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Introduction: Compared with breast cancer (BC) in women, BC in men is a rare

disease with genetic and molecular peculiarities. Therapeutic approaches for

male BC (MBC) are currently extrapolated from the clinical management of

female BC, although the disease does not exactly overlap in males and females.

Data on specific molecular biomarkers in MBC are lacking, cutting out male

patients from more appropriate therapeutic strategies. Growing evidence

indicates that Next Generation Sequencing (NGS) multigene panel testing

can be used for the detection of predictive molecular biomarkers, including

Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI).

Methods: In this study, NGS multigene gene panel sequencing, targeting 1.94

Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500,

Illumina), was used to identify and characterize somatic variants, Copy Number

Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded

(FFPE) male breast cancer samples.

Results and discussion: A total of 40 pathogenic variants were detected in 24

genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the

most frequently mutated gene, with six (40.0%) MBCs harboring targetable

PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No

copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene

copy number gains. MYC was the most frequently amplified gene with eight

(53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A

median TMB value of 4.3 (range 0.8-12.3) mut/Mbwas observed, with two (13%)

MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-
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17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate

that NGS multigene panel sequencing can provide a comprehensive molecular

tumor profiling in MBC. The identification of targetable molecular alterations in

more than 70% of MBCs suggests that the NGS approach may allow for the

selection of MBC patients eligible for precision/targeted therapy.
KEYWORDS

male breast cancer (MBC), tumor profiling, targeted gene panel sequencing, clinically
actionable genetic variants, tumor mutational burden (TMB), microsatellite instability
(MSI), copy number variations (CNVs), precision oncology
Introduction

Male breast cancer (MBC) is a rare disease representing less

than 1.0% of all breast cancers (BCs) and less than 1.0% of all

cancers in men (1). Despite its rarity, the annual incidence of MBC

continues to arise and is estimated at about 1 per 100.000 men (2).

Increasing evidence indicates that MBC and female breast

cancer (FBC) may be different, with unique molecular subtypes

suggesting gender-specific differences in terms of biological and

clinical behavior (3). Despite distinct features, therapeutic

approaches for MBC are extrapolated from clinical

management guidelines relating to FBC (4). Overall, MBC has

a poorer outcome, likely due to its occurrence later in life, the

delay in diagnosis compared with the female counterpart (5), or

to gender-specific factors yet to be identified.

The development of Next Generation Sequencing (NGS)

technologies has produced a large amount of research data about

genomic alterations in a wide variety of cancers, including BC

(6). These large-scale initiatives have identified genomic

alterations that are potential therapeutic targets to guide

individualized treatment (7). Actionable genomic alterations

include genetic variants, Copy Number Variations (CNVs),

Tumor Mutational Burden (TMB) and Microsatellite

Instability (MSI). Tumor-infiltrating lymphocytes (TILs) have

also been suggested to represent potentially useful prognostic

and predictive biomarkers, especially in triple negative FBCs (8).

While therapies based on NGS findings are a new standard

of care for treating a variety of cancers, only a few studies have

been performed to comprehensively characterize tumor profiles

in MBCs (9–12) and data on specific molecular biomarkers in

MBC are lacking. Moreover, associations among new potential

molecular biomarkers and clinical data remain unclear in MBC,

cutting out male patients from new targeted treatments. Thus,

there is a need to investigate molecular biomarkers predictive of

response to innovative treatments for a more effective clinical

management of MBC patients.

In this pilot study, we characterized the molecular tumor

profiling of 15 MBCs by targeted gene panel sequencing to
02
identify clinically actionable somatic variants, CNVs, TMB and

MSI status that may represent new predictive biomarkers for

MBC patients.
Material and methods

Study population

This is an observational, retrospective study, based on a

series of 15 MBC cases collected between January 2012 and

December 2021 at our Institution.

All patients enrolled had been previously tested for germline

pathogenic variants in BC predisposition genes including

BRCA1, BRCA2, and PALB2. The main clinical-pathologic

features, including age at diagnosis, tumor histotype, histologic

grade, nodal status, Estrogen/Progesterone Receptor (ER, PR),

Androgen Receptor (AR), Human Epidermal growth factor

Receptor 2 (HER2) and proliferation index (Ki67/MIB1) status

were collected. Cases were classified as Luminal A-like; Luminal

B-like (HER2 negative or positive), HER2-enriched and triple

negative, according to the 13th St. Gallen International Breast

Cancer Conference (13).

MBC cases were all primary cancer with the exception of one

case for which only samples from pleural metastases

were available.

All patients signed an informed consent form with a detailed

description of the study protocol. The study was approved by

The Local Ethical Committee (Sapienza University of Rome,

Protocol 669/17) and was performed according to the

Helsinki’s declaration.
Quantification and characterization of
stromal tumor–infiltrating lymphocytes

Haematoxylin and eosin-stained slides from all cases were

re-evaluated by two breast pathologists (BC, GdA) for the
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presence and percentage of stromal tumor infiltrating

lymphocytes (TILs), according to the standardized method

proposed by the International TILs Working Group in 2014

(8). TILs were quantified as a percentage of the stromal area of

the tumor and expressed as a continuous parameter. Cases were

stratified into high- and low- TILs according to the cut-off of

50% (8). Immunophenotyping was carried out on serial sections

from each case with the following antibodies: CD3 for T

lymphocytes (1: 100 Roche Diagnostics, Basilea, Switzerland);

CD4 (1: 40) for the helper T subset; CD8 for the cytotoxic T

subset (1: 100) (Novocastra, Newcastle, UK). The number of

lymphocytes positive for each antibody was quantified and

expressed as a percentage of the total number of immune cells.
DNA extraction

Genomic DNAwas extracted from 10 mm-thick macroscopically

dissected formalin fixed paraffin-embedded (FFPE) tumor sections.

For each case, a representative haematoxylin and eosin-stained slide

was obtained and marked for an area with high tumor cellularity, to

obtain a tumor cell percentage ranging from 50% to 90%. To avoid

pitfalls related to the use of archival materials, freshly cut sections and

specific extraction protocols (14), developed to improve DNA quality

and quantity from FFPE samples, were used. DNA was extracted

using the QIAamp DNA FFPE tissue kit (Qiagen, Hilden, Germany),

according to the manufacturer’s instructions. Eluted DNA was

quantified with Qubit 2.0 Fluorometer using the Qubit dsDNA HS

Assay Kit (ThermoFisher Scientific, Waltham, Massachusetts, USA).

The suitability of samples for sequencing was determined using the

real-time PCR-based Illumina FFPE QC assay (Illumina, San Diego,

California, USA), as detailed in the Supplementary material.
TruSight oncology 500 sequencing and
variant calling

TruSight Oncology 500 is a targeted gene panel that covers

1.94 Mb of the genome in 523 cancer-relevant genes

(Supplementary Table 1). DNA libraries were prepared using

the hybrid capture based TruSight Oncology 500 Library

Preparation Kit (Illumina, San Diego, California, USA)

following Illumina’s TruSight Oncology 500 Reference Guide.

The enriched libraries were quantified, and each library was

normalized to ensure a uniform representation in the pooled

libraries. Finally, the libraries were denatured and diluted to the

appropriate loading concentration. The libraries were sequenced

on an Illumina NextSeq 500 instrument, with a read length of

2x101 bp, and up to 8 libraries per run, according to the

manufacturer’s protocols.

Sequencing data and DNA quality metrics are reported in

the Supplemental Material.
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Files containing reads (.fastq) were generated and processed

by alignment against the human reference genome GRCh37/

hg19 using the Burrows-Wheeler Aligner (BWA-MEM) with the

SAM Tools. Pisces application was applied to performing

somatic variant calling. CNV calls (gain and losses) were

obtained for 59 out of 523 genes within the TruSight

Oncology 500 panel (Supplementary Table 1), using the Craft

copy-number caller. The resulting variant and CNV calling files

(.vcf) were processed on BaseSpace Variant Interpreter

(Illumina, https://variantinterpreter.informatics.illumina.com)

and Open-CRAVAT (https://opencravat.org), for variant

annotation and classification. MSI calls were generated by

analyzing 125 homopolymeric microsatellite loci with a

coverage of at least 60 reads. MSI values were obtained by

dividing the number of unstable sites by the total number of

sites assessed defining the percentage of unstable sites.
Characterization of the somatic
molecular profile

For the subsequent analysis, we considered all variants and

CNVs that passed the quality filters, marked as PASS in the

output files of variant annotation and classification step

(Supplementary Table 2).

To identify the pathogenic (driver) somatic variants, all

PASS variants were filtered to include: exonic (except for

synonymous variants) or splice site variants with an allelic

frequency between 5.0% and 90.0%, a total read depth ≥40, a

global Allele Frequency < 0.01 in the gnomAD population

database; classified as somatic according to Cancer Gene

Census (CGC) database and as pathogenic according to the

Catalogue of Somatic Mutations in Cancer (COSMIC) database.

Moreover, in MBC cases tested positive for a BRCA1, BRCA2

or PALB2 germline pathogenic variant, the loss of wild-type

allele in tumoral sample was evaluated. Germline pathogenic

variants with an allelic frequency greater than 50.0% were

considered as loss of heterozygosity (LOH) and subsequently

val idated by Sanger sequencing (primers avai lable

upon request).

CNVs were considered as gains with a fold-change value ≥

1.5 (three copies) and as losses with a fold-change value ≤ 0.5

(one copy).

The panel size allowed for the characterization of TMB

status in MBC samples. An in-house developed pipeline was

used to select the eligible variants for TMB calculation

(manuscript in preparation). Tumor samples were stratified as

high- and low-TMB by the conventional cut-off value of 10

mutations/Megabase (mut/Mb) (15, 16).

Similarly, tumor samples were stratified as high- and low-

MSI by the previously established percentage of unstable sites

≥10%, as an identifier of presumed microsatellite instability (17).
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MBC cases were classified as stable if they resulted to have no

unstable sites.

We then sought to determine if the identified alterations

could translate into actionable targets with possible clinical

implications in BC, by interrogating the OncoKB database

(https://www.oncokb.org/), a comprehensive and curated

precision oncology knowledge base that provides biological,

clinical, and therapeutical information.
Results

Clinical-pathologic characteristics
of MBCs

Table 1 summarizes the clinical-pathologic characteristics of the

15 MBC cases included in this study. Briefly, the MBC series

included four cases (26.7%) with germline pathogenic variants in

BRCA1 (two), BRCA2 (one) and PALB2 (one) genes, mean age at

BC diagnosis was 63.0 years (range 36-88 years) andmedian follow-

up was 3.0 years (range 1-10 years). Four MBC cases (28.6%) had

breast and ovarian cancer family history and two MBC cases

(13.3%) were diagnosed with another cancer, in addition to BC.

As shown in Table 1, all tumors were classified as invasive

carcinoma of no special type (NST), with histologic grade 2

(intermediate) and 3 (high) in 46.7% and 53.3% of MBCs,

respectively. At diagnosis, nine of the 15 cases were referred to

I/II TNM stage (64.3%) and five were referred to III TNM stage

(35.7%); for one case TNM stage was not available. The case for

which only samples from pleural metastases were analyzed,

developed metastases during the follow-up period.

As expected, most of MBCs were ER positive (86.7%), PR

positive (93.3%) and HER2 negative (78.6%). High AR

expression was observed in all MBCs for which this

information was available.

There was a prevalence (73.3%) of cases with high

proliferation rate at diagnosis. Overall, most cases showed a

Luminal-B intrinsic subtype (57.2% were HER2 negative and

14.3% were HER2 positive) and 21.4% showed a Luminal-A

intrinsic subtype. Only one case (7.1%) showed a HER2-

enriched intrinsic subtype. The range of TILs was 0-70%, with

a median value of 10%. The vast majority of MBCs (92.9%) had

negative/low TILs.
Somatic variants, CNV, TMB and MSI
by NGS

Somatic pathogenic variants were identified in 24 of the 523

genes included in the panel. Overall, 40 somatic pathogenic

variants were detected and included 35 (87.5%) missense

variants, three (7.5%) frameshift deletions and two (5.0%)

stop-gained variants (Supplementary Table 3).
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PIK3CA was the most frequently mutated gene. Specifically,

PIK3CA variants were detected in six (40.0%) MBCs

(Figure 1A). Somatic variants in ARID1A and EP300 were

identified in three (20.0%) MBCs, in SMO, SMARCA4, PAX5,

NCOR1, MAP3K1, GATA3, CREBBP in two (13.3%) MBCs, each

and in TRAF7, TP53, PIK3R1, PDGFRA, NOTCH2, NOTCH1,

FOXL2, CIC, BRAF, AXIN1, ASXL1, ARID2, ABL1 in one (6.7%)

MBC, each (Figure 1A). A median of two (range 1-5) somatic

variants per case was observed, with three (20.0%) MBCs

showing five somatic variants, each (Figure 1B).

The loss of the wild-type allele was identified in two out of

four MBCs with germline pathogenic variant, specifically, in

BRCA1 and PALB2 carriers (Table 2).

A total of 54 CNVs, all copy number gains, were detected in

22 genes in 13 (86.7%) MBCs (Figure 2). No copy number losses

were found. CNVs most frequently detected were amplifications

of 8q, 11q, and 12q cytobands. Specifically, MYC (8q24.21

cytoband) amplification was observed in eight (53.3%) MBCs

with fold-change values ranging from 1.8 to 3.8 (median 1.9);

CCND1, FGF19, FGF3, and FGF4 (11q13.3 cytoband)

amplification was observed in five (33.3%), four (26.7%), three

(20.0%), and two (13.3%) MBCs, with median fold-change values

of 3.7, 2.4, 2.9 and 5.9, respectively; CDK4 (12q14.1 cytoband) and

MDM2 (12q15 cytoband) amplifications were observed in three

(20.0%) and four (26.7%) MBCs, respectively, with median fold-

change value of 2.9, each (Supplementary Table 4).

The median TMB value was of 4.3 mut/Mb (range, 0.8‐12.3

mut/Mb) across all MBCs. High-TMB, was reported in two

(13.3%) MBCs with TMB values of 12.3 mut/Mb and 11.9 mut/

Mb, respectively (Figure 3A). The median percentage of MSI

across all MBCs was 2.4% (range 0.0-17.6%). High-MSI was

reported in two (13.3%) MBCs with MSI value of 17.6% and

14.3%, respectively (Figure 3B).

For each MBC case, somatic alterations together with the

main clinical-pathologic characteristics are depicted in Figure 4.
Clinically significant variants

The OncoKB database was interrogated to evaluate whether

the detected alterations were actionable targets in BC. Table 2

shows the actionable molecular alterations identified in each MBC

case together with the main clinical-pathologic characteristics.

According to OncoKB, at least one clinically significant

somatic alteration was detected in 11 (73.3%) MBCs.

Specifically, actionable targets included PIK3CA somatic

variants, high-TMB and high-MSI.

Five BC specific PIK3CA alterations (c.1035T>A,

p.Asn345Lys; c .1633G>A, p.Glu545Lys; c .3140A>G,

p.His1047Arg; c.3140A>T, p.His1047Leu; c.3145G>C,

p.Gly1049Arg), reported as predictors of response to PI3Ka-
specific inhibitor combined with estrogen receptor antagonist,

were identified in six (40%) MBCs (Table 2).
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TABLE 1 Clinical-pathologic characteristics of the 15 MBCs analyzed in this study.

Characteristic No. %

Genetic testing

BRCA1/2 and PALB2 negative 11 73.3

BRCA1/2 and PALB2 positive 4 26.7

Median age at diagnosis ± SD (range) 63 ± 12.8 (36-88)

Median follow-up, years ± SD (range) 3 ± 2.7 (1-10)

First-degree family history of BC/OC*

Negative 10 71.4

Positive 4 28.6

Personal history of cancer in addition to BC

Negative 13 86.7

Positive 2 13.3

Tumor histotype

Invasive carcinoma, NST 15 100.0

Pathological TNM stage *

I 6 42.9

II 3 21.4

III 5 35.7

IV 0 0.0

Histologic grade

1 0 0.0

2 7 46.7

3 8 53.3

Lymph node status*

Negative 7 50.0

Positive 7 50.0

ER status

Negative 2 13.3

Positive 13 86.7

PR status

Negative 1 6.7

Positive 14 93.3

AR status*

Negative 0 0.0

Positive 14 100.0

HER2 status*

Negative 11 78.6

(Continued)
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Two MBCs had high-TMB and two high-MSI. High-TMB

and high-MSI phenotypes seem to associate with response to

immune checkpoint inhibitors in several solid tumor types,

including BC. Notably, one MBC case with high-TMB and one

with high-MSI had also a PIK3CA somatic variant (Table 2).

As described above, four MBC cases harbored BRCA1/2 and

PALB2 germline pathogenic variants and LOH occurred in two

of them. According to OncoKB, BRCA1/2 and PALB2

pathogenic variants, with or without biallelic loss, predict

response to PARP inhibitors. Notably, the MBC case with

biallelic loss of PALB2 was also classified as high-TMB (Table 2).
Discussion

In this study, we characterized the molecular profiling of 15

MBC cases by large multigene panel sequencing, targeting 1.94

Mb of the genome at 523 cancer-relevant genes. To the best of

our knowledge, at present only two studies explored the genomic

landscape of MBC (10, 12).

The molecular landscape of our series, although relatively

small, resembles and recapitulates the main molecular profiles of

MBC as described so far.

In line with previous studies, we identified PIK3CA as the

most frequently mutated gene in MBC. The PIK3CA somatic

variant frequency in our MBC series was slightly higher than

that reported by Piscuoglio et al. and Moelans et al. (10, 12),

most likely because of differences in size or composition of the

series examined. Overall, our results add to previous findings
Frontiers in Oncology 06
(18) highlighting the relevant role of PIK3CA alterations

in MBC.

On the other hand, in line with previous studies (10, 12, 18,

19), our findings showed that TP53 somatic variants are rare in

MBC. TP53 variants are frequently observed in FBCs,

particularly with luminal B and triple negative subtypes (10,

12). The low frequency of these subtypes in MBCs might explain

the low TP53 variant frequency observed.

In addition, pathogenic variants in other genes were

identified at low frequencies in our series, highlighting MBC

heterogeneity. Among these, ARID1A pathogenic variants might

be promising therapeutic targets in BC. ARID1A deficiency due

to somatic mutations have been associated with impaired DNA

damage repair in BC, thus prompting the development of

synthetic lethality-based therapeutic strategies for ARID1A-

mutated neoplasms (20, 21).

In this study, CNVs were observed in about 87% of MBCs

and all were gene copy number gains. These findings are

consistent with previous evidence showing that genomic gains

are more common in MBCs while genomic losses are less

frequent (22–27).

In line with previous data (10), our results showed that copy

gains of MYC (8q24.21 cytoband), CCND1 (11q13.3 cytoband)

and MDM2 (12q15 cytoband) genes were frequent in MBCs.

MYC and CCND1 overexpression has been associated with

resistance to endocrine therapy in BC (28, 29). Thus, our

findings could be particularly relevant in the clinical

management of MBC as endocrine therapy is most commonly

used in MBC treatment (4).
TABLE 1 Continued

Characteristic No. %

Positive 3 21.4

Ki67/MIB1 status

Low 4 26.7

High 11 73.3

Intrinsic subtype*

Luminal-A 3 21.4

Luminal-B/HER2 negative 8 57.2

Luminal-B/HER2 positive 2 14.3

HER2-enriched 1 7.1

Tumor-infiltrating lymphocytes*

Negative 2 14.3

Low TILs 11 78.6

High TILs 1 7.1

*For one case this characteristic is not available.
SD, Standard Deviation; BC, Breast Cancer; OC, Ovarian Cancer; NST, no special type.
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MDM2 gain has been shown to significantly correlate with a

worse survival of Luminal BC patients allowing a further

stratification of Luminal BC based on MDM2 status (30). As

Luminal is the most frequent subtype in MBCs, our findings may

suggest that MDM2 amplification might be investigated as

prognostic biomarker.

The gene panel design allowed for the evaluation of

comprehensive molecular biomarkers, including TMB and

MSI, by NGS approach. To the best of our knowledge, the

evaluation of TMB and MSI has not yet been performed in

MBCs. In our series, only two MBCs showed high-TMB and two

high-MSI, while the majority of cases showed low-TMB and

low-MSI. These results are in line with data showing that high-

TMB and high-MSI phenotypes are rarely observed in FBCs

(31, 32).

A specific aim of this study was to characterize clinically

actionable somatic alterations that may represent new predictive

biomarkers for MBC patients. Our findings showed that NGS

multigene panel sequencing can allow for the identification of

MBC patients eligible for precision/targeted therapy. In our
Frontiers in Oncology 07
series about 73% of MBCs showed molecular alterations useful

for more individualized therapeutic options, besides treatments

commonly used in MBC patients based on hormonal and HER2

status (4). Our results are consistent with data from FBC

reporting actionable molecular alterations in about 80% of

BCs (33).

According to OncoKB database, actionable targets identified

in our study include alterations in BRCA1/2, PALB2, PIK3CA,

high-TMB and high-MSI.

It is known that cells with loss of BRCA1/2 or PALB2 function

have sensitivity to PARP inhibitors (34–36). In this series, four

MBC cases harbored BRCA1/2 and PALB2 germline pathogenic

variants and LOH occurred in two of them. According to

OncoKB, BRCA1/2 and PALB2 pathogenic variants, with or

without bi-allelic loss, predict response to PARP inhibitors.

The PI3K-AKT-mTOR signaling pathway plays an important

role in the development of BC (37) and in driving endocrine

resistance (38). Targeting the PI3K-AKT-mTOR signaling pathway

has become a promising therapeutic option in BC treatment (39).

Somatic variants at codons 542, 545 and 1047 of PIK3CA gene have
TABLE 2 Actionable molecular alterations identified in the 15 MBCs analyzed in this study.

MBCs ER
status

PR
status

HER2
status

germline
pathogenic
variants

LOH of germline path-
ogenic variants (LOH/

NO LOH)

Clinically actionable vari-
ants in BC according
OncoKb database

TMB
(high/
low)

MSI
(high/
low)

#1 Negative Positive NA PALB2 c.1984
A>T;
p.Lys662Ter

LOH – High NA

#2 Positive Positive Negative – n.e. PIK3CA c.3145G>C; p.Gly1049Arg Low High

#3 Positive Positive Negative – n.e. PIK3CA c.3140A>G; p.His1047Arg High Low

#4 Negative Negative Positive BRCA1
c.5266dup;
p.Gln1756fs

NO LOH – Low Low

#5 Positive Positive Negative BRCA1
c.4484G>T;
p.Arg1495Met

LOH – Low Low

#6 Positive Positive Negative – n.e. – Low Low

#7 Positive Positive Positive – n.e. PIK3CA c.3140A>T; p.His1047Leu Low Low

#8 Positive Positive Negative – n.e. – Low High

#9 Positive Positive Negative – n.e. – Low Low

#10 Positive Positive Negative – n.e. PIK3CA c.1035T>A; p.Asn345Lys Low Low

#11 Positive Positive Negative – n.e. PIK3CA c.1633G>A; p.Glu545Lys Low Low

#12 Positive Positive Positive BRCA2
c.6275_6276del;
p.Leu2092fs

NO LOH – Low Low

#13 Positive Positive Negative – n.e. – Low Low

#14 Positive Positive Negative – n.e. – Low Low

#15 Positive Positive Negative – n.e. PIK3CA c.3140A>; p.His1047Arg Low Low

LOH, Loss Of Heterozygosity; NA, not available; n.e., not evaluated.
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been demonstrated to be responsive to Alpelisib, a

phosphatidylinositol-3-kinase inhibitor (40, 41). Alpelisib, in

combination with Fulvestrant, an ER antagonist, is now FDA-

approved for patients PIK3CA-mutated, HR-positive, HER2-

negative BC after endocrine therapy-based treatments or with

disease progression (42). In our series, five (40%) MBC cases

showed PIK3CA alterations reported as predictors of response to

PI3Ka-specific inhibitor combined with estrogen receptor antagonist.

High-TMB values in solid tumors are associated with

response to immune checkpoint inhibitors (43). In our series,
Frontiers in Oncology 08
the MBC case with the highest TMB-value showed bi-allelic

PALB2 alteration (germline pathogenic variant and LOH). These

findings are consistent with the hypothesis that PALB2-mutated

BCs may be associated with high mutational load (44) and that

the DNA repair genes inactivation may give rise to BC specific

immune-phenotype, that could be leveraged with checkpoint

blockade (45). Notably, the PALB2-mutated case was an ER-

negative BC, a very rare occurrence in MBC, and some studies

reported higher TMB values in ER-negative compared with ER-

positive FBCs (46, 47). Further studies are needed to investigate
A B

FIGURE 1

Number of somatic pathogenic variants identified in MBCs using TruSight Oncology 500. (A) Number of somatic pathogenic variants identified,
by gene. (B) Number of somatic pathogenic variants identified, by sample.
FIGURE 2

Percentage of MBCs with DNA Copy Number Variations (CNVs), by altered gene.
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possible associations between TMB status and clinical-

pathologic variables in MBC.

While the clinical management of MSI phenotype is well-

established in colorectal and endometrial cancers, the predictive

value of MSI status in BC is not well-know and this is most likely

due to the low frequency (1-2%) of MSI phenotype in BC (48, 49).

In our series twoMBCs showed a high-MSI phenotype. Specifically,

one was a Luminal B/HER2 negative BC with high proliferation

activity and the other a Luminal A with low proliferation activity.

These results are in line with literature data showing that MSI

phenotype can be detected across different BC subtypes (50),

It is interesting to note that all MBCs with a stable MSI also

showed low-TMB and that the cases with high-MSI do not

correspond to the cases with high-TMB, thus in line with

findings suggesting that MSI is not necessary for high-TMB (51).

Despite the low prevalence, the MSI phenotype BC was shown

to be highly responsive to immunotherapy with checkpoint

inhibitors (52). Thus, our findings suggest that the determination

of MSI phenotype as a biomarker of response to immune

checkpoint inhibitors, potentially combined with TMB, could be

crucial to better identify eligible MBC patients for this therapeutic

approach. Further insights on the molecular profiles associated with

TMB and MSI status in MBC cases with and without germline

pathogenic variants in genes involved in genome stability may

provide a better characterization of MBC somatic landscape and

lead to a more accurate classification of MBC molecular subtypes,

with potential therapeutic implications.

This study has a few limitations. First, it is a pilot, retrospective

study on a small cohort of patients; thus, the occurrence of possible

bias related to small numbers for the observed variant frequencies

cannot be excluded and may affect the findings. Second, the
Frontiers in Oncology 09
variability in current computational methodologies for the

identification of pathogenic somatic variants and the estimation

of TMB represent a challenge. Our pipeline, whose results are

shown here, is based on evidence from recent methodological

comparisons (14, 15, 53). However, there is a need for

standardization and harmonization of assessment methodologies

and parameters across studies. For example, there is currently no

consensus on the minimum variant allele frequency and total read

depth to be considered for variant selection. Some studies highlight

the importance of using an allelic frequency threshold of 5% (54–

56). In our study, only two of the 40 somatic variants identified

showed an allelic frequency <10.0% and a good read depth (>100).

Foundation Medicine FoundationOne CDx panel is the only

current NGS test approved by FDA to measure TMB (57). In this

study, we used TruSight Oncology 500 Panel, since its size and gene

composition allowed for both a comprehensive exploration of

genomic landscape and the evaluation of molecular biomarkers

such as TMB andMSI. Further studies including a larger number of

MBCs are needed to validate our molecular findings and the

computational methodologies proposed here.
Conclusions

AlthoughMBCpeculiarities need to be further investigated at genetic

andmolecular level, our results suggest that the use of targeted gene panel

sequencing in clinical practice may represents a fundamental step in the

improvement of MBC management. The identification of actionable

molecular alterations may concur to establish, with greater precision,

which MBC patients can benefit from new therapeutic strategies as well

as being useful for the development of new drugs.
A B

FIGURE 3

TMB (mut/Mb) and MSI (%) of MBCs analyzed. (A) Distribution of TMB (y-axis), by sample. (B) Distribution of MSI (y-axis), by sample. NA, not
available.
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In conclusion, this study adds new data to the actionable genomic

landscape of MBC highlighting the importance of the incorporation

of NGS testing in the clinical management ofMBC eventually leading

to the implementation of precision medicine for MBC patients.
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