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Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering

various plant metabolic pathways related to antioxidative defense, secondary

metabolites, and hormonal upregulation. In the present study, transcriptomic analysis

of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress

was carried out in comparison with drought-stressed samples using next-generation

sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed

genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382

(15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787

(70%) were commonly expressed. Furthermore, comparative analysis of upregulated

and downregulated genes under stressed conditions showed that 1,053 genes (42%)

were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated

drought-stressed rice plants. The genes exclusively expressed in T. harzianum-

treated drought-stressed plants were mostly photosynthetic and antioxidative such as

plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins,

proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most

enriched pathways were metabolic (38%) followed by pathways involved in the synthesis

of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and

glutathione metabolism (3%). Some of the genes were selected for validation using

real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to

establish host–T. harzianum interaction, transcriptome analysis of Trichoderma was also

carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested

that the annotated genes are functionally related to carbohydrate binding module,

glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated,

playing an important role in establishing the mycelia colonization of rice roots and its

growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress

in rice cultivars by a multitude of molecular programming.
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INTRODUCTION

Rice is an important staple crop, feeding more than half of
the world’s population. Due to the high demand of water for
maintenance of its growth and productivity, the yield of the crop
is severely hampered by the limited availability of water.

Drought is one of the major constraints that affect crop
productivity up to 9–10% globally due to its adverse effects
on plant growth and development (Lesk et al., 2016). Hence,
to combat drought stress and bring an environment-friendly
solution to the problem, biological management practices have
also been explored. Among fungi, Trichoderma harzianum
association is also known for its positive effects in combating
abiotic and biotic stresses (Contreras-Cornejo et al., 2013).
T. harzianum is an antagonistic mycoparasite that colonizes the
roots of both monocots and dicots (Schuster and Schmoll, 2010).
Additionally, T. harzianum biopriming also leads to enhanced
nutrient uptake and increased water-holding capacity (Doni et al.,
2014), which ultimately results in better growth and development
in drought-stressed soils (Bae et al., 2009). The Trichoderma
association helps plants in sustaining drought stress by increasing
the expression of antioxidative enzymes, secondary metabolites,
and plant hormones (Pandey et al., 2016; Alwhibi et al., 2017).
Bashyal et al. (2020) also reported that seed priming with
T. harzianum delayed drought stress by 3–5 days.

Trichoderma-mediated improved growth is also due to
alterations in plant physiological parameters related to anabolic
pathways such as photosynthetic rate, stomatal conductance, and
transpiration rate (Doni et al., 2014). The root colonization of
Trichoderma is often associated with enhanced photosynthesis
as evident through various studies (Doni et al., 2014; Harman
et al., 2019). Previous studies suggested that Trichoderma
colonization improves the plant biomass and root growth
by increasing auxin biosynthesis (Contreras-Cornejo et al.,
2009). A few transcriptomic studies have also been carried
out to correlate the genomic basis of T. harzianum-induced
physiological and biochemical changes in drought tolerance
(Huang et al., 2014; Doni et al., 2019). A microarray study
showed that genes related to oxidative and osmotic stress
are induced upon Trichoderma root colonization to eliminate
salinity stress (Brotman et al., 2013). Transcriptomic studies to
understand molecular reprogramming in tomato plants treated
with T. harzianum revealed that epigenetic responses and
alternative splicing play a crucial role in plant growth and
defense. Furthermore, a temporal regulation of ethylene/indole
acetic acid and reactive oxygen species-mediated upregulation of
defense mechanisms were also reported for the maintenance of
growth and stress tolerance (Palma et al., 2019).

Previous transcriptome conducted by Ereful et al. (2020)
on rice cultivars suggested the upregulation of genes of
secondary metabolites interacting with reactive oxygen species
and enhancement of antioxidative genes. However, there is
a complete lack of study related to transcriptome profiling
in the association of T. harzianum with rice cultivars in
drought stress modulation. Hence, in the present study,
we compared transcriptomic alterations in drought-stressed
T. harzianum-inoculated rice plants using next-generation

sequencing techniques. The results of this study may contribute
to elucidating the mechanisms involved in the rice–microbe–
drought interactions and to identify genes that are putatively
responsible for the T. harzianum-mediated drought tolerance.

MATERIALS AND METHODS

Seed Material and Source
Two contrasting rice cultivars were used in this experiment.
A drought-resistant (Sahbhagi Dhan) and a drought-susceptible
(IR64) genotype of rice and a biocontrol agent T. harzianum 1
(TH1) isolate were provided by the International Rice Research
Institute, New Delhi, India. The TH1 strain was selected on the
basis of our previous study (Bashyal et al., 2020).

Inoculation and Plant Growth Conditions
The seeds were sown after surface sterilization for 1 min with
1% (v/v) sodium hypochlorite followed by washing three times
with sterilized distilled water. The seeds were then bioprimed
with powder formulation of T. harzianum at a concentration of
10 g/kg supplied with 0.02% (v/v) Tween 20 as surfactant. The
formulation was mixed thoroughly to provide uniform coating
and kept in a moist chamber at room temperature (25◦C) for
24 h. The control surface-sterilized seeds were mixed with Tween
20 [0.02% (v/v) Tween 20] only and kept in the moist chamber.
The seeds were then planted in earthen pots containing sterilized
sand:soil (3:1) mixture and grown under day/night temperatures
of 30–35◦C/18◦C and a relative humidity of 80/90%. After
40 days of plant growth, the potted plants were categorized
into three groups: one group was used as control with normal
irrigation (Sahbhagi Dhan, IR64), the second was drought-
stressed (Sahbhagi Dhan drought-stressed and IR64 drought-
stressed), and the third was drought- and biocontrol-treated
(Sahbhagi Dhan, T. harzianum-treated + drought-stressed and
IR64, T. harzianum-treated + drought-stressed). The drought
stress was given as described previously by Bashyal et al. (2020).
Briefly, moisture was maintained in the potted plants by applying
100 ml of water per pot every alternate day until plants attained
the age of 40 days, and at this point, drought treatments were
given by altering the water cycle. Watering was stopped for the
subsequent days for each drought treatment (4, 7, and 10 days
drought stress), while the control seedlings were watered every
alternate day. The experiment was conducted in randomized
block design with three replications per treatment and 10
seeds per pot. Overall, 90 plants for each cultivar (30 controls,
30 drought-stressed, and 30 T. harzianum-treated + drought-
stressed) were observed for one time interval (i.e., 4 days drought
stress). The plant samples were harvested after 4, 7, and 10 days of
drought treatment and stored immediately using liquid nitrogen
at −80◦C for transcriptome analysis (Bashyal et al., 2016).

Total RNA Extraction
Total RNA was isolated from the frozen plant samples
(IR64, drought-stressed; IR64, T. harzianum-treated + drought-
stressed) using TRIzol (TRI reagent, Molecular Research Center,
OH, United States) following the manufacturer’s instructions.
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RNA isolation was done in two replicates from the pooled
samples (4, 7, and 10 days). Briefly, a 100-mg seedling of rice
was powdered using liquid nitrogen, homogenized in TRIzol,
and incubated for 5 min at room temperature. Then, 200 µl of
chloroform was added to it and incubated for 10 min at room
temperature after shaking vigorously. Samples were centrifuged
(Eppendorf AG, Heidelberg, Germany) at 12,000 rpm for 15 min
and the upper aqueous phase was separated. Five hundred
microliters of isopropanol was added to it and incubated at
room temperature for 5 min. RNA was pelleted by centrifuging
at 10,000 rpm for 10 min and purified by washing twice with
75–80% (v/v) alcohol. The RNA was dissolved in 40–50 µl of
nuclease-free water and kept on a water bath set at 55–60◦C.
The quality and quantity of the isolated RNAs were checked
on denatured RNA agarose gel and NanoDrop (Thermo Fisher
Scientific, Wilmington, DE, United States) reading, respectively.

RNA-Seq Library Construction and
Sequencing
RNA-Seq paired-end sequencing libraries were prepared from
the isolated total RNA using Illumina TruSeq stranded
mRNA sample preparation kit (Illumina, San Diego, CA,
United States). For this, mRNA was enriched from the total
RNA using poly-T attached magnetic beads, followed by
enzymatic fragmentation and first strand cDNA was synthesized.
The first strand cDNA was then synthesized to second
strand using second strand mix and Act-D mix to facilitate
RNA-dependent synthesis. The double strand cDNA samples
were then purified using Ampure XP beads (New England
Biolabs, Ipswich, MA, United States) followed by A-tailing,
adapter ligation, and then enriched by a limited number of
PCR cycles.

Transcriptome Sequencing, Quality
Control, and Mapping
Sequencing was done in a single HiSeq 4000 lane using 150 bp
paired-end chemistry. The library preparation and sequencing
was done by commercial service providers (NxGenBio Life
Sciences, New Delhi, India). The barcoded gDNA libraries
were pooled in equal ratios and used for 2 × 150-bp paired-
end sequencing on a single lane of the Illumina HiSeq 4000.
Illumina clusters were generated and were loaded onto Illumina
Flow Cell on Illumina HiSeq 4000 instrument and sequencing
was carried out using 2 × 150-bp paired-end chemistry. After
sequencing, the samples were demultiplexed and the indexed
adapter sequences were trimmed using the CASAVA v1.8.2
software (Illumina Inc.).

Data Analysis
Bioinformatics Analysis

The quality of raw reads was checked by FastQC (version 0.11.8).
The high-quality reads were mapped using Minimap (version
2.17) at default parameters against both the reference genome
Oryza sativa (NCBI acc. no. PRJNA13141) and T. harzianum 1
(NCBI acc. nos. PRJNA453596, PRJNA207867).

Differential Expression Analysis

The number of reads mapped to genes was calculated using
SAMtools (version: 0.1.19). Differential analysis of all possible
combinations was done using DESeq (version 1) R package,
used to analyze count data from high-throughput sequencing
assays such as RNA-Seq and test for differential expression.
The functional annotation was done using UniProt and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
Expression plots (volcano plot) were made using In House R
scripts and heat map using the MeV software.

Gene Expression Analysis by Quantitative Real-Time

PCR

Quantitative real-time reverse transcriptase PCR (qRT-PCR)
was done to validate the results of the Illumina sequencing
experiment. For this, some of the significant candidate genes
(Supplementary Table 1) contributing to drought tolerance
and exclusively expressed in T. harzianum-treated and drought-
stressed rice plants were selected and primers were designed
(PrimerQuest tool, Integrated DNA Technologies). All the qRT-
PCR experiments were conducted in three biological replicates
with three technical replicates. For gene expression analysis, first
RNA was extracted as stated above. Then, 3 µg of total RNA
was used for cDNA synthesis using Verso cDNA synthesis kit
(Thermo Scientific, Wilmington, DE, United States) according
to the manufacturer’s protocol. For this, 3–5 µg of total RNA
was taken in a microfuge tube. To this, nuclease-free water was
added to make up the volume to 9 µl followed by the addition of
different reagents in an indicated order as follows: 2 µl random
hexamer, 1µl of an RT enhancer, 4µl of a 5× cDNAbuffer, 2µl of
a 10-mM dNTP mix, and 1 µl of M-MuLV reverse transcriptase;
then, it was mixed gently and spun slowly at 1,000 rpm for 15 s.
The tubes were incubated at 40◦C for 60 min. The reaction was
terminated by heating at 70◦C for 15 min.

TABLE 1 | Statistics of transcriptome sequencing results.

Sample Mapping percent on reference genome

IR64

T. harzianum +

drought A

95.88

IR64

T. harzianum +

drought B

92.24

IR64 drought A 89.28

IR64 drought B 86.41

Differential statistics when the reference was Oryza sativa

Sample Total DEGs DEGs at log2

FC

DEGs at

log2 FC and

p < 0.05

Number of

annotated

genes (at

log2 FC and

p < 0.05)

IR64

T. harzianum +

drought vs

drought

33,691 ± 366 10,435 ± 2,098 2,506 ± 224 2,413 ± 224

T. harzianum 24,452 ± 1,664 11,884 ± 2,863 808 ± 76 806 ± 77
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FIGURE 1 | (A) Venn diagram showing the unique (non-overlapping region) and common expressed genes (overlapping region) obtained when drought-stressed rice

is compared with T. harzianum-treated + drought-stressed rice. (B) Volcano plot representing significant and non-significant differentially expressed gene

(DEG)-based p values. The green dot represents the significant DEGs.

FIGURE 2 | Commonly expressed functional pathway categories in the T. harzianum-treated drought-stressed rice genome vs drought-stressed rice.

The PCR reaction mix was prepared using primer pairs
specific to rice (Supplementary Table 1), and GAPDH was
used as internal control (Kumar et al., 2018). The reaction
comprises 1 µl of cDNA mixed with 10 µl of SYBR Green
PCR master mix (Qiagen GmbH, Hilden, Germany), 5 pmol
of a forward primer, and 5 pmol of a reverse primer in a
final volume of 20 µl. Template controls were analyzed for
all genes. PCR was performed using a MiniOpticon real-
time PCR system (Bio-Rad, Hercules, CA, United States)
with the following conditions: an initial activation step at
94◦C for 4 min, denaturation at 94◦C for 15 s, annealing

at 58◦C for 30 s, and extension at 70◦C for 30 s. Melt
curve analysis of the PCR product was carried out at 72◦C
for 1 min and ramped from 75 to 90◦C with an increase
by 1◦C every 5 s. The specificity of the reaction was
confirmed by melt curve analysis and gel electrophoresis.
Relative gene expressions were calculated in terms of fold
changes using the 1Ct method [Fold change = 2−1(1Ct),
1Cttreated = Ct(target) − Ct(normalizer), 1Ctcontrol =
Ct(target) − Ct(normalizer), 1(1Ct) = 1Ct(treated) –
1Ct(control)]. The results are presented as arithmetic means
and standard deviations of the replicates.

Frontiers in Microbiology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 655165

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Bashyal et al. Trichoderma harzianum in Drought Management

RESULTS

Plant Growth
The comparative results of the two cultivars (Sahbhagi

Dhan and IR64) showed that T. harzianum treatment has a

significant difference in maintaining plant growth under drought

conditions. The cultivar IR64 performed better when compared
with Sahbhagi Dhan which was evident from plant growth which

was assessed by measuring root and shoot length at 4, 7, and
10 days (Supplementary Figure 1). The root growth showed
marginal difference on 4 and 7 days of growth; however, a notable
difference was observed in shoot growth in T. harzianum-treated
drought-stressed IR64 rice plants when compared with drought-
stressed IR64. Sahbhagi Dhan recorded a 23% decrease in shoot
length, whereas in IR64, a 6% decrease was recorded on 4 days
of drought when compared with their respective controls. In
fact, on 7 days of drought stress, Sahbhagi Dhan recorded a

FIGURE 3 | Heat map with cluster categorization representing the top 50 significant DEGs at two different comparisons of treatments (T. harzianum-treated +

drought-stressed, drought-stressed). Each column represents the DEGs in different samples with two replicates. The red color shows upregulated genes and the

green color represents downregulated genes based on highest FPKM values. Each row represents an individual transcript.
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FIGURE 4 | Gene Ontology (GO)-based functional annotation of genes present in the T. harzianum-treated drought-stressed rice genome vs. drought-stressed rice.

(A) Biological process domains, (B) molecular function domain, and (C) cellular process domains.

60% less growth, whereas IR64 recorded 11% less growth in
shoot length in comparison with their controls. Our previous
study also indicated that Trichoderma biopriming delays drought
stress by 3–5 days in IR64 and Sahbhagi Dhan (Bashyal et al.,
2020). Overall, out of the two contrasting cultivars, i.e., Sahbhagi
Dhan and IR64, the T. harzianum-inoculated IR64 cultivar
performed better under drought stress at 4–7 days of growth
(Supplementary Figure 2). Hence, cultivar IR64 was selected for
the transcriptome analysis under T. harzianum-treated drought
stress condition.

Sequencing Statistics
The libraries of a total of four samples (IR64 drought; IR64
drought + T. harzianum in duplicates) were analyzed from
Illumina NextSeq 500 platform. Approximately 20 million for
drought-stressed samples and 21–22 million high-quality reads
for T. harzianum-treated drought-stressed rice cultivar were
obtained (Table 1). The alignment results showed that 86–
95% of clean reads were mapped on the reference genome
from all the four samples. The assembly of mapped reads
resulted in the identification of a total of 33,691 differentially
expressed genes (DEGs).

Gene Profile and Differential Expression
Study of Rice
Out of the total of 33,691 DEGs, the highly upregulated and
downregulated 10,435 DEGs were considered for further studies

excluding the genes lying in the range of log fold change in
(−2) to (+2). Volcano plot analysis of DEGs showed remarkable
differences in gene distribution patterns, which were aptly
delimited in the T. harzianum-treated drought-stressed IR64
cultivar when compared with drought-stressed (Figure 1A).
A total of 2,424 genes, i.e., 23%, were exclusively expressed in
T. harzianum-treated plants, whereas 2,256 (22%) were expressed
in drought-stressed conditions and 5,754 (55%) genes were
commonly expressed in both treatments (Figure 1B). The study
further stressed on 2,506 significant genes (p < 0.05) out of
the highly expressed 10,435 genes; 337 (15%) were exclusively
expressed in drought-stressed plants, 382 (15%) were expressed
in T. harzianum-treated drought-stressed plants, and 1,787 (70%)
were commonly expressed in both. Furthermore, comparative
analysis of upregulated and downregulated genes under stressed
conditions was also observed in T. harzianum+ drought vs
drought-treated rice. The data showed 1,436 genes (57%)
were upregulated and 1,070 genes (42%) were downregulated
in T. harzianum-treated drought-stressed rice plants when
compared with only drought-stressed plants.

Based on the transcriptome analysis of DEGs under drought-
stressed and T. harzianum-bioprimed conditions, the genes
were classified into 21 broad categories (Figure 2). Heat map
and hierarchical cluster categorization of DEGs were also
generated to represent the global view of gene expression patterns
and also depict their dynamic differences in T. harzianum-
treated, drought-stressed vs drought-stressed (Figure 3). Higher
percentages of genes were related to photosynthetic enzymes
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FIGURE 5 | KEGG pathway distribution of upregulated and downregulated genes.

of both light reaction and dark reaction enzymes and osmotic
homeostasis enzymes (Figure 3). The genes exclusively expressed
in T. harzianum-treated plants were mostly photosynthetic
such as plastocyanin, small chain of Rubisco, PSI subunit Q,
and PSII subunit PSBY. Other antioxidative genes included
osmoproteins, proline-rich protein, aquaporins, stress-enhanced
proteins, chaperonins, peroxidases, and peroxiredoxins.

Gene Profile and Differential Expression
Study of Trichoderma harzianum
To establish rice–T. harzianum interaction, transcriptome
analysis of T. harzianum was also carried out. The number of
sequences obtained was 532 for a total length of 40,980,648 bp.
The N50 length was 2,414,909 and the maximum and
minimum contig lengths were 4,089,932 and 1,013 bp,
respectively (Table 1). It has been generally accepted that
larger values of performance criteria are associated with better
assembly performance. An account of the DEGs suggests that

there were 808 (3%) significant genes out the total DEGs
(Table 1). GO analysis suggested that the annotated genes
were functionally related to carbohydrate binding module
(GO:0019867; GO:0016021), glycoside hydrolase (GO:0004553;
GO:0005975), GMC oxidoreductase (GO:0016614; GO:0050660),
and trehalase (GO:0005737). All the genes activated were
involved in establishing the mycelia colonization of root
and root growth.

Gene Ontology Study
Gene Ontology (GO) analysis revealed GO representation in
drought and T. harzianum-primed drought samples. Among
the significantly expressed DEGs, 1,657 (66%) GO terms were
assigned for T. harzianum-treated drought-stressed vs drought-
stressed samples. Cellular processes (39.5%, GO:0009987)
and metabolic process (38.5%, GO:0008152) were the most
significantly represented groups in the biological process
category. Within the cellular component category, cell (50.6%,
GO:0005623) and cell part (50.5%; GO:0044464) were the
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FIGURE 6 | Cotinued
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FIGURE 6 | KEGG enrichment for DEGs from the three pathways: (A) carbon fixation, (B) glutathione metabolism, and (C) phenyl propanoid biosynthesis. The red

highlights represent the enriched enzymes of the pathways.

most significantly represented groups, and catalytic activity
(49.5%, GO:0003824) was the most significantly represented
group within the molecular function category (Figure 4).
Supplementary Table 3 provides the list of highly upregulated
significant genes expressed in T. harzianum-treated cultivars.

KEGG Pathway and Enrichment Analysis
The KEGG pathway database was used to identify the role of
T. harzianum-induced genetic pathway to reduce drought stress
in rice plants. It was found that upon T. harzianum priming,
a number of genes were upregulated and downregulated
in drought-stressed rice plants (Figure 5). The exclusively
expressed genes in T. harzianum-inoculated metabolic pathway
were mostly related to glutathione metabolism (GO:0004364;
GO:0005737; GO:0005576; GO:0006979), steroid biosynthesis
(GO:0000254; GO:0005506; GO:0005789), and carbon
metabolism (GO:0005739; GO:005960; GO:0019464). The
highly upregulated genes included were related to photosynthesis
(GO:0009416; GO:0009522; GO:0009523; GO:0009535).

The main pathways enriched in T. harzianum-treated rice
relative to drought stress were related to metabolic pathways
involved in the synthesis of secondary metabolites followed
by pathways related to “photosynthesis.” The proteins of the
photosystems and the enzymes of the Calvin cycle were
upregulated. Overall, it can be concluded that T. harzianum

helped rice plants by increasing the expression of photosynthetic
genes, phenyl propanoid pathway genes, glutathione pathway,
stress-enhanced osmoproteins, etc. (Figures 6A–C).

To further investigate the DEGs that were involved and
enriched in various metabolic pathways, pathway-based analysis
was performed using the KEGG pathway database. In this, a total
of 468 significant (p < 0.05) genes of the KEGG pathway were
found to be enriched. The genes were classified into 13 different
categories (Supplementary Table 2). Broadly, the most enriched
pathways were metabolic (38%) followed by pathways involved in
the synthesis of secondary metabolites (25%), carbon metabolism
(6%), phenyl propanoid (7%), and glutathione metabolism (3%).

Validation of Differentially Expressed
Genes Through Real-Time PCR
To confirm the accuracy and reproducibility of the Illumina
RNA-Seq results, 12 representative genes were chosen to
validate the levels of expression in drought and T. harzianum-
primed drought-stressed IR64 cultivar by qRT-PCR. The
validation results for the selected genes are shown in Figure 7.
Out of the 12 genes, five genes—ribulose-bisphosphate
carboxylase small chain A, ferredoxin–NADP reductase,
chaperonin-like RBCX protein 1, ATP synthase subunit
gamma, and photosystem II core complex proteins psbY
(Os12g0291100, Os02g0103800, Os08g0425200, Os07g0513000,
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FIGURE 7 | qRT-PCR validation of selected genes showed significant difference in their expression in T. harzianum-treated and drought-stressed when compared

with drought-stressed at three different time intervals (4, 7, and 10 days). Error bars show ± SD among the biological replicates.

and Os08g0119800)—were chloroplastic. Three genes such
as proline-rich protein (Os10g0150400), osmotin-like protein
(Os12g0569500), and aquaporin PIP2 (Os09g0541000) were
related to the maintenance of osmotic homeostasis of rice
plants. Besides these, PSI subunit (Os04g0414700), peroxidase
43 (Os11g0210100), stress-enhanced protein 1 (Os11g0621400),
and auxin-induced protein 15A (Os08g0118500) expression were
also assessed. The expressions of all the genes were consistent
with RNA-sequencing data.

DISCUSSION

Trichoderma harzianum is an antagonistic biocontrol agent
used widely as a plant growth promoter, in alleviation of
abiotic stresses such as drought, salinity, and heat stress (Rawat

et al., 2012; Ahmad et al., 2015; Angel Contreras-Cornejo
et al., 2016). In fact, seed biopriming has shown promising
results in decreasing the effect of drought stress as evident
from the increase in growth, photosynthetic parameters such as
net photosynthetic rate, stomatal conductance, increase in the
activity of antioxidative enzymes, secondary metabolites, and
related decrease in peroxides (Rawat et al., 2016).

First, our results compared the plant growth of two contrasting
cultivars, i.e., IR64 and Sahbhagi Dhan. IR64 was selected for
further study due to its better performance. T. harzianum-
mediated better growth has been reported in various plants such
as rice, tomato, andmaize (Morán-Diez et al., 2015; Bashyal et al.,
2020). The increase in growth is attributed to the decrease in
drought stress by improvement in water use efficiency, osmotic
balance by increased proline content, and decrease in MDA
content (Pandey et al., 2016; Mishra et al., 2020). The molecular
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analysis has shown that plant growth promotion might be due
to an enhanced expression of carbohydrate binding module
family protein (M431DRAFT_521249, M431DRAFT_499139),
glycoside hydrolase (M431DRAFT_95191), and polysaccharide
lyase (M431DRAFT_92754) as observed in our results. The
growth promotion due to T. harzianum colonization may in
part be due to cellulose disruption by induction of Tg SWO,
carbohydrate binding module, and swollenin protein (Brotman
et al., 2008;Meng et al., 2019). The carbohydrate bindingmodule-
mediated root elongation is mediated by cellulose breakdown,
which results in cellular expansion thereby resulting in cellular
signaling for cell growth (Brotman et al., 2008).

Our study showed that T. harzianum biopriming has proved
beneficial in withstanding drought stress. The stress tolerance
might be correlated to the upregulation of various genes which
have been identified to be involved in carbon metabolism
and carbon fixation. Among DEGs, some genes which were
exclusively expressed or are highly upregulated with respect
to drought stress play a significant role in drought stress
alleviation. The log fold changes of the exclusively expressed
genes such as Os06g0101600 (plastocyanin, chloroplastic-like),
Os12g0291100 (ribulose-bisphosphate carboxylase small chain
A), Os02g0103800 (ferredoxin–NADP reductase, leaf isozyme
2, chloroplastic-like), Os08g0425200 (chaperonin-like RBCX
protein 1, chloroplastic), and Os07g0513000 (ATP synthase
subunit gamma, chloroplastic) were infinite as the reads were
recorded for T. harzianum-treated rice only and not for
drought-treated cultivars (Supplementary Table 3). The log fold
changes for highly upregulated genes such as Os04g0414700
(photosystem I subunit O), Os08g0119800 (photosystem II core
complex proteins psbY, chloroplastic), Os12g0569500 (osmotin-
like protein), Os02g0815200 (28 kDa ribonucleoprotein,
chloroplastic), Os04g0490800 (phosphoglycolate phosphatase
1B, chloroplastic), and Os01g0882500 [NAD(P)H-quinone
oxidoreductase subunit N, chloroplastic] were 10.2, 10, 9.7,
7, 7.1, and 7.2, respectively (Supplementary Table 3). The
increase in expression of photosynthetic genes is consistent
with previous results (Azarmi et al., 2011; Alwhibi et al.,
2017; Doni et al., 2019). The increase in photosynthetic
genes might be due to an increase in phytohormones
also observed in our results, for instance Os03g797800
(auxin-responsive protein) and Os01g0883800 (gibberellin
oxidase) which are upregulated by 5.41 and 5.29 log fold
change. Additionally, the carotenoids protect pigments
from photooxidative stress (Strzaka et al., 2003) and our
pathway analysis results indicated enriched enzymes of
carotenoid biosynthesis.

The exclusive expression of peroxidase and the enrichment
of glutathione metabolism pathway in T. harzianum-primed rice
cultivar as observed in our study indicate toward the involvement
of glutathione peroxidase pathway active in antioxidation ROS
formed due to drought stress. The induction of antioxidant
defense has also been observed in tomato seedlings and rice
in water deficit after T. harzianum interaction (Mastouri et al.,
2012; Singh et al., 2020). Similar results were observed when
maize seedlings were inoculated with Trichoderma atroviride
(Guler et al., 2016).

Besides, the genes involved in photosynthetic pathway, the
secondary metabolite pathway genes such as phenylpropanoid,
glutathione metabolism, diterpenoid, glyoxylate, nitrogen, cutin,
and suberin were also upregulated in T. harzianum-inoculated
drought-stressed IR64 rice cultivar. The antioxidative role of
secondary metabolites and their effect in decreasing drought
stress are well established (Tattini et al., 2014; Kubala et al.,
2015). Glutathione is a tripeptide found abundantly in cellular
components and gene functions in cell growth and regulation of
stress-responsive genes (Sofo et al., 2015).

Additionally, we observed upregulation of osmotin-like
proteins (Os12g38170) and aquaporins (Os0232900) in
T. harzianum-primed drought-treated rice. Osmotin-like
proteins are known to protect plants by maintaining cellular
osmolarity by compartmentalization of solutes or by structural
and metabolic alterations (Choi et al., 2013). In fact, their
overexpression has been correlated with stress tolerance
(Chowdhury et al., 2017; Bashir et al., 2020). The aquaporins
are channel proteins which play a key role in plant responses to
environmental stresses by maintaining the uptake andmovement
of water in the plant body and maintain cell viability (Kapilan
et al., 2018). The upregulation is also linked to drought stress
maintenance (Shekoofa and Sinclair, 2018).

Kyoto Encyclopedia of Genes and Genomes enrichment
analysis was performed to identify related pathways for 468
genes that were involved and enriched in this study. The most
enriched genes in carbon fixation pathway include malate
dehydrogenase, sedoheptulose-bisphosphatase, ribulose-
5-phosphate kinase, ribulose-bisphosphate carboxylase,
fructose bisphosphate aldolase, glyceraldehyde-3-phosphate
dehydrogenase, and phosphoglycerate kinase (Os02g0698000,
Os03g0129300, Os03g0267300, Os04g0234600, Os04g0459500,
Os05g0496200, Os06g0608700, Os07g0630800, Os08g0562100,
Os11g0171300, and Os12g0274700). The genes enriched in
glutathione pathway were glucose-6-phosphate dehydrogenase
(Os07g0406300), glutathione-dependent peroxiredoxin
(Os02g0192700), glutathione transferase (Os10g395400), and
ascorbate peroxidase (Os02g2553200). The genes found to be
enriched in phenyl propanoid pathway are coumarate-CoA ligase
(Os02g0697400), cinnamoyl-coA reductase (Os09g0400000),
coniferyl aldehyde dehydrogenase (Os04g0540600), beta
glucosidase (Os09g0511900), and peroxidase (Os10g0109300).

Hence, overall, T. harzianum biopriming aided rice plants
in a multifaceted simultaneous manner by triggering various
pathways such as photosynthetic, secondary metabolites, and
osmotic balancemaintenance contributing to enhanced tolerance
to drought stress (Singh et al., 2020).

CONCLUSION

We provided a comprehensive study of the transcriptome
of a drought-challenged IR64 rice cultivar bioprimed
with T. harzianum. The complete analyses of DEGs are
highlighted with respect to drought treatment. The data
revealed that the T. harzianum-mediated drought stress
improvement is associated with a synchronous induction of
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various metabolic pathways involved in photoprotection of
photosynthetic apparatus, upregulation of photosynthetic genes,
upregulation of antioxidative genes, ascorbate glutathione
pathway, and maintenance of osmotic homeostasis by
increasing proline, osmotic proteins, and aquaporins.
Additionally, the transcriptome analysis of T. harzianum
also supported the fact that its association helps in plant
growth by the regulation of carbohydrate binding module
polysaccharide lyase and glycoside hydrolase. Overall, it
can be concluded that T. harzianum biopriming delays
drought stress in rice cultivars by a myriad of molecular
reprogramming.
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