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Clear cell renal cell carcinoma (ccRCC) comprises more than 80% of all renal cancers and

when metastasized leads to a 5-year survival rate of only 10%. The high rate of therapy

failure and resistance development calls for reliable methods that provide information

on the actionable biological pathways and predict optimal treatment protocols for

individual patients. We here applied targeted RNA sequencing (t/RNA-NGS) using single

molecule Molecular Inversion Probes on tumor nephrectomy samples of five ccRCC

patients, comparing tumor with healthy kidney tissues. Transcriptome profiling focused

on expression of genes with involvement in ccRCC biology that can be targeted with

clinically available drugs. Results confirm high expression of vascular endothelial growth

factor-A (VEGF-A) in tumor tissue relative to healthy-appearing kidney, in line with the

angiogenic nature of ccRCC. PDGFRα and KIT, targets of the multi-kinase inhibitor

sunitinib which is one of the current choices of first-line drug in metastasized ccRCC

patients, were expressed at relatively low levels in tumor tissues, whereas significantly

increased in normal kidney. Of all measured druggable tyrosine kinases, MET, AXL,

or EGFR were expressed at higher levels in tumors than in normal kidney tissues,

although intertumor differences were observed. Using cancer cell lines we show that

t/RNA-NGS gene expression profiles can be used to predict in vitro sensitivity to targeted

drugs. In conclusion, t/RNA-NGS analysis may provide insights into the (druggable)

molecular make-up of individual renal cancers, and may guide personalized therapy of

renal cell cancers.

Keywords: cancer, renal cell carcinoma, diagnostics, prognostics, precision therapy, RNA-sequencing, single

molecule molecular inversion probes

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma,
comprising more than 80% of all renal cancers (1). Upon first diagnosis, 30–40% of patients
have disseminated disease (2). Patients with metastasized ccRCC (m-ccRCC) respond poorly to
chemotherapy or radiotherapy. While the prognosis for these patients has improved with the
introduction of targeted therapies, side-effects and intrinsic or acquired resistance still lead to a
5-year survival rate of only 10% (3).
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In more than 80% of ccRCCs the von Hippel-Lindau gene
(VHL) is mutated or silenced by promoter methylation, leading
to dysfunctional VHL protein and subsequent accumulation of
the transcription factor Hypoxia Inducible Factor 1 (HIF1α)
(4). This leads to a state of pseudohypoxia, characterized
by expression of HIF-target genes that are responsible for
stimulation of angiogenesis and cell survival (4–8). Based
on this molecular insight angiogenesis inhibitors have been
implemented as targeted agents for progressive ccRCC patients
(9). One of the current choices for first-line treatment is
sunitinib, a tyrosine kinase inhibitor (TKI) with activity against
vascular endothelial growth factor receptors (VEGFRs) and
platelet-derived growth factor receptor β (PDGFRβ), but also
receptor tyrosine kinases PDGFRα, KIT, FLT3, RET, and CSF1R.
Twenty percent of ccRCC patients with metastasized disease does
not respond to this treatment, whereas another 30% develops
resistance within 12 months (10). These patients are treated
in second-line with other TKIs such as cabozantinib (targeting
VEGFRs, MET, AXL, RET, KIT, FLT3), mTOR inhibitors, or

FIGURE 1 | H&E stainings of tissues biopsies from ccRCC patients A–E. For each patient one healthy-appearing kidney sample and three tumor biopsies (T1–T3) are

included. Original magnification 20×.

immune checkpoint inhibitors (11–13). Rationale for treatment
with these drugs comes from clinical trials, but therapy decision
making in general does not include the molecular characteristics
of an individual tumor. The high rate of non-responders
and occurrence of serious side effects call for novel methods
to determine optimal treatment protocols for individual m-
ccRCC patients.

HIF1 hyperactivity also induces a shift in metabolism
(14–16). Instead of shuffling glucose-derived pyruvate to the
mitochondrial tricarboxylic acid (TCA) cycle, ccRCC cells
convert pyruvate into lactate to accommodate their energy
demand. The increased glucose uptake that accompanies this
glycolysis also leads to increased activity of the pentose
phosphate pathway (PPP), an important producer of nucleotides
and reductive power. These metabolic alterations are strongly
associated with disease progression and patient survival (14, 17).
Altered metabolism may therefore be an appropriate therapeutic
target for m-ccRCC, but carries a risk of side-effects in healthy
tissues (18). We hypothesized that concomitant inhibition of
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FIGURE 2 | t/RNA-NGS of ccRCC and healthy kidney tissue. Tissues originate from five ccRCC patients, one healthy-appearing kidney sample and three tumor

biopsies each. Heatmap containing 152 genes, generated by unsupervised hierarchical clustering using the Manhattan distance and Average clustering method. Two

head clusters are generated: cluster (a) contains all healthy kidney tissues, while cluster (b) consists of the tumor biopsies from all five ccRCC patients. The three tumor

biopsies from patients B, D, and E cluster together in a subcluster, while patients A and C both have one tumor sample that groups separately from the other two.
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tumor cell tyrosine kinases, angiogenesis and metabolism may
have additive or even synergistic effects, and may allow dose
reduction to minimize effects on healthy tissues.

Here, we determined expression levels of potentially
actionable genes in clinical ccRCCs and in RCC cell lines using
targeted RNA next generation sequencing (t/RNA-NGS) (16, 19),
and show that from the transcriptional profiles potentially
effective treatment combinations can be inferred.

MATERIALS AND METHODS

Patient Material
Use of patient tissues for this study was approved by the
local committee of the Radboudumc and involved informed
consent. All methods were performed in accordance with
the guidelines for use of human tissue of the Radboudumc.
Immediately after tumor nephrectomy, one cm3 of healthy-
appearing renal tissue (referred to as healthy tissue) and three
tumor tissue fragments (T1-3) from different parts of the tumor
were collected and snap-frozen in liquid nitrogen. Tissue samples
were anonymized to the researchers. All tumors were identified
as ccRCC by standard histopathology. Of all tissue samples
H&E stainings were performed on 4µm cryosections to estimate
tumor cell percentage.

Cell Culture
VHL-defective cell lines SKRC7 and SKRC17 are derived from
a primary human ccRCC and a soft tissue metastasis of
ccRCC, respectively (20). Both cell lines were cultured in RPMI
1640 medium (Lonza Group, Switzerland) supplemented with
10% fetal calf serum (FCS) (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) and 40µg/ml gentamycin (Centrafarm,
Etten-Leur, The Netherlands) at 37◦C in a 5% CO2 environment.
The patient-derived astrocytoma cell line E98 has been described
before (21) and was cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) containing 4.5 g/L glucose and 4mM L-
glutamin (Lonza, Basel, Switserland), supplemented with 10%
FCS (Gibco, Waltham, MA, USA) and 40µg/ml gentamycin
(Centrafarm, Ettenleur, The Netherlands) at 37◦C in the presence
of 5% CO2.

Targeted RNA Sequencing
RNA was isolated from 10µm cryosections using TRIzol reagent
(ThermoFisher Scientific, Waltham, MA, USA) and reverse
transcribed with Superscript II (ThermoFisher Scientific) using
random hexamer primers, according to the manufacturer’s
instructions. Targeted RNA sequencing using smMIPs has been
described before (16, 22). In short, smMIPs were designed
against target regions of interest (UCSC human genome assembly
hg19 and splice-variant specific FASTA sequences) based on the
MIPgen algorithm as described by Boyle et al. (23), including
a random octanucleotide unique molecule identifier (UMI).
SmMIPs were phosphorylated using T4 polynucleotide kinase
as described (16). The panel of transcripts of interest as
presented in de Bitter et al. (16) was expanded with new cancer-
related transcripts (Supplementary Table S1). Phosphorylated
smMIPs (898 smMIPs, together targeting 150 transcripts) were

TABLE 1 | Differential gene expression in cluster a vs. cluster b.

Gene Mean FPM

cluster a

Mean FPM

cluster b

P-value FDR FC cluster

b/a

Significant?

ABAT 712.42 32.62 0.000 0.000 −21.84 Y

ATP5A1 6464.66 2144.48 0.000 0.000 −3.01 Y

CAIX 5.13 1097.27 0.000 0.000 214.06 Y

ERBB4 252.77 3.68 0.000 0.000 −68.61 Y

GLDC 1238.58 139.98 0.000 0.000 −8.85 Y

GSS 792.49 370.62 0.000 0.000 −2.14 Y

L2HGDH 111.61 24.42 0.000 0.000 −4.57 Y

LDHB 7589.19 2865.01 0.000 0.001 −2.65 Y

MAPK8 311.14 141.16 0.000 0.001 −2.20 Y

MDH2 1060.56 496.07 0.000 0.001 −2.14 Y

NOX4 2607.55 533.81 0.000 0.001 −4.88 Y

OGDH 1526.43 594.58 0.000 0.001 −2.57 Y

PDGFRA 2089.59 222.00 0.000 0.001 −9.41 Y

PDHA1 1245.83 410.41 0.000 0.001 −3.04 Y

PDK1 130.28 787.14 0.000 0.001 6.04 Y

SLC16A3 98.64 1710.95 0.000 0.001 17.34 Y

SLC25A5 4646.10 1162.87 0.000 0.001 −4.00 Y

SLC2A1 56.63 356.51 0.000 0.001 6.30 Y

ACACB 274.19 113.33 0.000 0.001 −2.42 Y

ACSS2 873.58 240.91 0.000 0.001 −3.63 Y

ERBB2 789.49 225.30 0.000 0.001 −3.50 Y

FBP1 2948.42 301.68 0.000 0.001 −9.77 Y

GLS 6088.25 3153.33 0.000 0.002 −1.93 Y

GOT1 295.00 104.45 0.000 0.002 −2.82 Y

IDH3A 223.68 126.11 0.000 0.002 −1.77 Y

LDHA 2011.93 9899.14 0.000 0.002 4.92 Y

PFKM 653.08 223.63 0.000 0.002 −2.92 Y

RET 12.48 1.54 0.000 0.002 −8.08 Y

CAXII 7537.68 3708.13 0.001 0.002 −2.03 Y

CAT 2411.16 923.26 0.001 0.002 −2.61 Y

CS 679.43 421.53 0.001 0.002 −1.61 Y

G6PC 4206.01 110.88 0.001 0.002 −37.93 Y

KIT 302.27 99.36 0.001 0.002 −3.04 Y

PC 914.08 95.52 0.001 0.002 −9.57 Y

NTRK1 22.30 1.50 0.001 0.002 −14.88 Y

ATP5C1 3487.96 2282.76 0.002 0.002 −1.53 Y

MST1R 5.38 1.86 0.002 0.002 −2.89 Y

NTRK2 455.23 104.78 0.002 0.003 −4.34 Y

SLC16A1 225.93 506.49 0.002 0.003 2.24 Y

ALDOA 6340.23 13415.21 0.002 0.003 2.12 Y

GAPDH 15645.76 26590.07 0.002 0.003 1.70 Y

GLUD2 238.29 95.90 0.002 0.003 −2.48 Y

MET 351.99 727.90 0.002 0.003 2.07 Y

VEGF165 411.68 2078.47 0.002 0.003 5.05 Y

Expression of 44 genes differed significantly between cluster a and cluster b. Fold changes

of cluster b/cluster a are indicated. Significance was determined using a Wilcoxon Mann-

Whitney U test with Benjamini Hochberg correction for multiple testing (p < 0.05, FDR

< 0.01). Note that for significance, the p-value must not exceed the FDR. Fold changes

are calculated as (cluster b/a), or -1/(cluster b/a) to prevent fold changes >0 and <1. FC,

fold change.
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hybridized to 50 ng of cDNA, followed by enzymatic gap-
fill by primer extension and ligation. Exonuclease treatment,
PCR amplification and library pooling and purification were
performed as described (16). smMIP-PCR libraries were
sequenced on the Illumina Nextseq platform (Illumina, San
Diego, CA) at the Radboudumc sequencing facility. Reads were
mapped against reference transcripts (UCSC human genome
assembly hg19 and variant-specific FASTA sequences) using the
SeqNext module of JSI SequencePilot version 4.2.2 build 502 (JSI
Medical Systems, Ettenheim, Germany). The UMI was used to
reduce all identical PCR amplification products to one consensus
read originating from the same smMIP (unique read). Unique
read counts for each smMIP were normalized to the total unique
read count within a sample and multiplied by 106 (Fragments
per Million, FPM). Individual transcript levels were expressed
as mean FPM of all smMIPs targeting that transcript. Variant

calling was performed within SeqNext, excluding all variants with
a coverage of <10% variant reads.

Western Blot
Cryosections of normal kidney and matched tumor tissues
were lysed in 1x RIPA buffer (Cell Signaling Technology, CST,
Danvers, MA) supplemented with 1mM phenylmethylsulfonyl
fluoride (PMSF), according to manufacturer’s instructions. Cell
lines were seeded in 6-well plates and allowed to adhere. E98,
SKRC7 and SKRC17 cells at ∼80% confluence were treated
with MET inhibitors Compound A [targeting MET; Amgen,
Thousand Oaks, CA, USA (24, 25)], cabozantinib [targeting
MET, VEGFR, RET, AXL, KIT, FLT3; Exelixis, San Francisco, CA,
USA (26–28)] or DMSO vehicle for 20min. Subsequently, SKRC7
cells were stimulated with HGF for 10min. After treatment, cells
were washed twice with ice-cold PBS and lysed in 1x RIPA buffer.

FIGURE 3 | Metabolic transcript expression changes in ccRCC tissue compared to healthy kidney tissue. Mean FPM values of cluster a (healthy-appearing kidney

tissues) were compared with mean FPM values of cluster b (tumor biopsies) using the fold change of (cluster b/a) or −1/(cluster b/a). For visuality, transcripts with a

fold change of >1.5 or <-1.5 (see Table 1 and Supplementary Table S2) are colored in green and red, respectively. Transcripts marked with a * are changed

significantly, as determined with a Wilcoxon Mann-Whitney U test and Benjamini Hochberg correction for multiple testing (p < 0.05, FDR < 0.05) (see Table 1 and

Supplementary Table S2).
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Cell lysates were subjected to electrophoresis on 10% SDS-
PAGE gels and electroblotted onto nitrocellulose membranes
(Whatman Optitran BA-S85, GE Healthcare, Little Chalfont,
UK). Following blocking of aspecific binding sites in blocking
buffer [1:1 PBS/Odyssey blocking buffer [LI-COR Biosciences,
Lincoln, NE, USA]], blots were incubated o/n at 4◦C with
primary antibodies: rabbit-anti-MET (1:2,500, CST, #8198),
rabbit-anti-P-MET Tyr1234/Tyr1235 (1:2,500, CST, #3077),
rabbit-anti-P-ERK1/2 Thr202/Tyr204 (p44/p42, 1:500, CST,
#4376), rabbit-anti-P-AKT S473 (1:2,500, CST, #4060), rabbit-
anti-CAIX (1:1,000, Epitomics, #3829B), goat-anti-γ-tubulin C-
20 (1:5,000, Santa crus, #sc-7396), and mouse-anti-GAPDH
(1:10,000, Abcam, ab8245). Primary antibodies were detected
with appropriate IRDye680- or IRDye800-conjugated secondary
antibodies (Invitrogen Molecular Probes, Waltham, MA, USA)
incubated 1 h at RT shielded from light. Signals were visualized
using the Odyssey imaging system (LI-COR Biosciences, Lincoln,
NE, USA).

Cell Proliferation Assays
Cells were seeded in 96-well plates (2,000 and 20,000 cells/well
for SKRC7/SKRC17 and E98 cells, respectively). The next
day increasing concentrations of Compound A, cabozantinib,
gefitinib (targeting EGFR; Axon Medchem, Groningen, The
Netherlands) or 6-aminonicotinamide (6AN, targeting glucose-
6-phosphate dehydrogenase (G6PD); Sigma-Aldrich, St. Louis,
MO, USA) were added to the medium. For monotherapy assays
with Compound A and cabozantinib metabolic activity of cells
was measured 4 days later by incubation with 0.5 mg/ml 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
in PBS (Sigma-Aldrich, St. Louis, MO, USA). After 3.5 h
incubation at 37◦C formazan crystals were dissolved in DMSO
and optical densities were measured at 560 nm. Alternatively,

for combination therapies total protein content was measured
4 days after start of treatment. Cells were washed with PBS and
fixed overnight with 10% (w/v) trichloroacetic acid at 4◦C. Total
cellular protein was stained with 0.5% (w/v) sulfurhodamine B
(SRB, Sigma-Aldrich, St. Louis, MO, USA) in 1% acetic acid.
After 20min wells were washed 4 times with 1% acetic acid to
remove unbound dye and dried at 60◦C. Protein-bound SRB was
solubilised using 150 µl 1mM Tris-HCl (pH = 10) and optical
densities were measured at 560 nm.

Synergy of drug combinations was assessed by calculation
of the combination index (CI) and dose reduction index (DRI)
using CompuSyn software (ComboSyn, Inc.), according to the
manufacturer’s instructions (29, 30). Increasing concentrations
of Compound A and cabozantinib were combined with gefitinib
and 6AN in a constant ratio. Levels of synergy were calculated
using the fraction affected (FA-) value, and classified as follows:
CI = 0.1–0.3 strong synergism, CI = 0.3–0.7 synergism, CI =
0.7–0.85 moderate synergism, CI= 0.85–0.9 slight synergism, CI
= 0.9–1.1 additive, CI = 1.1–1.2 slight antagonism, CI = 1.2–
1.45 moderate antagonism, CI = 1.45–3.3 antagonism. The DRI
denotes an indication for the fold of dose-reduction allowed for
each drug due to synergismwhen compared with the dose of each
drug alone.

Statistical Analysis
Statistical analyses were performed in R (version 3.4.3). Mean
FPM values were log2 transformed (after addition of 0.01
to prevent log(0) transformation errors) and clustered in
an unsupervised manner using the Manhattan distance and
Average (Unweighted Pair Group Method with Arithmetic
Mean, UPGMA) clustering method, and translated into a
heatmap. A Wilcoxon Mann-Whitney U test was performed
to find differentially expressed genes between clusters (p <

FIGURE 4 | CAIX expression in ccRCC. (A) CAIX FPM values in each individual tissue biopsy of ccRCC patients A-E. CAIX expression is absent in healthy kidney

tissues, while elevated in ccRCC tissues. (B) CAIX transcript expression levels correlate well with protein levels, as shown for three representative patients. γ-tubulin

was used as a loading control. Presented blots are cropped.
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0.05). Multiple testing corrections were done using Benjamini
Hochberg (FDR < 0.01).

RESULTS

From 5 tumor nephrectomies, one biopsy of healthy kidney
tissue and three matched tumor biopsies were collected for
t/RNA-NGS. H&E staining of all tumor samples confirmed
ccRCC diagnosis. Normal-appearing kidney tissues, taken at
distance of the tumor, were free of cancer cells (Figure 1).
The mean unique read count of t/RNA-NGS per sample was
>106, which is sufficient to generate reliable expression and
mutation data. Unsupervised hierarchical clustering of gene
expression levels (given as Fragments per Million, FPM) of all
20 samples as obtained with t/RNA-NGS resulted in two main
clusters a and b, comprising all healthy kidney tissues and all
tumor tissues, respectively (Figure 2). Raw data as FPM for
all tissue samples are shown in Supplementary Table S3 and
for cell lines in Supplementary Table S4. Tumor biopsies from
patients B, D, and E clustered together in subgroups, showing
that intertumor variability for these patients was higher than
intratumor heterogeneity. For patients A and C, one of the three
tumor samples grouped separately from the other two.

We then performed a Wilcoxon Mann-Whitney U test
to compare gene expression profiles in cluster a vs. cluster
b. Expression of 44 transcripts differed significantly between
both clusters (Table 1). Expression levels and fold changes
of all genes of which expression did not significantly differ
are outlined in Supplementary Table S2. Differential gene
expression was observed for genes associated with glucose import
and glycolysis (high in cluster b, ccRCC tissues), and genes
encoding TCA cycle enzymes, glutamine/glutamate metabolism
and lipid synthesis (low in cluster b) (Figure 3). HIF1 target genes
carbonic anhydrase IX (CAIX) and the pro-angiogenic VEGF-
A isoform VEGF165 were significantly associated with cluster
b. CAIX levels of all tissue biopsies are presented in Figure 4A.
CAIX transcript expression correlated well with protein levels
(representative examples shown in Figure 4B). Transcript levels
of tyrosine kinase receptors ERBB4, PDGFRA, ERBB2, RET,
KIT, NTRK1, MST1R (RON), and NTRK2 were significantly
decreased, while expression of the tyrosine kinase receptor MET
was significantly increased in cluster b compared to cluster
a (Table 1).

Variant calling of the t/RNA-NGS datasets revealed mutations
in the VHL gene in tumor samples of four of the patients, which
were not present in matched healthy kidney tissue, identifying
these as somatic mutations. Three patients had VHL STOP
mutations whereas in patient C the known pathogenic VHL
p.L118Pmutation was detected in one tissue biopsy, in 29% of the
reads (Table 2). The coverage of the corresponding c.353T locus
in this sample was 22 unique reads as compared with 7 and 18
unique read counts in the other two biopsies of the same tumor,
in which the mutation was not called. This suggests intratumor
heterogeneity of this pathogenic variant, although low coverage
may also cause a false-negative result.

We then focussed on the relative expression levels of
tyrosine kinases that are potential targets for available precision

medicines. VEGF-A and the pro-angiogenic isoforms VEGF121,
VEGF165, and VEGF189 were highly expressed in all cancers,
although there was interpatient heterogeneity with respect to
VEGFR2 expression levels (Figures 5A,B). Of note, PDGFRA
and KIT were expressed at relatively low levels in tumor tissue
and higher in healthy kidney tissue (Figure 5). Among other
targetable tyrosine kinases AXL, MET and EGFR were expressed
at high levels in some, but not all, tumor samples (Figure 5C).
Expression of cytotoxic T-cell marker CTLA4 varied widely

TABLE 2 | VHL mutations in ccRCC.

Patient Biopsy Variant

reads (%)

AA

change

c. HGVS p. HGVS

A Healthy

tissue

–

Tumor

T1

–

Tumor

T2

25% [STOP] AA

130

(E2/48)

c.246_

247delCG

p.Val83Argfs*48

Tumor

T3

16% [STOP] AA

130

(E2/48)

c.246_

247delCG

p.Val83Argfs*48

B Healthy

tissue

–

Tumor

T1

–

Tumor

T2

58% [STOP] AA

158 (E3/9)

c.369delG p.Thr124Hisfs*35

Tumor

T3

–

C Healthy

tissue

–

Tumor

T1

29% L -> P

(118)

c.353T>C p.Leu118Pro

Tumor

T2

–

Tumor

T3

–

D Healthy

tissue

–

Tumor

T1

–

Tumor

T2

–

Tumor

T3

–

E Healthy

tissue

–

Tumor

T1

57% [STOP] AA

173

(E3/54)

c.457dupC p.Leu153Profs*21

Tumor

T2

28% [STOP] AA

173

(E3/54)

c.457dupC p.Leu153Profs*21

Tumor

T3

26% [STOP] AA

173

(E3/54)

c.457dupC p.Leu153Profs*21

Different VHL mutations with variable coverage levels were detected in four of the five

ccRCC patients, with VHL STOP mutations in three of the patients.
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FIGURE 5 | Possible targets for individualized targeted therapeutics. Expression levels are shown in FPM. FPM levels of the three tumor biopsies for each patient are

averaged. Expression of (A) VEGF-A variants, (B) sunitinib target genes, (C) other targetable receptor tyrosine kinases, (D) immune checkpoints in ccRCC patients

A–E. Inter-tumor heterogeneity is visualized. Data represent mean ± SD.

between patients, whereas expression of PD-1 (PDCD1) was
uniformly low and tumor cell marker PD-L1 (CD274) was only
moderately expressed (Figure 5D).

To test the hypothesis that t/RNA-NGS datasets can be
used to guide targeted therapy we performed smMIP-based
targeted RNA sequencing on patient-derived renal carcinoma cell
lines SKRC7 and SKRC17 (Figure 6A). These cell lines express

MET transcript and protein at levels comparable to the E98
astrocytoma cell line (21) (Figures 6A,B), which is very well-
characterized by our group (21, 25, 28) and was used as a positive
control. MET phosphorylation in SKRC17 cells did not require
addition of exogenous HGF, possibly a result of endogenous
production of HGF (as determined by w/RNA-NGS, not shown).
E98 cells were sensitive to MET inhibition by the multi-kinase
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FIGURE 6 | Targeted therapy prediction based on t/RNA-NGS. (A) Heatmap showing expression levels (FPM) of 136 genes in E98, SKRC7 and SKRC17 cell lines.

(B) E98, SKRC7 and SKRC17 cells were treated for 20min with Compound A or cabozantinib. SKRC7 cells were stimulated with HGF for 10min subsequently.

Phosphorylation levels of MET (Tyr1234/Tyr1235), AKT (Ser473), and ERK1/2 (Thr202/Tyr204) were monitored by western blot, with GAPDH as a loading control.

(Continued)
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FIGURE 6 | Presented blots are cropped. (C) MTT proliferation assays of E98, SKRC7 and SKRC17 treated with Compound A or cabozantinib. Both compounds

show high efficacy in E98, but less in SKRC7 and SKRC17 cells. Data represent mean ± SD (N = 4). (D) FPM expression levels of a selection of tyrosine kinases in

E98, SKRC7, and SKRC17. While E98 shows high expression of only the tyrosine kinase MET, SKRC cell lines also have considerable expression of AXL, EGFR,

FGFR1, and FGFR2, tyrosine kinases that may be responsible for resistance to MET inhibition in these cells. Data represent mean ± SD (N = 2).

inhibitor cabozantinib and mono-inhibitor Compound A as
shown by decreased levels of phosphorylated MET (25, 28). The
same effects on pMET were observed in SKRC7 and SKRC17
cells. However, whereas in E98 cells decreased inhibition of MET
phosphorylation coincided with decreased levels of pAKT and
pERK, effects on pAKT were only minor in SKRC17 and pERK
levels were unchanged in both cell lines (Figure 6B). In E98 cells
inhibition of MET by Compound A or cabozantinib translated
to decreased proliferation rates, but this was not the situation in
SKRC7 and SKRC17 cells (Figure 6C). A possible explanation is
expression of additional membrane tyrosine kinases AXL, EGFR,
and FGFR1/2 that signal via similar pathways as MET. These
kinases are not expressed by E98 and may provide compensation
pathways for MET inhibition (Figures 6A,D).

Considering the expression of potential rescue kinases in
SKRC7 and SKRC17 cells and the known interplay of MET
and EGFR in therapy resistance (25), we tested combinations
of the MET inhibitors Compound A and cabozantinib with the
EGFR inhibitor gefitinib on SKRC7 and SKRC17 cell viability.
Gefitinib induced moderate levels of synergy when combined
with theMET inhibitor Compound A in SKRC17, but not SKRC7
cells. The combination of the MET/AXL/VEGFR2 inhibitor
cabozantinib with gefitinib acted synergistically in SKRC7, but
less so in SKRC17 cells (Figure 7 and Table 3).

Because activity of TKIs does not only depend on expression
levels of tyrosine kinases, but also on the expression levels
and activities of the counteracting phosphatases (31), reliable
prediction of therapeutic efficacy of drug combinations is highly
complex. Given the characteristic metabolic alterations induced
in ccRCC, we next investigated the effect of combination
therapy of Compound A or cabozantinib with metabolic
inhibition by 6AN, an inhibitor of the rate-limiting PPP
intermediate G6PD (FPM 945.06 and 1241.78 in SKRC7
and SKRC17, respectively). In SKRC7 cells, combination of
Compound A with 6AN induced moderate levels of synergism.
Surprisingly, the combination of 6AN with cabozantinib was
antagonistic in SKRC7 cells. However, combination of 6AN
with Compound A or cabozantinib induced strong synergy
in SKRC17 cells (Figure 7 and Table 3). All dose reduction
indexes (DRI) for synergistic or additive drug combinations were
favorable (Table 3).

DISCUSSION

Patients with m-ccRCC are treated by first-line anti-angiogenesis
therapy upon signs of tumor progression and immune
checkpoint or alternative TKIs in second-line (9). However, these
therapies do not take into account the molecular characteristics
of the individual tumor. Using t/RNA-NGS we here show that
whereas the five ccRCCs in our study share the metabolic
reprogramming characteristic for this cancer, expression of

targetable tyrosine kinases is heterogeneous between tumors.
Remarkably, PDGFRα and KIT are expressed at much higher
levels in the normal kidney than in the tumor cells, showing
that targeting of ccRCC by sunitinib is not as cancer-specific
as desirable, which may explain observed sunitinib-induced
toxicity. Because t/RNA-NGS allows a comprehensive overview
of all druggable tyrosine kinases in a tumor, it may allow more
rational therapy decision making than is currently possible.
Interestingly, we found significantly elevated tyrosine kinase
receptor MET levels in ccRCC tissues compared to healthy
kidney tissue, in agreement with in vitro studies and ccRCC
tissue analyses demonstrating upregulation of MET induced by
inactivation of VHL (32, 33). There are multiple options for first-
line TKI treatment including sunitinib, pazopanib, and sorafenib,
all having a different target spectrum. Recently, also cabozantinib
has been approved for first-line therapy of advanced RCC.
Considering the high MET expression in our subset of untreated
ccRCC patients, MET inhibitors cabozantinib (26–28) or
Compound A (24, 25) may be well-suited for first-line treatment
in this patient group. Furthermore, MET upregulation has
been associated with the development of resistance to VEGFR
inhibition (34). Multi-kinase inhibition of MET, AXL, and
VEGFR2 by cabozantinib may therefore particularly be effective
in ccRCCs with elevated expression levels of MET and AXL, to
simultaneously interfere with development of therapy resistance.
On the other hand, angiogenic ccRCCs that overexpress
EGFR may benefit better from the EGFR/VEGFR2 inhibitor
vandetanib. It is important to realize that transcriptome data
do not always correlate with protein expression, and therefore
proof of concept for transcription-based therapy prediction has
to come from retrospective studies in which t/RNA-NGS profiles
are analyzed with computational biology methods in relation to
treatment and clinical outcome.

Dysfunctional VHL due to mutations or promoter
hypermethylation are known drivers of ccRCC, causing
accumulation of HIF1 and its target genes (4–8). In all five
patients we confirmed VHL-associated metabolic alterations,
notably upregulation of expression of genes involved in
glycolysis and a decrease of expression levels of genes involved in
the TCA cycle (14, 15, 35). In line with previous studies (36–38)
expression of FBP1 was significantly decreased. FBP1 loss has
been reported as a second unique feature of RCC and a mediator
of HIF1-induced metabolic changes (39, 40). Nonetheless, VHL
mutations were detected in only four of the five ccRCC patients,
and not in each of three biopsies. Low unique read coverage
of transcript locations corresponding to a mutation may cause
false-negative variant calling. Moreover, it has recently been
suggested that a range of four to eight biopsies is required to
capture the majority of driver events (>75%) in ccRCC (41),
therefore sampling may also explain variability in mutation
detection. Another possible explanation for failure to detect
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FIGURE 7 | Combination therapy of MET inhibitors Compound A and cabozantinib with an EGFR inhibitor (gefitinib) or G6PD inhibitor (6AN) in (A) SKRC7 and (B)

SKRC17 cell lines. Drug effects were tested using SRB assays. The FA-value represents the fraction of cell viability affected by therapy. Points on the graph axes

represent the dose of the monotherapy (drug A or B, as indicated in the figure head of each isobologram) necessary to generate the given FA-value. The line

connecting the x- and y-axis represents an additive effect (CI = 1) of the combination at the given FA-value. Points below or above the line represent synergism (CI <

1.0) or antagonism (CI > 1.0), respectively (N = 2).
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TABLE 3 | Combination index (CI) and dose reduction index (DRI) values for the combination therapies as indicated, in SKRC7 and SKRC17 cell lines.

SKRC7 CI (DRI drug A;DRI drug B) SKRC17 CI (DRI drug A;DRI drug B)

FA 0.5 FA 0.75 FA 0.9 FA 0.5 FA 0.75 FA 0.9

Compound A (drug A) + gefitinib (drug B) 1.07 (2.2;1.6) 1.06 (1.8;2.0) 1.1 (1.4;2.5) 0.85 (35.8;1.2) 0.8 (642.6;1.3) 0.78 (1528.2;1.3)

Cabozantinib (drug A) + gefitinib (drug B) 0.49 (2.2;41.9) 0.55 (1.8;177.0) 0.64 (1.6;748.7) 0.94 (11.01;1.2) 0.88 (120.0;1.2) 0.89 (1307.0;1.1)

Compound A (drug A) + 6AN (drug B) 0.93 (3.3;1.6) 0.81 (4.8;1.7) 0.72 (6.9;1.7) 0.21 (39.5;5.5) 0.24 (27.0;4.8) 0.29 (18. 5;4.2)

Cabozantinib (drug A) + 6AN (drug B) 2.21 (1.1;0.8) 1.84 (1.1;1.1) 1.55 (1.2;1.4) 0.29 (6.7;7.3) 0.37 (4.2;7.7) 0.49 (2.7;8.2)

The FA-values represent the fraction of cell viability affected by treatment. CI and DRI values are given for FA values of 0.5, 0.75, and 0.9.

aberrant VHL is promoter hypermethylation, which was outside
the scope of this study.

While other studies have demonstrated increased expression
of genes involved in PPP, glutamine metabolism and fatty acid
synthesis (14, 17), we found a significantly decreased expression
of most enzymes involved in glutamine/glutamate metabolism
and fatty acid synthesis in ccRCC tissues compared to healthy
kidney tissue. Whereas dual activation of HIF2 andMYC induces
glutamine-dependent lipogenesis in RCC (14, 42–44), levels of
both HIF2 and MYC expression in these five ccRCC patients
were unaltered, possibly explaining the absence of increased
glutamine synthesis. Moreover, the presence of metabolic shifts
depends on aggressiveness of the tumor. Low expression levels of
GPI and G6PD, which were unaltered in tumor compared with
healthy tissue, have been associated with better patient survival
(45). The low disease stage of these five ccRCC patients possibly
implies that they do not have high metastatic capacity, which
may explain why enzymes in abovementioned pathways are
not elevated.

Our in vitro data show that expression of therapy targets
cannot always be translated to therapy response. Our data
suggests that analysis involving the presence of direct therapy
targets combined with the expression of genes in possible
resistance pathways may allow prediction of therapy response.
For example, MET and EGFR are well-known to cause mutual
cross-resistance to targeted therapy in different cancer types
(46–52). Combined inhibition of MET and EGFR in vitro in
SKRC7 and SKRC17 cell lines showed additive and moderately
synergistic effects, but with positive DRI values, suggesting that
in combination therapy the doses of each drug may be decreased
to reduce drug toxicity. The very high DRI values of Compound
A and cabozantinib in SKRC17 indicate that the dosages of these
drugs could be dramatically decreased to achieve the therapeutic
effect of the combination treatment with gefitinib, although
this should be confirmed by similar in vitro and additional
in vivo studies. Excessive toxicity has shown to complicate
drug combination therapies in patients, but some clinical trials
have also reported promising results (53–56). Better prediction
for selected application of targeted (combination) therapies is
essential to design treatment strategies with maximal efficacy and
minimal toxicity.

Transcript expression level-based combination therapy of
MET tyrosine kinase inhibition with 6AN, a metabolic inhibitor
of G6PD, did show strong synergism and positive DRI indexes in
SKRC17 andmay therefore be an interesting opportunity for new
therapies. In SKRC7 the combination of 6AN with cabozantinib

was however antagonistic, suggesting this combination of drugs
may activate compensation pathways in these cells. Whereas,
SKRC7 and SKRC17 are derived from a primary human
ccRCC and a soft tissue metastasis of ccRCC, respectively,
here combination treatment involving PPP targeting seems
most interesting in m-ccRCC cells. These data mark the
complexity of tumor biology and the need for cautiousness with
targeted therapeutics.

Currently, ccRCC patients are offered first-line therapy based
on clinical characteristics, and molecular characteristics are not
included in the clinical management. Our data demonstrate the
prominent inter-tumor variability that exists between ccRCC
patients, and highlights the need for individual tumor profiling
and personalized therapy. Moreover, t/RNA-NGS may allow
repurposing of drugs that have been approved for other cancers
but not (yet) for ccRCC.
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Supplementary Table 1 | Transcripts for smMIP design. SmMIPs were designed

against the antisense strand of predicted transcripts (UCSC human genome

assembly hg19 and splice variant specific FASTA sequences). The genes listed are

newly added to the panel published in de Bitter et al. (16).

Supplementary Table 2 | Gene expression in cluster a vs. cluster b

(non-significant). Fold changes of cluster b/cluster a are indicated. Significance

was determined using a Wilcoxon Mann-Whitney U-test with Benjamini Hochberg

correction for multiple testing (p < 0.05, FDR < 0.01). Note that for significance,

the p-value must not exceed the FDR. Significant differential gene expression in

cluster a vs. cluster b is shown in Table 1. Fold changes are calculated as (cluster

b/a), or -1/(cluster b/a) to prevent fold changes >0 and <1. FC, fold change.

Supplementary Table 3 | Mean FPM values for clinical tissue samples.

Supplementary Table 4 | Mean FPM values for cell lines E98, SKRC7, and

SKRC17.
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