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ARTICLE

Molecular probes reveal deviations from
Amontons’ law in multi-asperity frictional contacts
B. Weber 1,5, T. Suhina1,2, T. Junge3, L. Pastewka 3,4,6, A.M. Brouwer 2 & D. Bonn1

Amontons’ law defines the friction coefficient as the ratio between friction force and normal

force, and assumes that both these forces depend linearly on the real contact area between

the two sliding surfaces. However, experimental testing of frictional contact models has

proven difficult, because few in situ experiments are able to resolve this real contact area.

Here, we present a contact detection method with molecular-level sensitivity. We find that

while the friction force is proportional to the real contact area, the real contact area does not

increase linearly with normal force. Contact simulations show that this is due to both elastic

interactions between asperities on the surface and contact plasticity of the asperities. We

reproduce the contact area and fine details of the measured contact geometry by including

plastic hardening into the simulations. These new insights will pave the way for a quantitative

microscopic understanding of contact mechanics and tribology.
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A
third of the world energy consumption is due to friction1,
but our fundamental understanding of how this friction
emerges is not complete2,3. All frictional theories ulti-

mately aim to understand how frictional dissipation emerges
from the details of contacts between two sliding surfaces.
Experimental testing of such contact theories for rough interfaces
is crucial, but has proven very challenging. In the late nineteenth
and early twentieth century electrical conductivity was used as a
measure of the contact area between metal surfaces4,5. More
recently, optical techniques such as phase-contrast microscopy6,
frustrated total internal reflection7, or interferometry8 have been
used to gain insight into contact and friction mechanics. How-
ever, two important aspects of contact mechanics and their
relation to friction have not been addressed by these experiments:
first, whether deformations of the roughness can be elastically
transferred from one contact point to another and thereby
influence the contact area; and second, the relative importance of
plasticity and elasticity in the formation of contact area and
friction.

In this study, we experimentally demonstrate how the com-
bined effect of elastic and plastic deformations of surface
roughness sets the real contact area which in turn controls the
friction force. Using pressure-sensitive fluorescent molecules, we
visualize the entire area of real contact that defines the rough-
sphere-on-flat glass interface. We directly compare this experi-
mental visualization of the real contact area to rough-on-flat
contact simulations in which various deformation mechanisms
can be included or left out. Through this comparison we find that
neighboring roughness extremities are not deformed independent
of each other, but rather transmit strain to one another through
the underlying bulk material. These elastic deformations are
accompanied by strain hardening plastic deformation of the
topmost sphere surface layer. A direct consequence of the strain
hardening is that the real contact area grows sublinearly with
load. We find that the static friction force is proportional to the
real contact area resulting in the breakage of Amontons’law.

Results
Area of real contact. To view the real contact area, we use a new
optical technique9, which employs rigidochromic molecules.
When absorbing a photon, the rigidochromic molecules show
excited-state deactivation along two distinct pathways9–12. The
first pathway is non-radiative (non-fluorescent) and triggered by
rotation around a specific bond in the molecule. When this
rotation is hindered by the confinement induced by a mechanical
contact9, the molecule is forced to follow the second, radiative,
pathway: it fluoresces9,13. In the experiments, we chemically
attach such molecules to the surface of very smooth and flat glass
coverslips9 which are then inserted into our microscopy setup
(Fig. 1). A sphere is lowered into contact with the coverslip and
the contact is illuminated from below, to excite the monolayer of
rigidochromic molecules at the surface of the coverslip. The
molecules fluoresce when the gap between sphere and coverslip
becomes of the order of the molecule size (Fig. 2 and Supple-
mentary Fig. 7). The integrated fluorescence intensity is propor-
tional to the number of confined molecules and depends on the
local degree of confinement (see Methods). In the plane, we
resolve the contact structure with diffraction limited microscopy
(point spread function of 450 nm). Through atomic force
microscopy (AFM) and contact simulations, we show that there is
not much contact structure below this length scale (Supplemen-
tary Figs. 4 and 9). In the experimental range of normal forces,
the real contact area evolves from a discrete collection of aspe-
rities in contact at 4 mN to an almost Hertzian14 contact circle at
400 mN (Supplementary Movie 1). During this evolution, existing

contacts deform and increase their area while new contact patches
emerge elsewhere. Quite surprisingly and contrary to the com-
mon interpretation of Amontons’ law, the overall contact area
does not increase linearly with the normal force (Fig. 3a).

Friction and the area of real contact. If the contact area links the
normal force to the friction force, this observation would imply
that Amontons’ law is broken. To induce frictional slip and
measure the friction coefficient, we rotate the rheometer plate
(Fig. 1) at a constant velocity of 1 μm s−1 resulting in a linear
build up of friction force, caused by the finite stiffness of the
measurement system (inset Fig. 3b). Once the applied force
exceeds the static friction, the contacts break and slip. We indeed
observe that Amontons’ law is broken; the static friction force is
proportional to the contact area but not to the normal force
(Fig. 3b). This means that the friction coefficient is ill-defined, it
depends on the normal force.

The experiments thus show that friction is controlled by the
contact area, but not what sets the contact area. Many of our
present-day insights into the mechanics of rough contacts come
from theoretical considerations. Early models assumed surfaces
deform purely plastically15,16. In these models, surface roughness
causes the contact area to be small and therefore the contact
pressure to be large. This enormous pressure leads to irreversible,
plastic deformation of the contact points. The real area of contact
A is then proportional to the load N pushing the surfaces
together, A =N/pY with pY being the penetration hardness of the
material. It was argued that after the first, irreversible deforma-
tion of the material, it would respond purely elastically; this led to
the development of sophisticated multi-asperity models17–20,
where surface roughness is described as a collection of identical,
non-interacting, spherical summits of random height that follow
elastic, Hertzian14, contact mechanics. Persson’s recent scaling
theory21 alternatively uses a description with an arbitrary form
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Fig. 1 Experimental setup. A rheometer is mounted on top of an inverted

confocal laser scanning microscope (not to scale). We excentrically glue a

rough sphere to the rheometer plate and make contact with a smooth and

flat, float glass, coverslip. The rheometer measures normal and frictional

forces on the contact. The inverted microscope excites a monolayer of

rigidochromic molecules on the glass surface with 488 nm laser light and

point scans images (at a large magnification: ×63, numerical aperture 1.4)

the resulting fluorescence that is emitted at the real contact area between

the sphere and the glass. Two beam splitters and a long pass filter are used

to collect the fluorescent light in a photomultiplier tube. To avoid strong

light scattering and optimize image quality, we immerse the contacts in

formamide and use transparent materials for the sphere: polystyrene (PS),

poly(methyl methacrylate) (PMMA), polytetrafluoroethylene (PTFE), and

borosilicate glass
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for the roughness, taking into account elastic interactions between
asperities on different length scales. Both multi-asperity and
Persson theory also predict proportionality, A =N/prough with the
characteristic pressure prough � h′rmsE

�=2 now determined by the
elastic contact modulus14 E* and the root mean square slope h′rms
of the surface roughness.

Numerical calculations of the area of real contact. To investi-
gate why in the experiments proportionality between contact area
and normal force is not observed, we perform simulations in
which different effects can be considered or left out. Prior to the
contact experiment, we use AFM to obtain a three-dimensional
map of the sphere roughness at the exact same location that is
pressed onto the glass (Supplementary Fig. 9). Since we use
materials for the sphere that are significantly softer and rougher
than the glass, the deformation of this roughness map completely
determines the experimental contact area and therefore forms the
ideal input for contact simulations. We first consider elasticity
and start with the rough-sphere multi-asperity model of Green-
wood & Tripp (GT)18 (Methods) to compute the dependence of
the contact area on normal force. Surprisingly, the contact area
resulting from this calculation is five times smaller than that
found in the experiment (Fig. 2b). By reducing rough surfaces to a
collection of discrete asperities, multi-asperity theories such as the
GT model ignore strain transmitted from asperity to asperity
through the bulk.

The omission of such interactions from multi-asperity theories
is considered to be problematic21, because many surfaces are
fractal; smaller asperities exist on top of larger asperities implying
that in contact, asperities have to transmit strain to one another.
We therefore compare the GT model to a full numerical
calculation22 of the contact area using a Green’s function
method23 that treats the elastic interaction exactly on all length
scales. This simulation ignores nonlinear elastic effects but
constitutes the exact solution of the problem that both multi-
asperity theories and Persson’s analysis24 approximate. There are
no adjustable parameters in the elastic simulation, because sphere
radius, sphere roughness, and modulus are all independently
measured (see Methods). We observe that the inclusion of
asperity interactions leads to a different contact patch distribution
(Fig. 2c) compared to that of the GT model. The contact
morphology obtained by elastic simulation is closer to the
experiment, leading us to conclude that asperity interactions are
required to more accurately predict the real contact area. The real
contact area from the elastic simulations, however, is still linear in
normal force and still significantly smaller than in the experiment
(Fig. 3a).

If one estimates the stresses at the contacts from the measured
forces and real contact areas, one obtains values on the order of
200MPa. Since the penetration hardness of the polystyrene (PS)
is of the same order25, irreversible, plastic deformation of the
asperities may occur in addition to elastic deformation. To
confirm that plasticity is indeed important in the experiment, we
measure the surface topography by AFM after the contact
experiment; we observe that indeed the contact points have been
permanently deformed (Supplementary Fig. 9). We therefore add
plasticity into the simulation, first by using the canonical
plasticity model of contact mechanics: We allow contact points
to flow above a penetration hardness pY (see Methods). pY is set
to 10% of the PS elastic modulus, three times higher than the
yield strength of PS under compression16. Although the resulting
contact area (Fig. 3a) is about twice the size of that predicted by
the purely elastic simulation, it is still significantly smaller than
that measured in the experiment. By varying the only adjustable
parameter, the penetration hardness, the match between experi-
mental and simulated contact patterns cannot be improved
significantly (Supplementary Fig. 8). More importantly, the real
contact area still depends linearly on the load, in disagreement
with our experimental findings.

The likely solution comes from carefully looking at the
experimental data, and comparing to the purely plastic model
discussed above. From the latter, one would expect the contact
pressure to remain constant at the value of the penetration
hardness of the material. However in the experiment, due to the
sublinear dependence of the contact area on the load, the average
contact pressure rises during the experiment from roughly 100
MPa at the lowest loads to 250MPa at the highest loads. This
strongly suggests that the contacts become harder to deform at
large strains; such strain hardening is generally observed for the
materials employed here26. To capture this effect, we introduce
simple linear hardening of pY with local plastic displacement hpl,
pY = kh

pl, into our calculation (see Methods). This is the simplest
constitutive equation for a strain hardening model; we adjust the
single empirical parameter k to match our experimental contact
area vs. load curves, giving k ≈ 4MPa nm−1.

The hardening simulation predicts contact geometries that are
almost indistinguishable from the experiments (Fig. 2 and
Supplementary Fig. 5), including also the deviation from linearity
of contact area with load (Fig. 3a). Using the surface topography
map as input, we can now predict exactly where contact will
occur, and where not.
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Fig. 2 The real contact area measured and simulated at increasing loads. a

Fluorescence intensity images of the contact geometry. The average

contact pressure rises from roughly 100MPa at the beginning of the

experiment to 250MPa at the highest loads. Scale bar, 10 μm. b Elastic

Greenwood & Tripp (GT) bearing area calculation. c Purely elastic

simulation. d Elasto-plastic contact hardening simulation. Experiments and

simulations were carried out on the sphere whose roughness is shown in

Supplementary Fig. 9. Simulated contact geometries are convoluted with

the point spread function of the microscope (Supplementary Fig. 3). Green

lines indicate contact edges in the experimental images. The simulated

intensity scale is adjusted such that average colors look like the

experimental images. The maximum intensity in the simulated images is 3
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Discussion
In summary, the first determination, with molecular resolution
perpendicular to the plane, of the real contact area in a frictional
contact shows that (as commonly assumed) the static friction is
directly proportional to the real contact area. However, we also
observe that this contact area does not grow linearly with normal
force, which is the result of elasto-plastic deformation of the
asperities that constitute the roughness. The deformation of the
asperities and the resulting contact geometry can only be pre-
dicted accurately by taking into account the elastic interactions
between contact points and combining them with a strain hard-
ening plasticity law. The former is commonly ignored in multi-
asperity models and the latter in most numerical calculations. We
expect the elastic behavior observed here to be applicable to most
other materials, while the surface plasticity may be more material
dependent. In any case, the hardening model presented here also
describes the contact mechanics of poly(methyl methacry-
late) (PMMA) (Supplementary Figs. 11 and 12) and the nonlinear
contact area and friction is also observed in polytetra-
fluoroethylene (PTFE) and glass spheres (Supplementary Fig. 13).
We anticipate these results to lead to a better understanding of
many tribological problems such as the running-in of frictional
contacts27 that is key in engineering applications and slip
weakening28,29 in geology. Both are related to contact plasticity
that determines the initial change in friction coefficient and
surface roughness of a tribological system that controls much of
its subsequent tribological properties.

Methods
Microscopy. Contact area measurements work best when strong light scattering at
the interface is avoided. We therefore use transparent sphere materials and
immerse the contacts in formamide. We optimized the photomultiplier offset and
gain such that there is no over saturation or under saturation of the intensity while
most of the 4096 gray values are used. All images within one load ramp experiment

are recorded with the same settings which do not cause significant photobleaching.
The experimental real contact area is taken as the number of contact pixels mul-
tiplied by the pixel area. Contact pixels are obtained from the microscopy images
through intensity thresholding using the Otsu30 method; we define a single
threshold value based on all images in the load series. The contrast is such that
contact and background fluorescence intensities hardly overlap and the threshold
value is well determined (Supplementary Fig. 1).

Rigidochromic molecules fluoresce with an intensity that is proportional to the
degree to which they are confined31,32. Our molecules are grafted to the surface of
glass coverslips with a density of roughly 80,000 molecules μm−2, which we
estimated by absorption spectroscopy (Supplementary Fig. 2). We confirmed that
the grafting density is homogeneous by imaging the fluorescence intensity of the
coverslip surface immersed in formamide. The pixel area in typical contact
experiments is 200 × 200 nm2 and should therefore contain roughly 3000
rigidochromic molecules.

The resolution with which the contact area can be resolved is limited by the
microscope point spread function (PSF). To measure this PSF, we image 100 nm
fluorescent beads under the same optical conditions as those applied in the contact
experiments. The images of the point sources are radially averaged around the
center of intensity to obtain a Gaussian profile with full-width at half-maximum of
450 nm (Supplementary Fig. 3). Simulations based on the sphere surface profile
measured by AFM have a lateral resolution of 32 nm. We convolute the simulation
results with the microscope PSF to obtain contact images that can be directly
compared to experiment.

The real contact area can have structure at (lateral) length scales smaller than
450 nm. However, for the PS-on-glass contacts such structure would not make
physical sense, since a direct consequence of the plastic deformation of the sphere
surface (Supplementary Fig. 9) is that the sphere roughness is flattened at exactly
these scales. The only way to obtain contact area structure at length scales smaller
than 450 nm in the simulations is to increase the sphere hardness. If we do so, the
overall contact area structure no longer matches the experiment (Supplementary
Fig. 8). As additional evidence for the lack of subresolution contact structure, we
compute the radially averaged intensity autocorrelation function of experimental
and simulated fluorescence images (Supplementary Fig. 5). The autocorrelation
functions look almost identical and reveal the same scale of around 5 μm for the
size of the contact patches.

We observe a modest increase in mean intensity per fluorescent pixel with the
addition of contact force (Supplementary Fig. 1c). In principle, the fluorescence
intensity depends on the number of rigidochromic molecules contributing to the
signal and the local free volume available to these molecules. The contact
simulations show that due to the plastic deformation of the PS sphere roughness,
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Fig. 3 Amontons’ law and the real contact area. a Real contact area vs. normal force. The area of real contact is obtained by thresholding the fluorescence

images (Supplementary Fig. 1). Symbols show experiments on three PS spheres that have similar roughness. Solid lines show values obtained from theory

as well as linear fits to the penetration hardness model, with pY the penetration hardness, and the fully elastic simulation, with prough the constant contact

pressure. The inset shows the same data, but on a logarithmic scale. Experimental contact is reproduced by the contact hardening model that considers

long-range elastic asperity interactions and local plasticity at contact. Other models either underestimate the contact area or do not describe the deviation

from linearity found in the experiment. b Static friction force of contacts like those in a, measured at different normal forces. Symbols show experiments on

two PS spheres, the red solid line is the hardening simulation fitted onto the friction data by multiplication with the interfacial shear strength. The

agreement shows that the static friction force is proportional to the contact area. The constant of proportionality, or interfacial shear strength, is 50MPa,

close to the bulk shear strength of PS. Inset: the friction force F between a PS sphere and a glass substrate as a function of applied strain dmeasured using a

rheometer. Through rotation of the rheometer plate (Fig. 1), a constant strain rate of ~1 μm s−1 is imposed on the contact. The friction force builds up until

slip occurs. The static friction is then defined as the maximal friction force at the onset of slip, measured at different normal forces, N, shown in the inset.

Friction and contact data recorded during the event indicate that there is no stick slip behavior at the imposed sliding velocity
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all rigidochromic molecules within the thresholded contact area should contribute
to the fluorescence intensity. The increase in fluorescence intensity with normal
force therefore likely results from a reduction of the local free volume at the
interface that is probed by the rigidochromic molecules.

In the contact experiments, a small fraction of the 488 nm excitation light gets
reflected by the interface between the sphere and the contact immersion liquid or
the substrate and the contact immersion liquid. The interference between these two
contributions leads to a ring-shaped intensity pattern around the contact,
commonly known as Newton rings (Supplementary Fig. 6). These rings have
maximal intensity where the gap between the sphere and the substrate is equal to33

d ¼ mþ
1

2

� �

λ

2n
; ð1Þ

where m = 0, 1, 2, 3… is the ring number, λ = 488 nm is the wavelength and n =
1.447 is the refractive index of formamide. We consider a line profile that runs
through the center of the contact and extract the points at which the line intersects
with the Newton rings. Using the gap from Eq. (1), these intersection points then
give us the profile of the gap between the sphere and the substrate, close to the
contact (Supplementary Fig. 7). Because the two surfaces are in contact and no
intensity of reflected light is observed within the smallest ring, the smallest ring
must be the m = 0 ring. By extrapolating the gap profile towards the edge of
contact, as indicated by the fluorescence signal, we obtain the gap at which the
rigidochromic molecules light up (Supplementary Fig. 7). Twenty different profiles
were taken, leading to an average gap of 9 nm between the sphere and the substrate
at the location where the fluorescence intensity image indicates the edge of the
contact. Because the Newton rings give the average local gap, while the
rigidochromic molecules measure the minimum local gap, 9 nm is an upper limit
on the distance between the two surfaces at which the rigidochromic molecules
light up. Indeed the combined roughness of the precision sphere and the float glass
coverslip used for this measurement is typically of the same order. In comparison
to frustrated internal reflection used for contact detection in other experiments34,
rigidochromic molecules light up at a gap that is more than an order of magnitude
smaller. Furthermore, our method provides a much higher spatial resolution than
frustrated TIRF or interference methods. Supplementary Fig. 6 shows what the
consequence is for the measured contact area: the area within the first Newton ring
represents gaps smaller than 84 nm, roughly the sensitivity of frustrated internal
reflection measurements34, the fluorescent area is four times smaller. Physically, the
nature of the contact detection is also different in both methods. While TIRF
detection is defined by the decay distance of an evanescent wave, typically a
fraction of the wavelength, rigidochromic molecules are confined by intermolecular
forces; the forces that generate friction. In principle this allows for local
measurement of interfacial stresses in addition to contact areas.

Mechanical testing. PS spheres were inserted in a container with 240 grit sand-
paper walls and then shaken for at least 8 h to obtain a roughened surface. PMMA
and glass spheres were not roughened prior to the experiments.

The PS and glass elastic moduli and Poisson ratios were measured in a tensile
tester. Individual spheres were squeezed between two glass plates; the squeeze force
was measured as a function of strain. In Hertz theory, the strain 2δ (because there
are two sphere on flat contacts contributing to the measured strain) follows from
the contact force P, according to14

δ ¼
9P2

16RE�2

� �1=3

: ð2Þ

The sphere radius, R, was measured independently by microscopy. Fitting the
theory to the experimental data we therefore obtain E*, defined as
1=E� ¼ 1� ν

2
1

� �

=E1 þ 1� ν
2
2

� �

=E2 , where E1 and E2 are the glass and PS elastic
moduli and ν1 and ν2 their respective Poisson ratios. Using the obtained values of
R = 290 μm and E* = 3.7 GPa, we can also predict the Hertzian14 contact radius, a:

a ¼
3PR

4E�

� �1=3

: ð3Þ

We confirmed that this radius tightly encloses the experimental contact areas.
The exact same analysis was applied to the PMMA spheres with radius R = 750 μm,
resulting in E* = 3.5 GPa.

During friction tests, the rheometer measures the torque on the plate to which
the sphere is glued. We calculate the friction force from this torque using the
rotation radius of the sphere, measured by microscopy. This radius can be
determined with 1% accuracy and is typically two orders of magnitude larger than
the size of the contact. The same radius is used to calculate the sliding speed and
distance. Friction tests were performed on dry float glass. Similar results are
obtained when we wet the contacts with Formamide.

GT model. The asperity radius B for the GT model18 is obtained from the root
mean square curvature h′′rms of the measured rough surface, B ¼ 1=h′′rms . The

asperity density η is approximated by the relationship35,36 ηhrmsB ≈ 0.05. The GT
model then yields the roughness-averaged surface deformation profile. Contact
area and geometry are obtained from the bearing area approximation: spots where
the rough profile penetrates this deformation profile are in contact.

Elastic interactions. We model normal elastic contact between two surfaces with
discretized topography maps h

ð1Þ
xy , h

ð2Þ
xy , where xy denotes the in-plane coordinate.

This can be mapped exactly onto a rigid rough surface of height hxy ¼ h
ð1Þ
xy � h

ð2Þ
xy

and a deformable elastic solid of contact modulus E*. For the PS and PMMA on
glass contacts, E* is directly measured in a tensile tester. The topography maps of
the glass and polymer surfaces are obtained using AFM. The glass roughness is
ignored in the simulations, because it is negligible compared to that of the polymer
surface.

The linear elastic response of the contacting surface is numerically calculated
using an efficient Green’s function technique that considers just the normal
displacement of the surface. This approach ignores lateral interfacial slip during
contact but is the exact numerical solution of the model that
Greenwood–Williamson’s and Persson’s theory approximate. In brief, we use the
Green’s functions obtained for an isotropic linear elastic half-space subject to a
constant normal load distributed over square patches14 and accelerate the
convolution using a fast Fourier transform (FFT) technique37–39. The calculation is
supplemented by a padding region that cancels any effect from repeating images of
the FFT23,40. The interface between the two surfaces is treated as impenetrable hard
walls41. These calculations give the displacement uxy (positive pointing into the
deformable substrate) and pressure pxy on a square numerical grid across the
contacting interface.

Plasticity models. All plasticity models considered are local evolution laws for the
plastic displacement hplxy . h

pl
xy is updated iteratively while the two surfaces are

brought into contact. The full deformed topography is then h′xy ¼ hxy þ hplxy . The
penetration hardness model solves for the elastic deformation imposed by a con-
tacting (and potentially deformed) topography h′xy , but adds an upper limit42 on
the local pressure pxy. This limiting pressure is the penetration hardness pY.
Numerically, this is implemented by modifying Polonsky & Keer’s constrained
conjugate gradient solver41 to optimize the pressure pxy only in regions where pxy
> 0 and pxy< pY and keep it bounded to 0 and pY otherwise. The gap gxy = uxy − hxy
is positive where pxy = 0, negative where pxy = pY (and the material deforms plas-
tically) and zero otherwise. Negative gaps gxy define the plastic increment; in the
simplest case

Δhplxy ¼ gxyθ �gxy
� �

; ð4Þ

where θ(x) is the Heaviside step function. We use simple overrelaxation to solve for
the plastic deformation: the surface is deformed by a fraction α of the plastic
increment, hplxy ! hplxy þ αΔhplxy . We iterate elastic computation of the gap gxy and
relaxation of hplxy until the gap gxy becomes non-negative everywhere in the
simulation domain.

Note that the plastic increment given by Eq. (4) is not volume conserving but
has the advantage that hplxy can be computed in a single iteration without relaxation
(α = 1). A volume conserving increment needs to fulfill

P

xy Δh
pl
xy � 0. The

simplest construction is a distribution of the deformed volume to neighboring grid
points,

Δhplxy ¼ gxy � gxþ1;y þ gx�1;y þ gx;yþ1 þ gx;y�1

� �

=4
� �

θ �gxy
� �

; ð5Þ

but this necessitates overrelaxation, α< 1. We carried out penetration hardness
calculations with both formulations of the plastic increment, Eqs. (4) and (5), with
no differences in the obtained total contact areas. Contact geometries for the
volume conserving formulation appear slightly smeared out. In the contact
hardening model, we introduce a spatially varying pY,xy and adjust it locally
according to hplxy , pY;xy ¼ khplxy .

The penetration hardness model introduces a sharp cutoff in the pressure
distribution at pY that is not present in the contact hardening model. The former is
however consistent with results from full finite-element models using standard J2
plasticity43 with isotropic hardening in the subsurface bulk of the materials.
Calculations show that the surface pressure distribution is cutoff by the plastic
deformation and that the contact area is proportional to the applied load44. We
conclude that our polymers do not behave like J2 solids. This can have multiple
reasons, such as the well-documented pressure dependence of the yield stress of
glassy polymers45 or a different mechanical behavior of the surface region46,47.

Comparison with experiments. The final contact maps shown in Fig. 2, Sup-
plementary Figs. 4, 8 and 11 display regions where gxy ≡ 0, convoluted with the PSF
of the microscope. This facilitates comparison with experimental optical images
that are always resolution-limited. We note that both contact models contain a
single material parameter, the penetration hardness pY or the hardening coefficient
k. Supplementary Figure 8 compares the results obtained from experiment with
penetration hardness and contact hardening models at varying parameters. These
results show that decreasing the penetration hardness or hardening coefficients
makes the contact patches more compact and increases contact area. While the
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coarse details of the experimental contact geometry are reproduced by all calcu-
lations, only the contact hardening model correctly describes the finer details of the
contact features and—most importantly—the deviation from linearity in the load
vs. area curve shown in Fig. 3.

As an independent test of the contact plasticity model, we show the plastically
deformed surface h′xy obtained from the contact hardening model alongside AFM
measurements before and after contact in Supplementary Fig. 9. Clearly, the
contacting region is flattened in the experiments and the overall magnitude and
location of the flattened patches is well-described by the contact hardening model.

Next, we address the question if the nonlinearity in area vs. load is an effect of
the sphere curvature. At low loads, the elastic contact of rough spheres behaves like
the contact of a nominally flat rough surface (ref. 23 and blue lines Supplementary
Fig. 10). To confirm this behavior for the contact hardening calculations, we
calculate the contact of nominally flat, periodic surfaces for comparison. Because
experimental surfaces are not periodic, we use synthetic, self-affine48 surfaces that
were generated using a Fourier-filtering algorithm49 to avoid edge effects. The
elastic deformation of the substrate is computed using the continuum Green’s
function for periodic systems21,37,50. Red lines in Supplementary Fig. 10 shows the
result of these calculations. There is no difference in the results obtained for
nominally flat (solid lines) and curved (broken line) surfaces. Both cases show
identical power-law scaling of area with load, demonstrating that the curvature of
the interface does not change the macroscopic contact law.

Other materials. The demonstrated strain hardening contact mechanics does not
only occur in PS. A 1.5 mm PMMA sphere was brought into contact with a
rigidochromic coverslip. Like with the PS spheres, an AFM scan of the sphere
surface was recorded prior to the contact experiment. The measured roughness
profile, together with the elastic modulus measured using the method described
above, was used as input for contact calculations (Supplementary Figs. 11 and 12).
The results support the exact same conclusion that was drawn from the PS case: the
real contact area can only be predicted by a mixture of long-range elasticity and
short-range hardening.

Deviations from Amontons’ law were not only found for the PS spheres. Tests
with PTFE, PMMA, and glass show (Supplementary Fig. 13) that both contact area
and static friction grow sublinearly with the contact force.

Data availability. Data and code are available upon request from the authors.
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