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Abstract 10 

The trophic ecology of Octopus vulgaris paralarvae collected in 2008 off the Ría de Vigo, NW Spain 11 

(42º12.80‟N–9º00.00‟W) was approached by both morphological and molecular methods. External 12 

digestion of prey and posterior suction of the liquefied contents by wild O. vulgaris paralarvae made the 13 

morphological identification of gut contents impossible. Thus, a PCR-based method using group specific 14 

primers was selected to identify prey consumed by O. vulgaris paralarvae in the pelagic realm. The 15 

mitochondrial ribosomal 16S gene region was chosen for designing group specific primers, which 16 

targeted a broad range of crustaceans and fishes but avoided the amplification of predator DNA. These 17 

primers successfully amplified DNA of prey by using a semi-nested PCR-based approach and posterior 18 

cloning. Homology search and phylogenetic analysis were then conducted with the 20 different 19 

operational taxonomic units (OTUs) obtained to identify the putative organisms ingested. The 20 

phylogenetic analysis clustered ingested prey into 12 families of crustaceans (11 belonging to the order 21 

Decapoda and 1 to the order Euphausiacea) and two families of fishes (Gobiidae and Carangidae). 22 

According to the Czekanowski's Index (CI), the trophic niche breadth of O. vulgaris paralarvae is low 23 

(CI=0.13), which means that these paralarvae are specialist predators at least during the first weeks of 24 

their life cycle. It is the first time that natural prey has been identified in O. vulgaris paralarvae collected 25 

from the wild and such knowledge may be critical to increasing the survival of O. vulgaris hatchlings in 26 

captivity, a goal that has been actively pursued since the 1960‟s by aquaculture researchers. 27 
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Dietary analysis in cephalopods is hampered by problems arising from the anatomy, physiology and mode 31 

of ingestion (Rodhouse and Nigmatullin 1996) of these organisms. The oesophagus diameter is limited 32 

physically as it passes through the brain, so the cephalopod beak bites small pieces of tissue to swallow. 33 

Rapid digestion rates in the stomach result in short residence times (two to six hours) making the prey 34 

remains visually unidentifiable (Altman and Nixon 1970; Andrews and Tansey 1983; Nixon 1985). The 35 

mode of prey ingestion can be internal, by biting with the beak, or external, where salivary enzymes 36 

paralyse and digest the flesh followed by the ingestion of the liquefied content (Nixon 1984; Guerra and 37 

Nixon 1987). These specialised feeding strategies largely avoid the ingestion of hard skeletal material and 38 

tend to bias data on both prey species and size when morphological analysis are used (Nixon 1985). 39 

Cephalopods are known to be highly versatile predators with opportunistic predation behaviours 40 

(reviewed in Rodhouse and Nigmatullin 1996). While numerous works have focused on the trophic role 41 

of adults (Nixon 1987; Boyle et al. 1996; Rasero et al. 1996; Rodhouse and Nigmatullin 1996), the 42 

knowledge of diet in wild paralarvae is scarce due to the small size of this life history stage. The few 43 

attempts made to clarify the diet showed that paralarvae are mainly generalist feeders preying primarily 44 

on crustaceans, as observed by visual analysis by Passarella and Hopkins (1991) and Vecchione (1991). 45 

Further visual analysis made by Vidal and Haimovici (1998) showed that 11.4% of ommastrephid squid 46 

paralarvae contained copepod appendages. Additionally, Venter et al. (1999) developed an inmunoassay 47 

that detected copepods, euphausiaciids and polichaetes in the gut of six Loligo reynaudii paralarvae.  48 

While some squid and cuttlefish paralarvae preying on pelagic crustaceans ingest exoskeleton pieces, thus 49 

allowing morphological analysis (Vecchione 1991; Passarella and Hopkins 1991; Vidal and Haimovici 50 

1998); the external digestion exhibited in octopod paralarvae hatchlings rejects the entire crustacean 51 

zoeae exoskeleton therefore preventing morphological analysis of the dietary items (Hernández-García et 52 

al. 2000). Occasionally, the presence of thoracic appendages has been observed in the stomach of 53 

Octopus vulgaris hatchlings fed on Artemia under laboratory conditions, because Artemia has a thinner 54 

exoskeleton than other crustacean zoeae (Iglesias et al. 2006). 55 

Octopus vulgaris is a generalist predator as both a juvenile and an adult, feeding upon a variety of 56 

organisms mainly within the class Crustacea, but also Gastropoda, Lamellibranchiata, Osteichthyes, 57 

Ophiuroidea, Polychaeta and Cephalopoda (Nigmatullin and Ostapenko 1976; Guerra 1978; Smale and 58 

Buchan 1981; Nixon 1987; Mather 1991). The industrial rearing of this octopus species has been 59 

hampered by the high mortality during the pelagic stage, despite the broad range of experimental diets 60 



assayed throughout the past sixty years (reviewed in Iglesias et al. 2007). Although some authors have 61 

hypothesised that O. vulgaris prey upon crustaceans during the planktonic stage (Mangold and Boletzky 62 

1973; Nixon 1985; Rodhouse and Nigmatullin 1996; Villanueva and Norman 2008), the feeding habits of 63 

wild O. vulgaris paralarvae are still unknown. 64 

The trophic ecology of Octopus vulgaris paralarvae was tackled using both morphological and molecular 65 

methods, which have been shown to provide a comprehensive understanding of both invertebrate and 66 

vertebrate diets (Casper et al. 2007; Deagle et al. 2007, 2010; Braley et al. 2010). Given that Artemia was 67 

successfully detected in a single O. vulgaris paralarvae reared in laboratory by using species specific 68 

primers (Roura et al. 2010), the next step involved developing a molecular technique to detect the natural 69 

prey of wild paralarvae. This approach requires a priori knowledge of the fauna that coexist with 70 

paralarvae in the zooplankton. Hence, ten surveys were undertaken in the Ría de Vigo, a region of coastal 71 

upwelling off NW Spain (Otero et al. 2009), to obtain wild paralarvae as well as relative abundances of 72 

the different zooplankton species present in the area. Due to the enormous variety of suitable prey species 73 

in the zooplankton community; neither the species specific primer approach (King et al. 2008) nor the 74 

serological methods (Boyle et al. 1986, Venter et al. 1999) would be practical to identify prey. Therefore, 75 

we developed a technique to amplify small, multi-copy DNA fragments with universal primers for the 76 

16S rRNA gene (Simon et al. 1994) in conjunction with group specific primers, designed within this 77 

gene, that anneal to short target templates of potential prey items (Deagle et al. 2005, 2007, 2009, 2010; 78 

Braley et al. 2010). The group specific primers were designed to amplify a wide range of crustaceans and 79 

fishes, likely the most suitable prey of wild O. vulgaris paralarvae, based upon reports that the feeding 80 

habits of cephalopods shift from crustacean feeders during early stages (Vecchione 1991; Vidal and 81 

Haimovici 1998; Venter et al. 1999) towards piscivory in juvenile and adult stages (Passarella and 82 

Hopkins 1991; Rasero et al. 1996). 83 

The aim of this work was to identify natural prey of Octopus vulgaris paralarvae collected in the wild, 84 

using both morphological and molecular methods. Additionally, trophic selectivity of the paralarvae was 85 

addressed by comparing the composition of the zooplankton community they inhabit with the prey 86 

detected, under the assumption that cephalopod paralarvae are generalist predators. This molecular 87 

method is also immediately transferable to other oceanographic predator/prey scenarios as well as to other 88 

dietary studies on cephalopod paralarvae.  89 

 90 



Methods 91 

Sample collection, morphologic analysis and DNA extraction 92 

Ten surveys to collect zooplankton and hydrographical data were undertaken at night during July and 93 

September-October 2008 in the Ría de Vigo, NW Spain (42º12.80‟N–09º00.00‟W) onboard RV 94 

“Mytilus”. Biological sampling consisted of four transects as in González et al. (2005); three located 95 

outside the Cies Islands and one inside the Ría de Vigo (T2, T3, T4 and T5) parallel to the coast 96 

following an onshore-offshore depth gradient with an average depth of 26, 68, 85 and 110m, respectively. 97 

On each transect two double oblique trawls were deployed, one at the surface and one near the bottom, 98 

using a 75-cm diameter bongo net equipped with 375-μm mesh and a current meter. Zooplankton samples 99 

were fixed onboard with 96% ethanol and stored at -20ºC. In the laboratory, cephalopod paralarvae were 100 

separated and classified according to Sweeney et al. (1992) and our own reference collections. 101 

Zooplankton composition and abundance was estimated by Roura et al. (unpublished). 102 

Morphological analyses of the gut contents were carried out from two batches of eighteen randomly 103 

selected Octopus vulgaris paralarvae, following two different procedures. In the first batch, the digestive 104 

tracts were removed and gut contents were distributed in water on a microscope slide and then examined 105 

under an inverted microscope at 100x to 400x magnification (Nikon Eclipse TS100) as in Passarella and 106 

Hopkins (1991). The second batch was prepared for routine histological analysis by staining with 107 

haematoxylin-eosin and examined under a microscope at 100x to 400x magnification (Nikon Eclipse 80i).  108 

Genetic analysis was carried out with eighteen O. vulgaris paralarvae randomly sorted that were 109 

preserved in 70% ethanol at -20ºC. To avoid potential contaminants from the body surface before DNA 110 

extraction, individual paralarvae were washed with sterile distilled water, which was recovered and used 111 

as a negative control (Suzuki et al. 2006). Paralarvae were then dissected and their digestive system was 112 

removed and placed into DNA-free tubes. All dissections were performed in a UV-sterilized laminar flow 113 

hood with flame-sterilized dissection tools to avoid contamination. Gut and content DNA was extracted 114 

with a QIAamp DNA Micro Kit (QIAGEN), using RNA carrier in buffer AL. All steps followed 115 

manufacturer‟s instructions, with the exception of the 56ºC digestion step which was done overnight and 116 

the final elution step was done in two steps using 15 µl buffer AE in each elution. 117 

Group specific primer design 118 

Group specific primers were designed by obtaining 16S rRNA sequences from GenBank (Benson et al. 119 

2002) corresponding to 30 taxonomically diverse crustaceans, 3 fishes, 2 echinoderms and 2 cephalopods 120 



(one of them Octopus vulgaris) which are known to be present in the NE Atlantic Ocean (Table 5, 121 

supplementary material). These sequences were then aligned with MAFFT (Katoh et al. 2002). The 122 

software AMPLICON (Jarman 2004) was used to identify conserved regions within the target group of 123 

potential prey species, but with nucleotide mismatches at the 3‟ end of the O. vulgaris forward primer 124 

sequence to prevent its amplification (Deagle et al. 2007). Group specific primer specificity was tested by 125 

PCR using a gradient between 49ºC and 60ºC on known template DNA from across the Crustacea (the 126 

euphausiacid Nyctiphanes couchii, the crab Necora puber, the squat lobster Galathea strigosa, the hermit 127 

crab Anapagurus laevis, the prawn Palaemon longirostris, the mysid Leptomysis gracilis and the copepod 128 

Calanus helgolandicus), Chaetognata (Sagitta elegans) and O. vulgaris. 129 

Genetic database of planktonic organisms from the Ría de Vigo 130 

To ensure the correct identification of sequences obtained from the gut of Octopus vulgaris paralarvae, 131 

mtDNA16S sequences were obtained from 25 species of crustaceans collected in the zooplankton 132 

sampling done in the Ría de Vigo (Table 2). One individual of each species was visually identified, 133 

washed with distilled water to remove surface contaminants and DNA was extracted with the QIAamp 134 

DNA Micro Kit (QIAGEN), eluting the DNA in ultrapure water.  135 

Due to difficulties amplifying crustacean 16S rRNA, PCR products were generated with different 136 

combinations of the universal primers 16Sar-16Sbr (Simon et al. 1994) and the designed group specific 137 

primers 16Scruf-16Scrur (Table 2). Copepod specific primers 16Sca and 16Scb (Braga et al. 1999) were 138 

needed to amplify a region that is nested in the 16S rRNA universal fragment and encompasses the 139 

sequence amplified with the designed group specific primers. Cycling conditions for the primers 16Sar-140 

16Scrur and 16Scruf-16Sbr, consisted of an initial denaturation at 94ºC for 2 min followed by 39 cycles 141 

of: denaturation at 94ºC for 30 s, annealing at 57ºC for 35 s, extension at 72ºC for 40 s and a final step of 142 

7 min at 72ºC. Cycling conditions for copepod primers 16Sca-16Scb consisted of an initial denaturation 143 

at 94ºC for 2 min followed by 38 cycles of: denaturation at 94ºC for 60 s, annealing at 50ºC for 60 s, 144 

extension at 72ºC for 60 s and a final step of 7 min at 72ºC. 145 

All reactions were carried out in 25 µL, containing 10-100 ng of template 2.5 µL 10X PCR reaction 146 

buffer, 0.5 µL dNTPs, 0.75 µL each primer and 0.025 U µL-1 Taq polymerase (Roche). PCR 147 

amplifications were carried out in a TGradient thermocycler (Biometra). Aerosol resistant pipette tips 148 

were used to set up all PCR reactions. Negative controls, extraction controls and distilled water were 149 

included for each set of PCR amplifications. An aliquot of 1.5 µL from each PCR reaction was quantified 150 



using Nanodrop 2000 spectrophotometer (Thermo Scientific), then electrophoresed on 1.75% agarose gel, 151 

stained with RedSafe™ (iNtRON biotechnology) and scanned in a GelDoc XR documentation system 152 

(Bio-Rad Laboratories). 153 

PCR products were purified with Exo-SAP (USB, Affymetrix) and sequencing reactions were carried out 154 

with an automated DNA sequencer (Applied Biosystems 3130), using the BigDyeTerminator V3.1 Cycle 155 

Sequencing Kit (Applied Biosystems) with forward primers. Chromatograms were examined using 156 

BioEdit Sequence Alignment Editor version 7.0.9 (Ibis Biosciences). All sequences were assessed for 157 

similarity using BLAST (Basic Local Alignment Search Tool) and were submitted to GenBank 158 

(Accession numbers in Table 2) 159 

Identification of prey: semi nested PCR and cloning. 160 

Two sets of semi-nested PCR amplifications were performed independently on the extracted DNA from 161 

the digestive tract of each Octopus vulgaris paralarvae (Fig. 1). In both sets, the first PCR was carried out 162 

with the universal primer 16Sar plus a reverse group specific primer (16Scrur for crustaceans/fishes and 163 

16Scb for copepods) to increase the copies of prey DNA. The second PCR was carried out using 1 µL of 164 

the first PCR as a template, with forward and reverse group specific primers for crustaceans/fishes and 165 

copepods to amplify only prey DNA. 166 

Cycling conditions for the primers 16Scruf-16Scrur consisted of an initial denaturation at 94ºC for 2 min 167 

followed by 33 cycles of: denaturation at 94ºC for 30 s, annealing at 57ºC for 35 s, extension at 72ºC for 168 

40 s and a final step of 7 min at 72ºC. Cycling conditions for primers 16Sar-16Scb and subsequent 16Sca-169 

16Scb as described above. 170 

All reactions were carried out in 25 µL, containing 50 ng of template the first PCR and the semi nested 171 

with 1 µL from the product of the first PCR 2.5 µL 10X PCR reaction buffer, 0.5 µL dNTPs, 0.3 µL 172 

MgCl2, 0.5 µL each primer and 0.05 U µL-1 Taq polymerase (Roche). 173 

Semi-nested PCR products from the digestive tract of the Octopus vulgaris paralarvae obtained with 174 

group specific primers (16Scruf-16Scrur) and copepod-specific primers (16Sca-16Scb) were ligated to a 175 

pCR 4-TOPO plasmid vector for 15 min at room temperature and cloned using TOPO TA Cloning kit 176 

(Invitrogen) with One Shot TOP10 chemically competent cells following the manufacturer‟s protocol. 177 

Plasmids were extracted from 10 colonies, when possible, with the Quick Plasmid Miniprep Kit 178 

(Invitrogen). Insert size was checked by PCR with universal vector specific T7 and T3 primers and 179 



visualised by gel electrophoresis. Sequencing was carried out on 200 ng of plasmid DNA using primer 180 

T7.  181 

Sequences recovered from clone libraries were edited and were considered to be part of the same 182 

“operational taxonomic unit” (OTU) if there was less than 1% sequence divergence, allowing for intra-183 

specific variation and Taq polymerase errors (Braley et al. 2010). OTUs were compared to sequences 184 

found in GenBank using the BLAST algorithm. A phylogenetic tree was constructed to assign unknown 185 

sequences to the highest taxonomic level and to verify the OTU identifications. The tree contained all 186 

OTUs obtained from Octopus vulgaris with primers 16Scruf-16Scrur, together with the five closest 187 

matches of each OTU that were downloaded from GenBank. These sequences were aligned using 188 

MAFFT v5.7 (Katoh et al. 2002) with default settings. A substitution model was selected under the 189 

Akaike information criterion corrected for short sequences (AICc, Akaike 1974) as implemented in 190 

jModeltest (Posada 2008). The HKY + γ (Hasegawa et al. 1985) model was chosen to infer the 191 

evolutionary history by using the Maximum Likelihood (ML) method. The analysis involved 79 192 

nucleotide sequences with a total of 164 positions in the final dataset. Bootstrap probabilities with 1000 193 

replications were calculated to assess reliability on each node of the ML tree. Evolutionary analyses were 194 

conducted in MEGA5 (Tamura et al. 2011). If sequence similarity displayed in the BLAST was <98%, 195 

identification for the OTUs was restricted to the highest taxonomic lineage supported by bootstrap 196 

probabilities higher than 70% in the consensus tree. 197 

Thophic niche breadth was calculated using Czekanowski's Index (CI) with the formula: 198 

CI = 1 – 0.5 Σi | pi – qi |  199 

where pi is the proportion of resource item i out of all items eaten by the paralarvae, and qi is the 200 

proportion of item i in the zooplankton available to the paralarvae (Feinsinger et al. 1981). Values for CI 201 

range from 1 for the broadest possible niche (a population uses resources in proportion to their 202 

availability) to [min qi] for the narrowest possible niche (a population is specialized exclusively on the 203 

rarest resource). 204 

 205 

Results 206 

Octopus vulgaris paralarvae and morphological analysis of the digestive tracts 207 

All specimens used for morphological and genetic analysis were early hatchlings of less than 10 days 208 

according to the size (1.28-2.05 mm dorsal mantle length) and that each paralarva had 3 suckers per arm 209 



(Villanueva 1995). Visual identification of the gut contents was inconclusive, because no solid remains 210 

were found. Histological sections made to the digestive tract also revealed empty digestive tracts (Fig. 2a) 211 

with the exception of two stomachs which were filled with liquefied material that was impossible to 212 

identify (Fig. 2b).  213 

Group specific primers and genetic database 214 

PCR tests using the designed group specific primers yielded a target band of the expected fragment size in 215 

all the crustaceans and chaetognat tested. However, copepods yielded only faint bands that did not 216 

correspond to copepod DNA when sequenced, so we decided to use the copepod specific primers (Braga 217 

et al. 1999) in conjunction with the designed group specific primers for dietary analysis and for 218 

submissions to the genetic database. No PCR products were obtained at any annealing temperature when 219 

Octopus vulgaris DNA was used as template. All sequences obtained from the zooplankton collected 220 

from the Ría de Vigo were submitted to GenBank (Accession numbers in Table 2). 221 

Identification of preys in paralarvae by cloning 222 

All octopus digestive tracts yielded amplifiable DNA when PCR was performed with the designed group 223 

specific primers 16Scruf-16Scrur. Although we intended to sequence 10 colonies per larvae, some 224 

samples did not yield the minimum number of colonies (Table 3). Overall, a total of 122 clones were 225 

sequenced, and 115 readable sequences were obtained. All sequences corresponded to prey species, with 226 

114 clones corresponding to the semi-nested PCR band (16Scruf-16Scrur) and 1 clone corresponding to 227 

the first PCR (16Sar-16Scruf) identified as Trachurus trachurus (OTU 19, Table 3). 228 

Cloning of the amplicons obtained with copepod specific primers 16Sca-16Scb in Octopus vulgaris gut 229 

contents resulted in 135 colonies, but all the sequences obtained from 125 readable clones corresponded 230 

to O. vulgaris except one that amplified the DNA of Anapagurus laevis (OTU 13, Table 3).  231 

Prey detected consisted of 20 different OTUs with between 1 and 5 different OTUs per paralarvae (Table 232 

3). Eight OTUs were assigned to species with 78 clones displaying 100% similarity, and 1 clone 233 

displaying 98% similarity to sequences from GenBank. Six OTUs showed similarities higher than 90% 234 

(13 clones), three were assigned to genus (94-95%), two to a subfamily (Gobiinae, 93 and 92%) and the 235 

last one to a family (Goneplacidae, 90%). The remaining four OTUs, corresponding to 22 clones, 236 

displayed between 76-81% similarities and were assigned to the familial level on the basis of their 237 

supported topographical position on the bootstrap consensus tree (Table 3, Fig. 3).  238 



Summarizing, prey detected in Octopus vulgaris consisted mainly of crustaceans which accounted for 239 

97.4% of the clones detected and the remaining 2.6% corresponded to fishes (Table 4). Three taxa 240 

accounted for 95% of the clones; prawns (37.1%), crabs (37.1%) and krill (19.8%). When considering the 241 

importance of these groups in the diet of O. vulgaris, it is remarkable that prawns and crabs are the most 242 

common prey species, detected in 14 and 12 paralarvae out of 18 respectively (Table 4). In spite of the 243 

high number of krill clones, these corresponded to only three paralarvae. The rest of the taxa were 244 

detected in only three paralarvae, or in just one in the case of the Thalassinidae. According to the CI the 245 

trophic niche breadth is low (0.13) indicating that O. vulgaris paralarvae are specialist predators. All 246 

OTUs were submitted to GenBank, accession numbers in Table 3. 247 

 248 

Discussion 249 

This is the first time that prey items have been identified in Octopus vulgaris paralarvae collected in the 250 

wild. This was approached by using two morphological techniques; visual analysis of the digestive tracts 251 

and histological sections, as well as one molecular technique using group specific primers. Although the 252 

combined approach of morphological and molecular methods has been documented as a more 253 

comprehensive way to understand the diet of both vertebrates and invertebrates (Casper et al. 2007; 254 

Deagle et al. 2007, 2010; Braley et al. 2010), only the molecular method succeeded identifying prey in O. 255 

vulgaris paralarvae. The small size of the paralarvae, the limitation of the oesophagus diameter, the high 256 

digestion rates, and the external digestion (Nixon 1985; Parra et al. 2000; Hernández-García et al. 2000), 257 

made it impossible to carry out morphological analyses of prey in O. vulgaris paralarvae during their first 258 

days of life in the pelagic realm.  259 

The advantage of molecular methods is that when morphological methods were ineffective, i.e. digestive 260 

tract is empty or filled with unidentifiable remains, prey cells with sufficient DNA to be detected by PCR 261 

are able to be recovered (King et al. 2008). The main obstacle in employing molecular techniques in small 262 

animals is distinguishing prey DNA among the overall volume of host DNA (Symondson 2002). To 263 

overcome this obstacle we designed group specific primers within the 16S rRNA region for crustaceans 264 

and fishes, which selectively avoided amplification of Octopus vulgaris DNA. Other studies previously 265 

used this region of the 16S rRNA to design group specific primers for dietary purposes (Deagle et al. 266 

2005, 2007, 2009; Braley et al. 2010). Braley et al. (2010) designed a reverse group specific primer for 267 

crustaceans used in conjunction with the universal 16Sar, but only 11 of 184 PCR attempts produced 268 



successful amplifications of krill and shrimp. In contrast, the group specific primers designed in this study 269 

effectively amplified DNA, both alone and in conjunction with the universal 16Sar-16Sbr, from a wide 270 

range of crustacean taxa: cladocerans, crabs, prawns, thalassinids, krill, hermit crabs, porcellanids, 271 

carideans (Palaemonidae, Crangonidae and Alpheidae), mysids as well as fishes. 272 

The unexpected failure to amplify copepod DNA is a potential consequence of using group specific 273 

primers (Jarman et al. 2004; Deagle et al. 2005, 2007; Braley et al. 2010), which have been designed to 274 

exclude from amplification Octopus vulgaris DNA. For this reason PCR had to be run with the copepod 275 

specific primers 16Sca -16Scb (Braga et al. 1999) both in copepods and octopus paralarvae. These 276 

primers effectively amplified copepod DNA for the genetic library (Table 2), however failed to amplify 277 

copepod DNA from the digestive tract of O. vulgaris paralarvae. This suggests that early hatchlings of O. 278 

vulgaris do not eat copepods, despite their presence as one of the main zooplankton taxa (table 4) and 279 

being the most common prey in previous studies undertaken with other cephalopod paralarvae (Passarella 280 

and Hopkins 1991; Vecchione 1991; Vidal and Haimovici 1998; Venter et al. 1999). Nonetheless, the 281 

erratic movements and the extremely fast escape responses that copepods display (Yen and Fields 1992) 282 

potentially pose a challenge for the early O. vulgaris hatchlings when compared with the predictable 283 

swimming behaviour of crab and prawn zoeae or krill calyptopis. Indeed, Chen et al. (1996) found in 284 

Loligo opalescens paralarvae that copepod capture is a skill acquired in an experience-dependent manner 285 

during the post-hatchling stage.  286 

In the current study, seven OTUs (29 clones) could not be identified to species or genus because no 287 

similar sequences were present in GenBank. Phylogenetic relatedness was used to assign the unidentified 288 

sequences to the highest taxonomic lineage based on the bootstrap values of the consensus tree nodes. 289 

This reflects the difficulty when working with the diet of an expected generalist predator, due to the 290 

limited sequence information available to target the large diversity of potential prey taxa (Blankenship 291 

and Yayanos 2005; Suzuki et al. 2006, 2008). A prerequisite for resolving the diet of any predator living 292 

in such a complex environment is the extensive characterization of the system (Sheppard et al. 2005; King 293 

et al. 2008). In this work, five sequences that were submitted to GenBank from zooplankton species found 294 

in the Ría de Vigo, were detected in the gut of the paralarvae, which highlights the importance of an 295 

appropriate genetic database to obtain the highest level of identification and to reduce the uncertainty of 296 

any species identification. 297 



While previous work on cephalopod paralarvae diet found that paralarvae are generalist predators, prey 298 

species detected in early hatchlings of Octopus vulgaris suggest that they are actually specialist predators 299 

according to the CI obtained (0.13). Among the crustaceans, the group that primarily contribute to the 300 

total abundance of zooplankton in the Ría de Vigo are krill, or Euphausiacea, which were only detected in 301 

three paralarvae (Table 4). By contrast, all the paralarvae analysed ate some Decapoda, which include 302 

Brachyura (crabs), Caridea (shrimps), Anomura (hermit crabs) and Thalassinidea (mud shrimps), despite 303 

their much smaller contribution to the total abundance of zooplankton which was less than 4.26% (Table 304 

4). In fact, the trophic selection is quite evident for carideans, which were the most abundant prey present 305 

in 14 out of 18 O. vulgaris paralarvae, but whose contribution to the total zooplankton abundance was 306 

only 0.28%. 307 

The specialist trophic strategy during the first days in the pelagic ecosystem could be a consequence of a 308 

lack of skills to capture fast moving and more abundant prey, as proved in paralarvae of Loligo 309 

opalescens (Chen et al. 1996). As it occurs in the former species, an ontogenic switch into a generalist 310 

predation strategy would be expected as the Octopus vulgaris paralarvae grow and gain experience, but 311 

further research is needed to test this hypothesis. On the other hand, if paralarvae were truly specialists 312 

throughout the planktonic phase, this might explain the high mortality of O. vulgaris hatchlings both 313 

under culture and in the wild, due to prolonged starvation periods (Vecchione 1991). 314 

In conclusion, up to 20 prey species have been detected in Octopus vulgaris paralarvae obtained from the 315 

wild with a PCR-based method. This is the first successful attempt to unravel the complex trophic 316 

interactions that occur in the pelagic ecosystem for O. vulgaris paralarvae. Based on the prey species 317 

detected and their relative abundances in the zooplankton, O. vulgaris paralarvae can be considered 318 

specialist predators during their first days of life in the pelagic ecosystem. Such knowledge can be critical 319 

to solving the primary problems associated with the integral culture of this species, which is the low 320 

survival of the paralarvae likely due to inadequacy of food supplied (Iglesias et al. 2007). Further effort 321 

will progress in this direction to enhance the knowledge of this species during its planktonic phase.  322 
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 452 

Fig.1 Diagram of the two semi nested PCR undertaken on each paralarvae, showing the prey targeted and 453 

the primers used on each PCR 454 

 455 

Fig.2 Histological sections of Octopus vulgaris paralarvae stained with haematoxylin-eosin showing (a) 456 

an empty stomach and (b) a stomach filled with undefined material (*) impossible to recognise. 457 

Abbreviations, br: brain; di gl: digestive gland; oe: oesophagus; ra: radula; st: stomach; su: sucker. Scale 458 

bars 100 nm. 459 

 460 

Fig.3 Maximum Likelihood tree for affiliating 18 operational taxonomic units (OTUs) obtained from the 461 

digestive tract Octopus vulgaris paralarvae. OTUs obtained from the digestive tract are shown in bold. 462 

Eukaryote rRNA sequences obtained by the BLAST searches are in italics with accession numbers. Only 463 

bootstrap probabilities higher than 60 after 1000 replications are shown in the branches 464 

 465 
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Table 1. Primers used in the current study showing the sequence of forward and reverse primers, the 

annealing temperature of each primer and the sizes of the amplified PCR products.  

 

 

Target 
taxon 

Forward primer (5´- 3´) Reverse primer (5´- 3´) Annealing 
Temperature  

Product 
size (bp) 

Universal 
16Sar 

CGCCTGTTTATCAAAAACAT 
16Sbr 

CCGGTCTGAACTCAGATCACGT 
50 ºC 550-620 

Eucarida 
16Scruf 

GACGATAAGACCCTATAA 
16Scrur 

CGCTGTTATCCCTAAAGTAA 
57 ºC 194-204 

Copepod 
16Sca 

TGTTAAGGTAGCATAGTAAT 
16Scb 

ATTCAACATCGAGGTCACAA 
50 ºC 356-387 

Table 1



Table 2. List of species sequenced to create a 16S rRNA library of zooplankton present in the Ría de Vigo 

including GenBank Accession numbers, size of PCR amplicons in base pairs and PCR primers used to 

amplify each species.  

Accession 

number 
Species Taxon 

Length 

(bp) 
Primer set 

Homology 

(%) 

FR851238 Jaxea nocturna Thalassinidae 361 16Sar-16Scrur 99 

FR851240 Callianasa subterranea Thalassinidae 365 16Sar-16Scrur 99 

FR851239 Podon intermedius Cladocera 357 16Sar-16Scrur 99 

FR682469 Nyctiphanes couchii Euphausiacea 356 16Sar-16Scrur 99 

FR849634 Galathea strigosa Galatheidae 338 16Sar-16Scrur  

FR682470 Pisidia longicornis Porcellanidae 380 16Sar-16Scrur  

FR849633 Solenocera membranacea Penaeidae 367 16Sar-16Scrur  

FR682471 Crangon crangon Crangonidae 371 16Sar-16Scrur  

FR694622 Anapagurus laevis Paguridae 363 16Sar-16Scrur  

FR849637 Cestopagurus timidus Paguridae 276 16Scruf-16Sbr  

FR849651 Processa cf. nouveli Processidae 170 16scruf-16Scrur  

FR849636 Leptomysis gracilis Mysidacea 198 16Scruf-16Sbr  

FR849648 Calanus helgolandicus Copepoda 349 16Sca-16Scb 99 

FR849642 Calanoides carinatus Copepoda 346 16Sca-16Scb  

FR849638 Mesocalanus tenuicornis Copepoda 341 16Sca-16Scb  

FR849639 Paraeuchaeta hebes Copepoda 340 16Sca-16Scb  

FR849643 Paracalanus parvus Copepoda 365 16Sca-16Scb  

FR849645 Pseudocalanus elongatus Copepoda 275 16Sca-16Scb  

FR849646 Metridia lucens Copepoda 372 16Sca-16Scb 99 

FR849641 Pleuromamma gracilis Copepoda 329 16Sca-16Scb  

FR849650 Diaixis pygmaea Copepoda 206 16Sar-16Scb  

FR849649 Acartia clausii Copepoda 323 16Sca-16Scb 96 

FR849634 Clausocalanus sp. Copepoda 284 16Sca-16Scb  

FR849640 Oithona sp. Copepoda 397 16Sca-16Scb  

FR849647 Candacia armata Copepoda 350 16Sca-16Scb  
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Table 3. Prey DNA (OTUs 1-20) detected in the eighteen Octopus vulgaris paralarvae (Oc1 to Oc18) by 

cloning the PCR products obtained with group specific primers (16Scruf-16Scrur), including closest 

matches, their GenBank Accession numbers and percentages of similarity obtained from BLAST. 

OTU*  Taxon Species Ac. 
number 

(%) Oc 
1 

 Oc 
2 

Oc 
3 

 Oc 
4 

 Oc 
5 

Oc                                                                                             
6 

Oc 
7 

Oc 
8 

Oc 
9 

 Oc 
 10 

 Oc     
11 

 Oc 
12 

 Oc      
13 

 Oc 
14 

Oc 
15 

Oc  
16 

Oc
17 

Oc 
18 

OTU 1 Brachyura Polybius henslowii DQ388059 100    6    2 1 1         

OTU 2 Brachyura Pilumnus hirtellus AM946023 100     3  3  2        1 8 

OTU 3 Brachyura Pirimela denticulata FM208783 100  3                 

OTU 20 Brachyura Necora puber FJ755656 100                4   

OTU 4 Brachyura Liocarcinus sp. GQ268541 95              4     

OTU 5 Brachyura Goneplacidae FJ943433 90 5                  

OTU 6 Caridea Alpheidae 1 FJ528488 80  2      2      3 1    

OTU 7 Caridea Alpheidae 2 DQ682879 79 1  3       1         

OTU 8 Caridea Alpheidae 3 DQ682895 76     1   1 1     3 2    

OTU 9 Caridea Processa nouveli FR849651 100   1   1   1 3 1 3 9    1  

OTU 10 Caridea Processa sp. FR849651 94         1          

OTU 11 Caridea Crangon crangon FR682471 100     1              

OTU 12 Anomura Pisidia longicornis FR682470 98                1   

OTU 13
a
 Anomura Anapagurus laevis FR694622 98  1                 

OTU 14 Anomura Anapagurus sp. FR684622 94          1         

OTU 15 Thalassinidea Upogebiidae EU874916 81   1                

OTU 16 Euphausiacea Nyctiphanes couchii AY574933 100           9 7   7    

OTU 17 Teleostei Gobiinae EF218650 93             1      

OTU 18 Teleostei Gobiinae EF218650 92                  1 

OTU 19
b
 Teleostei Trachurus trachurus 

Trachurus japonicus 

AB096007 

AP003092 

99 

99 
                1  

*Each Operational Taxonomic Unit (OTU) has been submitted to GenBank, accession numbers: FR849614-849632 
and HE586322. a Obtained with primers 16Sca-16Scb. b Obtained with primers 16Sar-16Scrur 
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Table 4. Composition of the zooplankton community during the study expressed as the percentage of each 

taxon to the total abundance and the diet in Octopus vulgaris paralarvae by the number and percentage of 

clones corresponding to a given taxon and the number of paralarvae where those taxa were detected. 

Phyla Taxon Wild  
 Zooplankton 

Abundance (%) 

Clones 
detected and  
percentage (%) 

Number of 
paralarvae 

Crustacea Euphausiacea 27.8765 23 (19.8) 3 
Echinodermata Ofiuroidea  20.3526   
Crustacea Copepoda 19.0708   
Chordata Thaliacea 15.2601   
Crustacea Cirripeda 3.9272   
Chaetognatha Sagittidae 2.7184   
Crustacea Cladocera 2.2304   
Crustacea Anomura 2.1644 3 (2.6) 3 

Crustacea Brachyura 1.8174 43 (37.1) 12 
Cnidaria Cnidaria 1.5349   
Echinodermata Equinoidea 1.2949   
Mollusca Gastropoda 0.8575   
Crustacea Caridea 0.2777 43 (37.1) 14 
Chordata Teleostei 0.2518 3 (2.6) 3 
Crustacea Misidacea 0.2352   
Crustacea Amphipoda 0.0297   
Platemintha Turbellaria 0.0215   

Annelida Polychaeta 0.0203   
Mollusca Bivalvia 0.0144   
Briozoa Ciphonaute 0.0126   
Crustacea Cumacea 0.0088   
Crustacea Thalassinoidea 0.0084 1 (0.9) 1 
Crustacea Stomatopoda 0.0068   
Crustacea Dendrobranchiata 0.0030   
Crustacea Isopoda 0.0018   

Mollusca Cephalopoda 0.0016   
Cephalochordata Branchiostomidae 0.0009   
Crustacea Ostracoda 0.0007   
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