys. 80,581 (1984). 

35. D. Feller, L. E. McMurchie, W. T. Borden, and E. R. Davidson, J. Chem. Phys. 77, 
6134 (1982); P. Saxe, H. F. Schaefer III, and N. C. Handy, J. Phys. Chem. 85, 745 
(1981). 

36. H.-J. Werner and E.-A. Reinsch, J. Chem. Phys. 7JL 3144 (1982). 

37. A. R. VV. McKellar, P. R. Bunker, T. J. Sears, K. M. Evenson, R. J. Savkally, and S. 
R. Langhoff, J. Chem. Phys. 79,5251(1983). 

38. A. D. McLean and M. Yoshimine, J. Chem. Phys. 45,3676 (1966). 

39. F. P. Billingsley II and M. Krauss, J. Chem. Phys. 60,2767 (1974). 



11 

Table Captions 

Table I. Energies (in aartrees) for a number of atomic and molecular species. QMC 
energies for the first two excited S states of He, as well as the ground states of H 0 , N, 
N„, F, and F" are compared with Hartree-Fock results, with the best variational calcula
tions to date, and with exact or experimental results. 

Table II. Atomic and molecular properties for a number of species. Again QMC is 
compared with Hartree-Fock, with the best variational results, and with exact or experi
mental values. In general, QMC agrees well with the best calculations performed, as well 
as with experiment. The properties treated are the electron affinity A of F, the binding 
energy Eg of Nn, the barrier to chemical reaction for H + H 0 exchange, the singlet-
triplet energy difference Te in CH 0 l and the electric quadrupole moment Q of H 0 and 
N 0 . 

Figure Captions 

Figure 1. QMC potential-energy curve for H% v A Hermite polynomial fit to the energy 
and derivatives provides a curve indistinguishable from exact :o the resolution of the 
line. A polynomial fit to the energy alone gives oscillatory behavior. The statistical 
error bars on the points are smaller than the points themselves. 



Tabic I. 

Method He ( I sSs) H e ( l s 3 s ) H 2 N N 2 F F 

l l a r t r ee -Fock -2.143 07 a -2.060 36 ° -1.133 6 = -54.400 9 » -108.993 9 > -99.409 3 1 -99.459 4 « 

Best 
Variat ional -2.143 0 7 ° -2.060 36 • - 1 . 1 7 3 7 J -54.513 3 * -109.365 Bh -99.716 6 m -99.831 2 m 

QMC -2.144 93(7) -2.061 19(7) -1.174 5 ( 8 ) • -54.576 5(12) -109.483 5(37) -99.700 5(21) -99.827 3(34) 

Exper imenta l 
or Exact -2.145 99 6 -2.061 28 b -1.174 4 7 / -54.589 5 * - 1 0 9 . 5 3 5 * -99.731 3 * -99.857(3) n 

a Ref. 18. 
b fief. 19. ro 
c Ref. 20. 
d Ref. 21 . This is t h e bes t configurat ion in t e r ac t i on ca lcula t ion for Hg. Explicitly 

co r r e l a t ed var ia t ional r e su l t s for H g a r e essent ial ly exac t . See Ref. 15. 
e Ref. 1. 

From the essent ial ly exac t ca lcu la t ion in Ref. 15. 
e Ref. 22. 
h Ref. 23. 
1 From exper imenta l r e su l t s c o r r e c t e d for relat ivis t ic effects in Ref. 24. Ref. 27 

c o r r e c t s an e r ro r in t he sign of t h e Lamb shift, resul t ing in t h e energy given h e r e . 
j Ref. 25. 
k Ref. 26. 
m Ref. 27. 
n From exper imenta l r e su l t s c o r r e c t e d for relat ivis t ic effects in Ref. 28. 
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