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Abstract

Quantum Monte Carlo methods are accurate and promising many body techniques for electronic
structure calculations which, in the last years, are encountering a growing interest thanks to their
favorable scaling with the system size and their efficient parallelization, particularly suited for the
modern high performance computing facilities. The ansatz of the wave function and its variational
flexibility are crucial points for both the accurate description of molecular properties and the
capabilities of the method to tackle large systems. In this paper, we extensively analyze, using
different variational ansatzes, several properties of the water molecule, namely, the total energy,
the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium
configuration, and the harmonic and fundamental frequencies of vibration. The investigation
mainly focuses on variational Monte Carlo calculations, although several lattice regularized
diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a
useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC
calculations. We also introduce a new method for the computation of forces with finite variance
on open systems and a new strategy for the definition of the atomic orbitals involved in the
Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number
of variational parameters. This scheme significantly improves the efficiency of QMC energy
minimization in case of large basis sets.
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1. INTRODUCTION

Quantum Monte Carlo1–4 (QMC) stands for a number of different stochastic methods that
are used for electronic structure calculations of solids and molecules. These techniques
range from the simplest and computationally cheapest variational Monte Carlo (VMC)
scheme, to the more sophisticated and computationally expensive projection methods, such
as the diffusion Monte Carlo5–8 (DMC), the Green function Monte Carlo9–12 (GFMC), the
lattice regularized diffusion Monte Carlo13,14 (LRDMC), the auxiliary field quantum Monte
Carlo15–17 (AFQMC), the released node quantum Monte Carlo,18,19 the self-healing
diffusion Monte Carlo20 (SHDMC), the reptation quantum Monte Carlo21,22 (RQMC), or
the recent full configuration interation Quantum Monte Carlo23 (FCI-QMC). In recent years,
the QMC methods are encountering a growing interest due to the favorable scaling of the
algorithms with the system size24 (the computational cost scales with the number N of
electrons as Nm with m between 3 and 4), an accuracy comparable to those of other high-
level correlated quantum chemistry methods,25–35 and their readiness for the implementation
in modern highly parallel supercomputer facilities.24

Despite QMC techniques have been known for more than three decades, their application
has been quite limited if compared to other methods, such as Density Functional Theory
(DFT), or traditional quantum chemistry methods, such as coupled-cluster36 (CC),
configuration interaction37 (CI), Møeller–Plesset perturbation theory,38,39 and Complete
Active Space Self-Consistent Field (CASSCF). Due to the large computational cost, the use
of QMC has been often restricted to particularly challenging systems, especially those
characterized by the presence of strong electron correlation. This is probably due to the
underlying stochastic nature of QMC that, on one side, it is responsible for the favorable
scaling with the number of electrons and the intrinsic parallelization but, on the other side, it
yields expectation values  of any operator  affected by an associated stochastic error ,
converging to zero quite slowly, namely like the inverse square root of the computational
time. Since this scaling has usually a large prefactor, the stochastic error affecting QMC
calculations is typically much larger than the corresponding numerical errors affecting
nonstochastic computational methods.

Strictly connected with such underlying stochastic error of QMC is the “historical”
challenge to calculate reliable ionic forces. The straightforward employment of the finite
difference methods is quite inefficient, due to the propagation of the stochastic errors when
energy differences are considered. However, a number of technical improvements have
significantly reduced these problems, making possible to realize calculations of increasing
complexity with an affordable computational cost. The introduction of the correlated
sampling40 (CS) and the space warp coordinate transformation41 (SWCT) lead to large
improvements in calculating energy differences between two different wave functions, and
then on the force evaluation. Anyway, the finite difference approaches have a computational
cost proportional to 3 times the number of atoms, making it prohibitive for large molecules.
Concerning the analytical approaches for the calculation of the forces, large improvements
have been achieved by the introduction of the reweighting methods for the stochastic
sampling,42–44 which allows us to overcome the well-known problem of the infinite
variance of the force estimators. A further step in the direction of an efficient and accurate
computation of the QMC forces has been recently accomplished by Sorella and Capriotti,45

who proposed a combined use of the reweighting method, the CS, and the SWCT
techniques. Thanks to the use of the algorithmic adjoint differentiation (AAD), all the
components of the ionic forces are calculated in a computational time that is only about four
times the one of an ordinary energy calculation, in both the cases of all electrons and
pseudopotential calculations. Thanks to these improvements in the force evaluations, in the
last years several optimizations of molecular geometries, based on QMC calculations, have
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been reported,24,25,45–49 for molecules of growing size and complexity. Another important
issue emerging form recent QMC literature is the possibility to calculate ground state
molecular properties beyond energies and geometries, such as, for instance, the
polarizability and the electronic density.3,50 Recently, by using a procedure based on the
multidimensional fitting of the potential energy surface (PES) of a molecule in proximity of
its configurational minimum, it has also been shown that it is possible to calculate the
harmonic vibrational frequencies and the anharmonic corrections by QMC, despite the
presence of stochastic errors.51

Another area in which the QMC has recently undergone a remarkable progress is the
introduction and the characterization of several new wave function ansatzes. The wave
function variational ansatz is, indeed, of fundamental importance for the accuracy and the
reliability of both variational and diffusion Monte Carlo results, as it emerges from different
works.25,48,50,52–55 As expected, the definition of the wave function is more important for
the VMC technique rather than for the corresponding DMC projection method, since the
latter only depends on the nodal surface of the variational wave function. A typical QMC
wave function is given by an antisymmetric determinantal part, aimed to describe static
correlation effects, and a bosonic part, termed the Jastrow factor,56 which recovers most of
the dynamical correlation effects. Going beyond the simplest wave function where to a
single Slater determinant is applied a Jastrow term, among recent wave function
developments we can include the Jastrow antisymmetrized geminal power (JAGP) wave
function,57 the Pfaffian wave function,58,59 wave functions with backflow correction,60 and
many other multideterminant Jastrow functions.53,54,61,62 The JAGP is a particularly
interesting and promising ansatz, due to its ability to represent a multiderminant wave
function in an implicit and compact way. Moreover, the presence of the Jastrow factor
allows to satisfy the size consistency that, as observed in ref 33 and more recently by
Neuscamman,63 is not fulfilled by the simple AGP ansatz.

In many papers, convergence studies have been carried out as a function of the basis set
size.32,33,50,64,65 An emerging trend is that the optimization of all wave function parameters,
including the coefficients of the contractions and the exponents of the primitive gaussians,
can accelerate the convergence of many observables. As expected, different observables
(such as geometries, energies, polarizabilities and vibrational frequencies) have a different
convergence behavior with respect to the size of the basis set and the number and kind of
parameters to be optimized, as pointed out for instance by Coccia et al. in the case of the
ethyne polarizability.50

In QMC, the interplay between the variational ansatz and the basis set size is quite intricate
and not yet completely understood. The number of variational parameters is also a crucial
issue for the QMC wave function optimization, since it grows both with the wave function
complexity and the size of the basis set. Also, the kind of variational parameter (linear or
nonlinear) can be important for the practical stability of the wave function optimization
algorithms.

In order to investigate systematically the behavior of the different variational ansatzes,
together with the choice of the basis sets for the determinantal and the Jastrow part of the
wave function, in the present work we propose an extensive study of the molecular
properties of the water molecule, both with all electron wave functions and
pseudopotentials. The investigation mainly focuses on the VMC scheme, although several
LRDMC calculations are also reported. We have considered as a test case the water
molecule, because it is a sufficiently small system to afford different calculations of several
properties, but it still preserves a certain degree of complexity, allowing a meaningful
application of the various approaches. Moreover, the water molecule has been widely
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studied and characterized both experimentally66–68 and by using highly accurate ab initio

computational approaches,69–75 which provide useful benchmarks for our QMC
calculations. The accuracy of the different approaches has been tested versus a number of
different properties, namely the energy, the dipole, the quadrupole, the ionization and
atomization energies, the structural minimum, and the harmonic and the fundamental
frequencies of vibration. In addition to this systematic study, we introduce in the present
paper a new scheme of building the atomic orbitals involved in the wave functions, called
hereafter atomic hybrid orbitals. Due to the tight relationships between the variational
parameters and the basis sets, the proposed scheme would be particularly suitable and
computationally convenient in the treatments of large systems with large basis sets.

The paper includes a self-contained description of the used wave function ansatzes in
Section 2, and of the QMC techniques in Section 3. In these sections some novel
methodological improvements are also presented. Together with the new hybrid orbitals, we
also provide an improvement for open nonperiodic systems of the reweighting method

proposed by Attaccalite and Sorella.44 In Section 4, we provide some additional details
about the computation that we have performed, that are reported and discussed in Section 5,
followed by a conclusive discussion in Section 6 of the impact of the work and of the future
perspectives.

2. FUNCTIONAL FORM OF THE QMC WAVE FUNCTION

The usual form of a QMC wave function4 is the product of an antisymmetric (fermionic)
function ΨA, and a symmetric (bosonic) exponential function J = eU:

(1)

Both ΨA and J, hereafter called respectively the determinantal part and the Jastrow factor of
the wave function, depend on the spatial ri and spin σi coordinates of the N electrons in the

system, being  and xi = (ri,σi). The determinantal part ΨA, sum of one or
more Slater determinants, completely defines the nodal surface of ΨQMC, and it is
responsible for the description of the static correlation. The Jastrow factor, explicitly
dependent on the interelectronic distances, describes the dynamical correlation between the
electrons and is used also to satisfy the cusp conditions.4,76

ΨQMC, as well as its constituting determinantal and Jastrow parts, is functionally dependent
on some parameters, that are optimized in order to minimize the corresponding variational
energy. The optimized wave function should provide the best description of the electronic
properties, and of the static and dynamical correlation, within the limitations of the
considered ansatz. However, when the number of variational parameters of the wave
function increases, their optimization can become very challenging. It is therefore crucial to
adopt a parametric wave function that has a large variational flexibility but, at the same time,
a limited number of tunable parameters.

In the next paragraph, we will provide a synthetic description of the atomic orbitals that are
used in the determinantal and the Jastrow parts of the wave function. Next, we will review
the different forms for the determinantal part ΨA that are considered in this work, namely the
Antisymmetrized Geminal Power (AGP), the single Slater Determinant (SD), and the AGP
with fixed number of molecular orbitals (AGPn*). Afterward we will provide a description
of the Jastrow factor.
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2.1. Atomic Orbitals

The choice of the primitive atomic orbitals and the contractions is important to achieve a
rapid basis set convergence (BSC) and balanced calculations, both for QMC and for many
other electronic structure methods. However in QMC calculations, at variance with other
techniques, all the basis set parameters (included the exponents and the contraction
coefficients) are often optimized during the minimization of the variational energy. An
appropriate choice for the contraction scheme is particularly important in the AGP wave
function, since for this wave function the atomic orbital contractions and the number of
wave function parameters are closely related, as we will see in Section 2.2.

A generic atomic orbital  of the atom a is written in terms of the radial vector ria =
ri − Ra connecting the nucleus of the atom a with the position ri of the electron i. In this
work we will consider three different types of atomic orbitals: (i) the uncontracted orbitals,
(ii) the contracted orbitals, and (iii) the contracted atomic hybrid orbitals.

An uncontracted orbital ϕl,m, having azimuthal quantum number l and magnetic quantum
number m, is the product of an angular part, that is, real spherical harmonic, and a radial
part. The latter may have several functional forms; in this work, we have considered only the
two most used: the Slater type orbitals (STO)

(2)

and the Gaussian type orbitals (GTO)

(3)

where Zl,m(Ω) is the real spherical harmonic and r = ∥r∥. The proportionality constant is
fixed by the normalization and depends on the parameter ζ. Other parametric forms for the
atomic orbitals exist, see for instance Petruzielo et al.,64 but are not used in this work.

In our implementation, the nuclear cusp condition is satisfied by an electron–nucleous
interaction term that is included in the Jastrow factor. For this reason, we need atomic
orbitals with no cusps at the nuclei. This is automatically satisfied by all the GTO and STO
orbitals in eqs 2 and 3, with the exception of the STO orbital s (i.e., l = m = 0). For this
reason, the latter orbital is replaced by the following:

(4)

Each of the uncontracted orbitals described above depends parametrically only on the value
of the ζ in the exponent.

The contracted orbitals  are simple generalizations of the uncontracted orbitals, where
the radial part is the summation of the radial parts of several uncontracted orbitals (GTOs,
STOs, or mixed). Therefore, a contracted orbital is

(5)

where Xk can be GTO or STO and K is the number of summed uncontracted orbitals. The

number of variational parameters in  is 2K − 1, given by the K exponents and the K
coefficients, minus one due to the overall normalization of the orbital.
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In this work, we have introduced and tested another type of contracted orbital, hereafter
indicated with the name of atomic hybrid orbital. It represents a further “drastic”
generalization of the contraction of an orbital that is rather similar to the well-known
expansion in natural hybrid orbitals.77 It is written in the following way:

(6)

The number of parameters here is given by the sum of the number of exponents and of the

coefficients. The number of exponents {ζk,l} is given by , being  the

number of exponents with angular momentum l. The number of coefficients  is

, the minus one being introduced for the normalization. An
atomic hybrid orbital ϕa, related to the atom a, is written as the sum of all the uncontracted
orbitals, of any azimuthal and magnetic quantum numbers, that we want to use to describe
the atom. For the description of an atom, it is generally required to use more than one atomic
hybrid orbital (the number of which will be in the following indicated between brace
parentheses). Both the exponents and the coefficients have to be conveniently optimized,
and in principle, they can be different (especially the coefficients) even for different atoms
of the same type appearing in the same molecule.

These atomic hybrid orbitals somehow remind the well-known natural orbitals,77 but
differently from natural orbitals, our hybrid orbitals are not necessarily orthonormal and are
obtained by straightforward optimization of the energy.

2.2. AGP Wave Function

The Antisymmetrized Geminal Power is a particular pairing wave function that describes the
correlations between pairs of electrons by means of a two-particle geminal function. Initially
introduced to describe spin unpolarized systems,78 it has been generalized in order to
describe also spin polarized systems, i.e., systems with unpaired electrons.57,79 Hereafter,
we limit our description to the case of spin unpolarized systems, and we refer to the work of
Casula and Sorella57 for the generalization to spin polarized systems.

A spin unpolarized system, with zero total spin, has the number N↑ of electrons with spin up
equal to the number N↓ of electrons with spin down and to one-half of the total number of
electrons N. In this case the AGP wave function is

(7)

where  is the antisymmetric operator, and G(xi;xj) is the geminal function, a product of a
spin singlet and a symmetric spatial wave function g(ri,rj):

(8)

It can be shown57 that the spatial part of ΨAGP can be written as the determinant of a matrix

MAGP of dimension N/2 × N/2 whose elements are , with i,j = 1,..,N/2.

The spatial geminal function g is written in terms of single electron atomic wave functions:
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(9)

where a and b are the atom indexes, running from 1 to the number M of atoms in the system,

and μa labels the La local atomic orbitals  used to describe the atom a. The local orbital

 is a function of the difference ria = ri−Ra between the position ri of the electron i and

the position Ra of the nucleus a. The  coefficients in eq 9 represent the weight of the
superposition of different orbitals, analogously to the valence bond representation, or in
other words the contribution of the atomic orbital μa of the atom a and the atomic orbital μb

of the atom b to the formation of the chemical bond between a and b. The set of coefficients

 defines the square matrix Λ of size L × L, where  is the total number of
atomic orbitals defining our basis set. In order to ensure that the total spin is conserved, the

condition  is required, that is, the Λ matrix is symmetric. This implies that the
number of independent parameters in the Λ matrix is L(L + 1)/2. Moreover, if molecular
symmetries are present, it is possible to introduce additional constraints on the elements of
the Λ matrix, that can significantly reduce the number of independent parameters of the
wave function.80

In the following sections, we will consider other functional forms for the determinantal part
of the wave function. The relation between the AGP and those other wave functions can be
easily understood by rewriting the pairing function g(ri,rj) in an equivalent way, where the
Λ matrix is diagonalized. In order to diagonalize Λ, it is convenient to take into account that
the atomic orbitals are not necessarily orthogonal each other, namely the overlap matrix

, and by using a standard generalized diagonalization:

(10)

In eq 10, each column of the matrix P represents a generalized eigenvector of Λ, and the

corresponding eigenvalues  constitute the elements of the diagonal matrix

, sorted in decreasing order of their absolute value:

. Thus, from PTSP = 1, by right multiplying both sides of eq 10

for the matrix PT = (SP)−1 we obtain . Then, by substituting it in eq 9, we finally
obtain that the pairing function is

(11)

where we have defined the orthogonal single particle orbitals:

(12)

which will be afterward named molecular orbitals (MOs). The complete basis set (CBS) for
the pairing function in eq 11 is reached in the limit L → ∞, namely in the limit of
considering an infinite number of MOs.

Zen et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2014 February 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2.3. SD Wave Function

It can be reasonably expected that the leading terms in the expansion of the pairing function

g in eq 11 are provided by a limited set of MOs associated to the eigenvalues  largest in

absolute value . Therefore, by considering a truncated pairing function, where only a
subset n ≪ L of the MOs are used instead of all the L orbitals appearing in eq 11, we have
that, if n is large enough to provide the leading behavior of g, the quality of the parametrical
wave function is not significantly affected. This truncation substantially reduce the number
of variational parameters (working with a n × L matrix instead of the larger L × L matrix Λ).

The lowest number of orbitals that we have to consider to describe an unpolarized system of
N electrons is exactly equal to the number of electron pairs N/2. Thus, within this minimal
approach, the pairing function is

(13)

It can be seen that the antisymmetrization operator in eq 7, applied to the truncated pairing
function in eq 13, singles out only one Slater determinant (SD); therefore, hereafter, this

wave function will be referred as the SD function. We also observe that the MO weights 
affect only the overall pre factor of this Slater determinant, so that their actual values are
irrelevant in this case. This SD function is the equivalent of a restricted Hartree–Fock (RHF)
function, in HF calculations, or of a restricted Kohn–Sham function, in DFT calculations.
However, within a QMC scheme, a Jastrow factor is always introduced in the wave function,
in order to enhance the description of the dynamical correlations between the electrons.
When a Jastrow factor, of the type that will be described in Section 2.5, is applied to a SD
function, it will be referred as Jastrow correlated single determinant (JSD) function.

It has been observed in several cases4,57,65 that a JSD wave function is able to describe the
atoms with an high level of accuracy. However, for several molecular systems the JSD
function is unable to provide an equally accurate and reliable description of several
properties. For these cases, the JAGP function results to provide a much more accurate
description. An important property to be considered for a reliable description of a molecular
system is whether the wave function is size consistent. The JAGP is size consistent33,63 in
all cases where the JSD is size consistent, namely when the spin/angular momentum of the
compound is the sum of the spin/angular momentum of the fragments. A remarkable
exception is when the fragments are S = ½ atoms, such as the H2 and F2, where the JAGP is
size consistent and the JSD is not. In addition to this, there are several other reasons to use
the JAGP rather than a simpler JSD:

i. It is more accurate at a similar computational cost.

ii. It is a more compact representation of the determinantal part within a localized
atomic basis, thus it is simple to implement constraints which avoid to optimize
variationally irrelevant parameters. For instance the symmetries, such as the
translation, can be simply implemented as constraints in the Λ matrix.

iii. For large systems, a big reduction of the variational freedom is possible by
disregarding matrix elements of Λ corresponding to localized orbitals very far in
space.
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2.4. AGPn* Wave Function

In order to improve upon the simple JSD wave function for a more accurate description of
molecules, we have to include in the pairing function g a number n of MOs larger than N/2,
n = N/2 corresponding to the JSD function. Since a JSD function provides an accurate
description of the atoms, a natural criterium for the choice of the number of MOs is by
requiring that, when the atoms are at large distances, we cannot obtain an energy below the
sum of the JSD atomic energies. The number n* of MOs defined in this way is determined
by the requirement that

(14)

where A1,…,AM identify the M atoms forming the system, N↑(Aa) is the number of spin up
electrons for a description of the atom Aa, and m is equal to the minimum number of
identical atoms in the system (for further details and for a discussion of the case of polarized
systems see Marchi et al.65).

Therefore, the pairing function associated to n* is defined as

(15)

The Jastrow correlated AGP function obtained by the antisymmetrization of the geminal gn*
will be hereafter indicated with JAGPn*.65

2.5. The Jastrow Factor

The bosonic Jastrow term, J = eU, represents a compact and efficient way to introduce
explicitly the electronic correlation in the wave function, because it depends directly on
distances between electrons. Several different implementations of the Jastrow term are used
in the QMC codes. The Jastrow that we have used in this work consists of several terms that
account for the 2-body, 3-body, and 4-body interaction between the electrons and the nuclei.
The exponent U of the Jastrow factor can therefore be conveniently written as the sum of
three independent functions:

(16)

The leading contribution is given by  that is a homogeneous two electron interaction
term. It depends only on the relative distance between pairs of electrons, and it improves the
electron–electron correlation, besides satisfying the electron–electron cusp condition for
unlike spin. The cusp condition for like spin is not satisfied, as this would lead to spin
contamination.57,81 However, this is a minor problem because the probability for like spin
electrons to be close is very small, because of the Pauli principle. The functional form that
we have used for Uee is

(17)

where rij = ∥ri − rj∥ is the distance between electrons i and j, and u2(x) = (1 − e−b2x)/(2b2) is
a function of the variational parameter b2.
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The term Uen is a one electron interaction term which improves the electron–nucleus
correlation and satisfies the nuclear cusp condition. Its functional form is

(18)

where the vector ria = ri − Ra is the difference between the position of the nucleus a and the

electron i, ria = ∥ria∥ is their distance, Za is the electronic charge of the nucleus a,  is the
number of atomic orbitals  that are used to describe the atom a (they are similar to the

 orbitals used for the determinantal part),  are variational parameters and the function
u1(x) = (1 − e−b1x)/(2b1) is used to satisfy the electron–nucleus cusp condition, and it
depends parametrically on the value of b1.

The term Ueen[n] is an inhomogeneous two electron interaction term, and it has the following
form:

(19)

where the  are the same atomic orbitals that appear also in Ueu, second term in the right-

hand side of eq 18, and  are variational parameters. In eq 19 are included both the three
body e-e-n interactions and the four body e-e-n-n interactions, for a = b and for a ≠ b,
respectively.

3. QUANTUM MONTE CARLO METHODS

The expectation value of an observable , with corresponding quantum mechanical operator

, is evaluated as , involving the computation of 3N-dimensional
integrals. Differently from HF or post-HF approaches, with QMC wave functions these
integrals do not factorize, due to the presence of the Jastrow factor. In Section 3.1, we
review some aspects about the stochastic approach adopted to evaluate these integrals within
VMC. In Section 3.2, we discuss the specific case of the energy evaluation, in Section 3.3
the variational optimization of the wave function parameters, in Section 3.4 the force
evaluation, and in Section 3.5 the reweighting technique used to have a well behaved
expectation value of the force for open systems (namely, having finite variance). Next, in
Section 3.6, we discuss the dipole and quadrupole evaluations. Finally, in Section 3.7, we
briefly review some aspects of the projection Monte Carlo approaches.

3.1. Stochastic Evaluation of the Expectation Value of an Observable

VMC is a stochastic method for the estimation of the expectation value  associated to a
parametric wave function Ψ. The method is based on the fact that any expectation value 
can be rewritten as

(20)
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where  is the so-called local value of the operator  calculated in

the specific electronic configuration ,  is an appropriately chosen probability density

distribution determined by a known positive weight  up to a normalization constant,

namely  and  represents the expectation value

E[f] of a function  that is calculated by sampling over a probability distribution  the

function . The most common and simple choice for the positive weight W is

, in which case the denominator in eq 20 is identically one and the expression
for  simplifies in

(21)

which is usually referred as standard sampling. Notice that in quantum Monte Carlo it is not

necessary to know the rather involved normalization constant  to generate

configurations according to the probability distribution . Only weight ratios

 between different configurations are necessary. This makes the variational
quantum Monte Carlo computationally feasible, as long as the weight W is known and easy
to compute.

Within VMC, the expectation values appearing in the right-hand side of eq 20 or eq 21 are
estimated statistically. In particular, in eq 20 the desired expectation value  is calculated

as (E(O))/(E(D)), being the nominator  and the

denominator . Both the numerator and the denominator can be

computed by generating a finite set of S independent points , distributed according

to the probability density distribution  and typically generated with the Metropolis
algorithm. Then, one can estimate E(O) and E(D) by standard averaging an appropriate
function:

(22)

For a large but finite sampling S, the estimates AS[f,P] for the numerator and the
denominator are affected by very correlated stochastic errors σS[f,P], therefore special
techniques are required to evaluate how this error affects the uncertainty in their ratio,
whenever a nontrivial reweighting technique is employed. The standard deviation σS[f,P] is
defined as the square root of the variance of the estimate AS[f,P]. If we assume the
applicability of the central limit theorem, which in particular requires that the second

moment of the probability distribution of  exists, we have that the
probability distribution for the estimate AS[f,P] is normally distributed with mean E[f] and
standard deviation:

(23)
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For the sake of completeness, it should be mentioned that the applicability of the central
limit theorem depends on some properties of the probability distribution of

. The fact that the second moment exists only ensures the applicability
of the theorem in its most general form, where the normality of the distribution is reached in
the limit of infinite sampling S → ∞. For a finite sampling S < ∞ the normal distribution is
not generally satisfied, as it was indeed observed by J. R. Trail82 in the form of heavy tails.

Observe in eq 23 that the margin of uncertainty for the estimate of E[f] using AS[f] goes to

zero in the limit of infinite sampling S → ∞. Moreover, if  is
finite, we have that the uncertainty σS[f,P] on AS[f] converges to zero as 1/√S, which is a
very favorable scaling considering that there is no dependence on the dimensionality of the

space (3N) where the sample points  are defined.

Equation 23 also sheds lights on the importance of the probability density function P. A bad

choice of W leads to a variance  that is not even finite, whereas

a good W yields a finite value of , as we will see in the

following sections. Moreover, whenever the estimator  is independent of  we see
an important property in the calculation of physical expectation values, namely that, for any
choice of the weight W, the evaluation of the ratio:

(24)

yields always the same value , namely has zero variance, regardless of the fact that both
the numerator and the denominator may have finite variances. This highlights once more the
fact that a method like bootstrap or jackknife83,84 is necessary to exploit the correlation
betweean the numerator and the denominator in the evaluation of the standard deviation
corresponding to the physical average .

In order to simplify the notation, in the following sections the functional dependence of the
wave function Ψ, the local operator OL and the density probability distributions P and Π on

, will be left implicit.

3.2. Energy Evaluation

The most important quantity that is evaluated in VMC is the energy. Considering eqs 20 and
21, the energy evaluation is determined by the values of the local energy

 being  the Hamiltonian operator. For instance, using the standard
sampling technique, eq 21, the VMC evaluation of the energy  for the wave function Ψ,
involves the calculation of

(25)

where the integration is over the 3N Cartesian coordinates  of the electrons.

If we consider a wave function Ψi, which is an eigenfunction of the Hamiltonian with
eigenvalue Ei, the corresponding local energy is HL[Ψi] = Ei independently of the point 
where it is evaluated. This is true in particular for the ground state (GS) of the system, that is
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typically the target of electronic structure calculations. This shows that, in case we are using
an exact eigenfunction of the system and the standard sampling, the zero-variance principle
is satisfied. Moreover, it can be seen that also by sampling with a general weight W, as in eq
20, an exact eigenfunction always fulfills the zero-variance principle.

However, in proximity of the nodal surface the local energy HL is divergent, unless we are
sampling an exact eigenfunction of the Hamiltonian. Indeed, if an electron in the system is
close, say at a distance δ ≪ 1, to the nodal surface, we have that the wave function Ψ
vanishes linearly with this distance, that is, Ψ ∝ δ, but for a generic Ψ that is not an exact
eigenfunction of , we have that ; therefore, the local energy diverges as HL ∝ δ−1.

The application of the standard sampling, eq 21, leads to the integral , which in

the proximity of this divergence is ; therefore, it is well behaved. In order to have a
stochastic error on  that converges to zero as 1/√S, it is also necessary that the variance
is well behaved. The calculation of the variance for the standard sampling leads to the

integral , which in the proximity of the nodal surface is ; therefore, the
variance of the energy is also finite.

However, the standard sampling approach is problematic for the estimation of the nuclear
forces, as it will be shown in Section 3.4, because its variance is not finite due to the
divergences in proximity of the nodal surface. In order to overcome this problem, we have
sampled both the energies and the forces using eq 20, with a density probability distribution
P that is proportional to Ψ2 everywhere except in proximity of the nodal surface, where its
value is a nonzero constant. The details of this sampling function P will be given in Section
3.5, and the method is called reweighting sampling. By using the reweighting sampling a
stochastic evaluation of the nuclear forces as well as of the energy remains well behaved.

It is worth mentioning that other divergences can exist in the local energy, besides the one in
proximity of the nodal surface, namely in the following cases: (i) the electron–nucleus
coalescence, (ii) the electron–electron coalescence, and for open systems also (iii) for
electrons approaching infinity. However, for the wave function we have considered in this
work, the first two cases are already managed by the Jastrow factor, through the terms in eq
18 and eq 17 that satisfy respectively the nuclear-electron and the electron–electron cusp
conditions. The divergence (iii) will be discussed in Section 3.5.

3.3. Wave Function Optimization

According to the variational principle, the exact ground state energy EGS represents the
lowest bound for any variational wave function, including the parametrized wave functions
that are considered in VMC calculations. The set of parameters  of the variational wave
function are therefore optimized in order to minimize the corresponding variational energy

. As a consequence of the fact that the wave function is approaching to an eigenstate,
also the variance of the energy decreases and approaches zero.

In order to optimize the variational parameters , we use in this work the stochastic
reconfiguration33,52 method (SR) and the more recent linear method61,85,86 based on an
efficient estimate of the Hessian matrix (SRH). Both SR and SRH (for the details we refer to
the cited references) are iterative methods where the variational parameters are evolved by

incremental changes  using the generalized force 
acting on the parameters, and the matrix S, whose elements are

, that takes into account the correlation
between the parameters in the wave function. In SRH also partial information of the energy
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second derivatives is taken into account, and the method is generally faster and more
efficient.

In particular, within SR, a generic parameter αk is changed at each iteration by

, being Δt an appropriate small number. In case S is the identity matrix,
the SR optimization would correspond to a simple steepest descent optimization of the wave
function. The computational advantage of SR over a simple steepest descent, in terms of
velocity of convergence, has been observed in several cases,87 and it is roughly proportional
to the condition number of the matrix S. Since in a correlated wave function the nonlinear
coupling between different variational parameters makes this matrix necessarily very ill
conditioned (with high condition number), the gain in the optimization may be often drastic,
that is certainly true for large number of variational parameters. A recent work88 provides a
simple geometrical interpretation of the advantage of the SR optimization over the steepest
descent. Indeed, Mazzola et al.88 have shown that the matrix S is actually the metric, to be
intended in a differential geometry sense, where the parametrized normalized wave function

 lives. According to this point of view, it follows that SR can be interpreted as
a steepest descent in this curved space, where the parameters are moved in the direction of
the force along locally orthogonal and independent directions.

3.4. Force Evaluation

If we assume the Born–Oppenheimer approximation and a classical description of the
nuclei, the 3-dimensional force acting on atom a is, by definition:

(26)

where ∇a ≡ d/(dRa) is the gradient relative to the Cartesian coordinates Ra of the nucleus a,
and  is the variational energy, as written in eq 25, associated to the electronic wave
function Ψ for a configuration  of the atoms. The terms in  that are functionally

dependent on the atomic coordinates are the Hamiltonian  and the wave function

, which has an implicit dependence on  in the p parameters

, which have to be optimized for each  in order to minimize the
variational energy, and also an explicit dependence, if Ψ is defined using a local basis set, as

in our work. Therefore the local energy  that appears in 
depends on  both through the wave function and the Hamiltonian.

By substitution of eq 25 into eq 26, it is straightforward to obtain the following analytical

expression for the force:

(27)

where the three terms that constitute the total force: , and  are respectively given
by the explicit dependence on Ra of the local energy and of the wave function, and the
implicit dependence on Ra of the parameters of the wave function.
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The term  is, in principle, the most complicated to be evaluated, because of this implicit
dependence which makes the derivative ∂αk/∂Ra difficult to evaluate. Fortunately, if the
values of  correspond to a minimum for the energy , then  for the

Euler condition, and . For this reason the term  has been neglected in our
calculations.

The other two terms,  and , are usually referred to as the Hellmann–Feynman term

and the Pulay term, respectively. Actually the Hellmann–Feynman term  resembles the

term  that comes from the application of the Hellmann–Feynman theorem,

although it is not exactly the same because in general . Moreover, in VMC
calculations, the Hellmann–Feynman theorem is not even applicable, because Ψ is neither
normalized nor an eigenstate of . But in the limit case where Ψ is an eigenstate of , and

consequently HL = E[Ψ], the Pulay term  is zero and the only contribution to the force

comes from . As a consequence of this, it is expected that the more Ψ approaches an

eigenstate of , the lower is the  component of the force.

The analytical expression of the force in eq 27 is correct and is significantly more accurate
and efficient than the corresponding expression based only on the Hellmann–Feynman
contribution, as observed by Sorella and Capriotti.45 The efficiency is defined as the inverse
of the computational time to reach the required stochastic precision, and in the specific case
of the water dimer studied in ref 45, an improvement of 2 orders of magnitude was obtained.
However, Sorella and Capriotti showed that a further improvement of about 1 order of
magnitude is possible using the analytical expression with the differential space warp

coordinate transformation (SWCT). Therefore, in this work we have used these SWCT
analytical forces, that are obtained as follows.

SWCT was originally introduced by Umrigar41 for an efficient calculation of the forces but
using only finite-difference derivatives. Within SWCT, a displaced Da of the nucleus a is
followed by a displacement of the electrons. Each electron i is translated, in the direction Da,
of a quantity that depends on its distance ria =∥ri – Ra∥ with the nucleus a. If ria ~0 the
displacement of electron i is ~Da; if ria → ∞ the displacement is ~0. In this way, the
electronic coordinates  mimic the displacement of the charge around the nucleus Ra. More
in detail, following refs 45 and 80, SWCT is described by the following transformation of
the nuclear and electronic coordinates:

(28)

for b = 1,…,M and i = 1,…,N. In the above equation the weight that quantifies the amount of
electronic displacement is chosen to be:

(29)

according to refs 40, 45, and 80.

The variational energy  calculated in the nuclear coordinates , for an
infinitesimal displacement Da, considering also that the displacement of the parameters

 is negligible at the first order as discussed previously, is given by
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(30)

where the integrated electronic coordinates  can be substituted by the SWCT expression in

eq 28, and . We obtain in this way an expression that we call .

The SWCT analytic force  is then obtained by differentiating the energy  over
Da, and evaluating it at Da = 0:

(31)

It has to be noted that, in this case, we have also an implicit dependence of the electronic
coordinates on Da, yielding additional force terms arising from the derivative of the wave
function over the electrons coordinates, ∂Ψ/∂ri, and to the derivative of the Jacobian of the
SWCT. The calculation in eq 31 leads straightforwardly to an expression for the force
analogous to eq 27 where the Hellmann–Feynman and the Pulay terms can be easily
identified:

(32)

Indeed, the above expression is almost identical to eq 27 with the difference that we have

introduced here a generalized gradient , defined in the following way:

(33)

for the Hellmann–Feynman and the Pulay terms, respectively.

As discussed exhaustively by Sorella Capriotti,45 the implementation of the computational
technique of the adjoint algorithmic differentiation (AAD) allows a computationally very
efficient evaluation of all the terms appearing in eq 31, that roughly can be evaluated in ∝
N3 operations. This technique leads to a computational cost for the evaluation of the energy
and all the force components amounting to about four times the time required for the
calculation of the variational energy alone. The computational gain is substantial, especially
if compared with finite difference methods on large systems.24,45

At this point, we have the exact expressions for the analytical forces and the technical
instruments to calculate all the components efficiently. However, there is still a point that
has to be addressed: do these expressions lead to quantities that can be efficiently evaluated
within a stochastic approach, for a wave function Ψ that in general only approximates the
exact GS solution? As discussed in Section 3.1, this implies that we have to choose the
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appropriate weight W allowing the stochastic evaluation of the expectation value of the
force; that is, the variance in eq 23 has to be finite.

Let us start considering the terms containing divergences, which could lead to an infinite
variance, starting from the Hellmann–Feynman force. We can easily recognize the two
problematic terms ∂HL/∂Ra and ∂HL/∂ri, respectively in the cases of electron–nucleus and of
electron–electron coalescence. Indeed the derivatives of the potential energy ∂V, included in

∂HL, contains terms which would give an infinite variance, namely  for the

electron–electron distance δee ≪ 1 and  for the electron–nucleus distance δen

≪ 1. However, in our case, we can handle these divergences because we are using wave
functions that satisfy the cusp conditions, producing a divergence in the kinetic term of the
same amount but of opposite sign with respect to the divergence of the potential,
regularizing in this way the divergence of HL and of its derivatives.

Nevertheless, ∂HL/∂Ra and ∂HL/∂ri remain divergent in proximity of the nodal surface. We
have already mentioned in Section 3.2 that in general Ψ ∝ δ and HL ∝ δ−1 at a distance δ ≪
1 from the nodal surface, hence ∂HL ∝ δ−2. Using the standard sampling technique these

divergences would lead to a variance that in proximity of the nodal surface is ,
therefore unbounded. However, with the reweighting sampling method described in Section

3.5, the variance becomes ; thus, its divergence is completely under control and the
variance is finite.

Also, in the Pulay force there is a similar problematic behavior in proximity of the nodal
surface, because both HL and ∂ log ∣Ψ∣ diverge as δ−1, giving an infinite variance if the
standard sampling is used. The use of the reweighting sampling regularizes also this term,
giving a finite variance.

3.5. Reweighting Method for Open Systems

Attaccalite and Sorella proposed a reweighting method to solve the infinite variance issue in
the proximity of the nodal surface by using a different probability distribution

, defined in terms of a guiding function , rather than the

standard sampling .

The guiding function  is defined in terms of the wave function  as follows:

(34)

where  is proportional to the distance δ from the nodal surface, for δ ≪ 1, and vanishes
in the same way  does, namely . The  is the function that regularizes
ΨG in the vicinity of the nodal surface, namely for , and it is defined as

(35)

where the nontrivial regularization for  is introduced in order to satisfy the
continuity of the first derivative of . The guiding function  defined in this way

and its corresponding probability density function  define a reweighting
factor
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(36)

that vanishes in the proximity of the nodal surface, namely , whereas the

probability density function  remains constant but finite. This
 slightly enhances the sampling in the vicinity of the nodal surface where 

vanishes. So far, our reweighting method removes the singularities up to δ−2 and provides
finite variance.

The regularization scheme which Attaccalite and Sorella44 proposed to evaluate R(x) is
based on the matrix A that appears in the determinantal (antisymmetric) part of the QMC
wave function, eq 1. For the AGP wave functions used in this work, we can identify the
matrix A with the MAGP described in Section 2.2. As soon as the configuration of electrons
approaches the nodal surface, det(A) → 0 and the elements of the A−1 grow extremely large.
According to this feature, the regularizing is chosen to be controlled by A−1

ij in the
following way:

(37)

However, within this scheme eq 37 does not take into account the case of open systems such
as isolated atoms and molecules (type 4 in ref 82). As an electron i samples a region very far
from the center of mass r0 of the nuclei, namely ri0 = ∥ri – r0∥ ≫ 1, the decay of the many-
body wave function is dominated by the determinantal part as the Jastrow correlation is
identically one in this limit. A simple inspection shows that det(A) behaves as

, where  is the minimum exponent in the Slater
[Gaussian] basis. The old regularization in eq 37 vanishes clearly in the same way. To verify
this behavior it is enough to apply the Rouché–Capelli theorem stating that the inverse

matrix elements  can be expressed with the ratio of a cofactor matrix determinant (det
Cji) and the determinant itself, namely:

Now, we immediately arrive to the bad conclusion that the probability distribution  is
ill defined as it converges to a constant in the limit when ri0 ≫ 1, because,  in the
same way as  (as discussed above), and the resulting distribution  is not
normalizable. In practice, this means that the random walk for long enough simulation will
be unstable, and all electrons are pushed to very large distance from the atoms, providing
unpredictable and certainly biased results.

In order to overcome this clear instability, we replace the A in eq 37 with A’. The new
matrix A’ is defined by changing its asymptotic behavior for large ri0:

(38)
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where z can be any positive value. In fact, the new regularization will act in the same way

close to the nodes of Ψ, whereas when ri0≫ 1, det(A’) decays as  for a
Gaussian basis, and for a Slater basis, if , it decays as  and
diverges otherwise. Therefore, , by using this new definition of , will decay as
exp(−2zri0) in the former cases, or as Ψ2 itself in the latter case, yielding in any case a
perfectly defined and normalizable distribution.

In practice, if z is too small, A’ behaves too much like A and the instability remains. On the
other hand, if z is too large, the probability distribution , as we have seen, remains too
close to the original one ≃ Ψ2 for electron-ion distances ≫1/z, and therefore in this region
the singularities in the nodal surfaces remain, and the regularization is not effective also in
this case. Therefore, with this simple trick, and a reasonable value of z ≃ 1/ξ, where ξ is the
linear dimension of the important region of nonvanishing charge density, this numerical
instability, present in open systems, is readily removed, and the singularities around the
nodal surfaces are perfectly controlled, because the proposed regularization works exactly as
the previous one44 adopted for PBC. Indeed, if electrons are close to this nodal surface
det(A) = 0 and ri0 are all finite, the following equality

(39)

implies that the new regularization works as well as the previous one, being the factor

 just an irrelevant term.

3.6. Charge Density and Dipole and Quadrupole Evaluation

Several important properties of the molecular systems, such as the dipole and the
quadrupole, derive from the charge density distribution:

(40)

where the first term in the right-hand side is due to the nuclear charges Za centered in their
Cartesian coordinate Ra, in agreement with the Born–Oppenheimer approximation and
classical nuclei. The second element in the right-hand side, which is due to the electronic
charges, is averaged over the distribution of the electrons Π ∝ Ψ2.

From the definition in eq 40 of the charge density, it is straightforward to obtain the
expression for the dipole D:

(41)

(42)

and for the traceless quadrupole tensor:

(43)
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(44)

where α and β label the three Cartesian axes and δαβ is the Kronecker’s delta.

The dipole depends on the choice of the reference frame, unless the total charge of the
molecule is zero, and the quadrupole depends on the choice of the reference frame, unless
the dipole is zero. For the case of the water molecule, considered in this paper, the total
charge is zero, but the dipole is not zero. Therefore, we have to define the reference frame,
in order to compare with the experimental and other calculated values of the quadrupole.

The electronic part of the dipole and of the quadrupole have been calculated by averaging
within a VMC scheme the quantities of interest. We are aware that more sophisticated
improved estimators for the density and related quantities are available in literature;50,89

however, they are not necessary for this work.

3.7. Energy Evaluation by Fixed Node Projection Monte Carlo

Using the projection Monte Carlo approaches, it is possible to access the lowest possible
energy, with the constraint that Φ has the same nodal surface of an appropriately chosen
guiding function Ψ (fixed node approximation).4,5 Therefore, it is of fundamental
importance to choose a guiding function with a reliable nodal surface, and for this purpose,
it is usually considered the variational wave function with minimum possible energy within
a given ansatz.

Among the different projection methods, we have considered in this work the lattice
regularized diffusion Monte Carlo.13,14 LRDMC is based on the spatial discretization of the
molecular Hamiltonian on a lattice of mesh size a, and it resorts to the projection scheme
used also in the Green function Monte Carlo algorithm.11,12 This method has two very
interesting properties: it maintains its efficiency even for systems with a large number of
electrons;14 and it preserves the variational principle even when used in combination with
nonlocal pseudopotentials.14 The error induced by the finite mesh size a is analogous to the
time step error appearing in standard DMC calculations. It can be controlled by performing
several calculations with different values of the mesh a and finally extrapolating to the
continuum limit a → 0.

4. COMPUTATIONAL DETAILS

QMC Package

The QMC energy and force calculations have been carried out using the TurboRVB package
developed by S. Sorella and co-workers,90 which includes a complete suite of variational
and diffusion quantum Monte Carlo calculations on molecules and solids and for wave
function and geometry optimization.

Description of the Core Electrons

The results that are presented here have been obtained both by all electrons (AE)
calculations, and by calculations where the two core electrons of the oxygen atom have been
described using a pseudopotential. In order to appreciate the reliability of the calculations
with the pseudopotential versus the AE calculations, two different pseudopotentials have
been used and compared in this work: the scalar-relativistic energy consistent
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pseudopotential (ECP) of Burkatzki et al.91 and the smooth relativistic norm-conserving
pseudopotential (NCP) of Trail and Needs.92

Wave Function Ansatzes

In this work, we have considered several many-body wave functions, which have been
constructed starting from the terms described in Section 2:

JAGP: a Jastrow correlated AGP wave function, with the Jastrow factor and the
determinanatal part described in Section 2.5 and in Section 2.2, respectively.

JSD: a Jastrow correlated single determinant wave function, with the Jastrow factor and the
determinanatal part described in Section 2.5 and in Section 2.3, respectively.

JAGPn*: a Jastrow correlated constrained AGPn* wave function, with the Jastrow factor
and the determinanatal part described in Section 2.5 and in Section 2.4, respectively.

JDFT: combination of the Jastrow factor described in Section 2.5 with a single determinant
wave function, obtained by the Kohn–Sham orbitals of a DFT calculation within local-
density approximation (LDA) as described in ref 93 and implemented in the TurboRVB

package.90 This wave function, also studied in ref 90 is actually a JSD, but it is called
differently to highlight that in JDFT, at variance of JSD, the determinantal part has been
optimized by a DFT calculation and only the parameters of the Jastrow term have been
variationally optimized by QMC.

The Basis Set

As discussed in Sections 2.2–2.5, both the determinantal and the Jastrow part of the wave
function use atomic orbitals (see description in Section 2.1). The number and the type of the
atomic orbitals is a nontrivial choice for QMC calculations, as for other quantum chemical
methods, because if the basis set is too small the results are biased. Anyway, in QMC, a
large basis set introduces a large number of parameters that are computationally expensive
to optimize, leading, in the worst cases, to instabilities in the optimization. In this work, the
basis set convergence for the Jastrow and the determinantal terms is studied.

The determinantal term is functionally similar to the wave functions used in HF, DFT, or
post-HF calculations; therefore, we constructed and used several basis that are inspired by
some of the standard basis used in quantum chemistry and, in particular, the Dunning’s
basis.94,95 However, the peculiarities of the QMC wave functions, namely the presence of
the Jastrow term and the use of particularly smooth pseudopotentials, allows a large
reduction of the size of the basis set and, as a consequence, the number of parameters
required for the optimization of the energy. For instance, the largest exponents (suitable to
correctly describe the core) can be eliminated, because they are already described with a
reasonable accuracy by the electron–nucleus interaction term in the Jastrow, satisfying
exactly the electron-nucleous cusp condition. Conversely, the most diffusive Gaussian
exponents can be safely replaced by very few but tunable STO orbitals (one for each angular
momentum) introduced in the atomic basis of the determinantal part. The list of the basis
sets considered in this work for the determinantal part, with the source basis, the filter
criteria, and the number of parameters introduced by each basis are reported in Table S1 of
the Supporting Information. Most of the orbitals are GTO, as the source basis are GTO, but
in some cases, an extra STO orbital was introduced, in order to better describe the diffusion
part of the orbital and to have the theoretical long-range exponential decay of the wave
function. Clearly, the filter is slightly different if the pseudopotential is or is not used. The
basis set convergence for the determinantal part is discussed in Section 5.2.
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The choice of the basis set for the Jastrow term is more challenging, because this term is a
peculiar feature of the QMC calculations, and we do not have a preoptimized or
precharacterized basis coming from other methods. Moreover, the choice of a large enough
basis set for the Jastrow is very important for the JAGP and JAGPn* ansatzes, not only for
the improvement in the dynamical correlation of the wave function but also because only in
the limit of a complete Jastrow factor the unphysical charge fluctuations of the AGP are
suppressed and the wave function becomes size consistent, as discussed by Sorella et al.33

and recently by Neuscamman.63 In this work, we only tested several GTO atomic orbitals
for the Jastrow, both uncontracted, contracted, and with hybrid contraction. The
performances of the different choices are discussed in Section 5.1.

Wave Function Parameters

The different wave function ansatzes used in this work depends on several parameters,
which have to be optimized variationally as explained in Section 3.3. Four main classed of
such parameters can be identified:

1. the coefficients and the exponents appearing both in the determinantal basis set

 and in the Jastrow basis set 

2. the elements of the Jastrow matrix  of the inhomogeneous electron–electron
term in eq 19

3. the Jastrow parameters b1 and b2 of the homogeneous one-electron and two-
electrons interaction terms, respectively, in eq 18 and in eq 17

4. for the JAGP ansatz: the elements of the Λ matrix, see eq 9; or for the JSD and the
JAGPn* ansatz: the leading eigenvectors and eigenvalues of Λ, that is, the MOs
and their weights, see eq 11

As already mentioned, for a JDFT ansatz only the Jastrow terms have to be variationally
optimized, because the determinantal part is directly obtained by a DFT-LDA calculation.
However, the remaining ansatzes, namely the JSD, JAGPn*, and JAGP, differ by the
number and kind of parameters to be optimized; thus, also the optimization schemes are
different. The optimization protocols are described in the Supporting Information, Section 1.

It has to be observed that the exponents appearing in the determinantal part are already
preoptimized by other computational approaches, although their values are not the optimal
ones for a QMC calculation, as they can be further improved by minimizing the variational
energy. Their optimization is often quite challenging due to the nonlinear way they
determine the wave function. Consequently, they have to be optimized using a large
statistics, and by moving slowly and carefully during the optimization. If they are not
optimized, the energy minimization is more stable and easier, and this generally leads to a
computational gain. For this reason, both the cases are considered in this work, and they are
marked using the following labels:

Opt:noZ: the wave function optimization was carried on the determinantal matrix,
the contraction coefficients in the determinantal basis set, and all the Jastrow terms,
including the exponent values in the Jastrow basis

Opt:all: all the parameters are optimized, including the exponents in the
determinantal part

Reference Structure

The reported single point calculations are referred to the experimental structure of the water
molecule,68 having the oxygen–hydrogen distance of rOH = 0.95721(3)Å and the angle
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between hydrogen–oxygen-hydrogen of ϕHOH = 104.522(5) degrees. Moreover, we have
chosen the reference frame of the center of the mass (this is relevant for the quadrupole
calculation). The water molecule is in the xy-plane, with the bisector of the HOH angle
along the y-axis, with the oxygen in the y-axis and with negative value, and the hydrogens
with positive y values. Thus, for symmetry reasons the only non negative coordinate of the
dipole is the one along the y axis, and it is positive because the oxygen is more
electronegative than the hydrogens.

Evaluation of the Equilibrium Structure and the Frequencies

In Section 5.4, we will report the values of the nuclear configuration at the minimum of the
potential energy surface (PES), of the harmonic vibrational frequencies and of the
anharmonic corrections, relative to VMC calculations for several different wave function
ansatzes. The accurate determination of this quantities, and in particular of the frequencies,
is challenging for methods like QMC, that are affected by a stochastic error that is several
orders of magnitudes larger than the numerical error present in nonstochastic methods. In
order to control the propagation of the errors on the predicted quantities, it is important to
adopt a method that takes explicitly into consideration the presence of the stochastic error. In
a recent work,51 some of us have shown how this can be achieved, by performing several
single point calculations of the energies and the forces in a grid centered around a good
guess of the minimum of the PES. The values of the energies or the forces are then used to
perform a multidimensional fit of the PES, to obtain a better estimate of the minimum and of
the vibrational properties. The choice of the grid is very important in this approach, in order
to have reasonably small stochastic errors of the frequencies, of the order of a few cm−1. The
results reported in Section 5.4 are obtained using a grid of 59 points, and the displacements
between these points are Δr = 0.08 a.u. for the OH distance and Δϕ = 10 degrees for the
HOH angle (corresponding to “mesh-4” in ref 51). The experimental configuration of the
molecule was taken as the initial guess of the PES structural minimum, which has a residual
force of the order of 10−3 a.u. Although the same wave function is used to describe each of
the 59 point in the grid, the nuclear coordinates are changed and consequently the wave
function parameters have to be optimized independently. This has been done in a
computationally convenient way by taking as initial guess the already optimized wave
function for the configuration at the center of the grid. Moreover, we have carefully checked
for some points in the grid that this procedure does not introduce any bias, by comparing
with a standard optimization “from scratch”.

5. RESULTS AND DISCUSSION

Irrespectively of the ansatz (JDFT, JSD, JAGPn*, or JAGP), in a QMC wave function two
distinct and adequately large basis sets have to be chosen, respectively for the determinantal
part and for the Jastrow factor. Too small bases may introduce a bias on the results, but too
large bases make the wave function difficult or impossible to optimize, due to the stochastic
nature of the approach and because the parameters become highly correlated. In Section 5.1,
we discuss the basis set convergence for the Jastrow factor, while in Section 5.2 we discuss
the convergence for the determinantal part, in the different ansatzes. In Section 5.3, we
discuss the ionization and the atomization energies, and finally, in 5.4, we consider the
properties of the PES obtained with different QMC approaches.

5.1. Basis Set Convergence for the Jastrow Factor

Since the Jastrow factor is peculiar of the QMC wave functions, little help for the choice of
the basis set for its inhomogeneous part comes from other computational methods.
Therefore, we have tested several basis for the Jastrow factor, in a wave function whose
determinantal part was kept fixed. The considered ansatz is a JAGP function, with ECP
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pseudopotential for the two core electrons of the oxygen atom, and with a basis for the AGP
part that is O(4s,4p,1d)/[2s,2p,1d], H(4s,1p)/[2s,1p], where the initial guess for the values of
the exponents was inspired from the Dunning’s cc-pVDZ basis. Despite this basis is
relatively small, it is able to provide reliable results, as shown for instance in Zen et al.51 for
the equilibrium structure of the water molecule.

We have considered uncontracted, contracted, and hybrid atomic contracted basis, both with
the optimization schemes opt:noZ and opt:all. The complete list of all the obtained values
for the energy, the variance, the dipole, and the quadrupole are reported in the Supporting
Information, in Tables S2 and S3. Looking at the values of energy and variance, it is quite
evident that the uncontracted orbitals in the Jastrow provides much better results than the
contracted or the hybrid atomic contracted orbitals. This is probably due to the fact that the
3-body term, see eq 19, gain a considerable variational advantage by the flexibility of an
uncontracted basis. Thus, the choice of the optimal basis for the Jastrow factor should be an
uncontracted basis. Focusing only on the latter, in Figure 1, we show the basis set
convergence of the energy, the variance, the dipole and the Qxx component of the
quadrupole.

Several observations can be done. First, it is clear that the optimization of the exponents,
opt:all, leads to a large improvement in the wave function, as reflected in all the properties
considered. This improvement is particularly significant if the basis is rather small, whereas
it is relatively small for a large basis. Second, it is interesting to note that the presence of the
d orbitals in the oxygen basis of the Jastrow (highlighted with a gray background in the
figure) highly improves the dipole and the quadrupole. Third, we can observe the expected
correlation between the energy and the variance: a lower energy is connected to a lower
variance (see also Figure S1(a) of the Supporting Information). A similar correlation is also
expected with the charge distribution, and with the dipole in particular. A general
improvement of the dipole is observed with the large basis sets, with low variances and low
energies, but the convergence seems much more noisy than in the case of the energy (see
Figure S1(b) of the Supporting Information). This is due to the fact that the dipole is not a
function of the total energy; thus, the improvement in the variational energy, which is
enforced during the wave function optimization, does not necessarily imply an improvement
in the charge distribution.

The Jastrow basis that we have selected for the following calculations is O(3s,2p,1d), H(2s,
1p), corresponding to the results highlighted in yellow in Figure 1. It represents an optimal
balance between the accuracy of the results and the number of variational parameters, so the
computational cost and the stability of the optimization.

5.2. Basis Set Convergence for the Determinantal Part and the Wave Function Ansates

Having defined the basis set for the Jastrow factor, we investigate now the different wave
function ansatzes, namely JDFT, JSD, JAGPn*, and JAGP, with different description of the
core electrons of the oxygen: using the ECP91 or NCP92 pseudopotentials, or all electron
calculations. As for the Jastrow factor, also here, we have explored several basis sets for
each wave function type, studying the basis set convergence. The complete list of the
attempted combinations is reported in the Supporting Information, where in Tables S4 we
show the convergence of the energy and the variance and in Tables S5 and S6, we consider
also the dipole and the quadrupole. Some interesting aspects can be observed from these
results. Some features were already observed in the previous section; for instance, the
advantage of the opt:all scheme versus the opt:noZ one, and the correlation between energy,
variance, and dipole (see Figures S2 and S3 of the Supporting Information).
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A selection of the results, representing the largest basis sets (that we can consider at
convergence) are reported in Table 1, compared with others highly accurate ab initio

calculations and the experimental evaluations. Considering both the JSD/ECP and the
JAGP/ECP results, with uncontracted, contracted, and hybrid atomic basis, for the basis set
convergence the computational advantage of the latter compared with the others can be
appreciated. Indeed, calculations with large basis sets are problematic because with the
increase of the number of variational parameters a large statistics and computational time are
required to obtain a stable optimization. It is therefore crucial to reduce the number of
variational parameters in the wave function without missing the important polarization and
diffuse terms.

A parallel comparison between similar wave function ansatzes in Table 1 shows that using
the ECP pseudopotential leads to lower variances than using NCP pseudopotentials.
Following the same trend, the dipoles obtained with ECP are slightly closer to experiments
than these calculated using NCP pseudopotentials. In summary, concerning the wave
function ansatz, the general trend in accuracy is, as expected,

The JSD wave function has a significant difference in energy and variance with respect to
JAGPn* and JAGP, and the quality of the wave function is also reflected in the accuracy of
the dipole moment. We have also observed that, if large basis sets are used, JSD and JDFT
are very stable in the optimization, whereas the JAGP wave function requires a larger
statistics in the optimization, otherwise it can be unstable.

Comparing the AE versus the ECP or NCP calculations, it emerges that the all electron
calculations provide a value for the dipole that is slightly larger than the one obtained with
pseudopotentials. The difference could arise from the fact that the basis set convergence in
the all electron calculation is more difficult to reach, and to the relativistic effects, that are
not considered in the all electron calculations, while are implicitly taken into consideration
both in the ECP and in the NCP calculations, through the scalar relativistic correction in the
pseudopotentials. According to Lodi et al.,72 the relativistic correction to the dipole can be
estimated of the order of −0.0043 Deb, that is not enough to completely account for the
difference between AE and pseudopotential results, but it is in the right direction.

The accuracy of the VMC evaluations of the dipole appears to be comparable to the CCSD
calculations, or better, depending on the wave function ansatz, whereas CCSD(T)
calculations with large enough basis (or CBS extrapolation) are closer to the experimental
values with respect to our VMC results. For a comparison between the computational and
the experimental results, it is important to estimate the order or magnitude of all the
theoretical/computational approximations. Beside the already mentioned relativistic effect,
there are also the quantum nuclei effects. These effects can be accounted by averaging the
dipole moment over the ground-state roto-vibrational nuclear-motion, and according to Lodi
et al.,72 the correction is of the order of +0.0003 Deb, thus rather small. In conclusion, the
best VMC description of the dipole moment appears to be provided by the JAGP ansatz,
with ECP core and hybrid basis for the determinantal part.

5.3. Ionization and the Atomization Energies

The Ionization Energy (IE) of the water molecule can be estimated from the energy
difference ΔE = EH2O – EH2O+ between the energy EH2O of the neutral molecule H2O and
the energy EH2O+ of the cation H2O+, both in their relaxed geometries. Similarly to the
previous section, we have tried several wave function types and several basis, in order to
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study the basis set convergence. The complete list of the results are reported in the
Supporting Information (in Table S7 for the VMC calculations, and in Table S8 for the
LRDMC calculations). In Table 2, we report a selection of the results for the largest (more
converged) basis sets and a comparison with other ab initio calculations and experiments. In
order to compare the computational results with the experimentally measured value96 IEexp
= 12.621(2) eV, we have to take into account the difference ΔZPE between the vibrational
zero-point energy (ZPE) of H2O and of H2O+, which has been estimated by CCSD(T)/aug-
cc-pVTZ calculatons97 to be of the order of 0.067 eV.

We observe in Table 2 that the basis set convergence plays an important role in determining
an accurate value for the IE, and also here, the opt:all scheme gives a remarkable
improvement compared with the opt:noZ results. The IE obtained from the VMC approach
with all electron calculations is slightly larger than the result for the pseudopotentials. This
is probably in part due to the difficulty in reaching the basis set convergence.

The LRDMC results for JAGP function with ECP pseudopotential, yields a minimal
improvement compared to the corresponding VMC result. This is a good indication of the
high quality of our variational ansatz in the description the electronic properties of the
molecules. In Figure 2 it also appears that the IE for the LRDMC(a) is almost independent
of the lattice size a, although the total energy calculated for the different a have a sizable
dependence on a (see Supporting Information, Table S8). This consideration can be useful
for energy differences estimation, because a LRDMC calculation with a = 0.5 is about 25
times computationally cheaper than the one with a = 0.1.

The situation for the AE calculation is rather different. First, we have to consider very small
values of the lattice size a, otherwise the results are meaningless. Moreover, we observe a
large dependence of the IE on the mesh size a. In Figure 2, we also observe that the
extrapolated a → 0 value of the IE is quite close to the experimental value.

In Table 3 we have reported some VMC estimations of the atomization energy of the water
molecule, which has been calculated as EH2O − (EO + 2EH). More precisely, we considered
the JSD and the JAGP ansatzes for two different basis sets: the contracted hybrid basis O(9s,
9p,2d,1f)/{12} H(6s,5p,1d)/{4}, with Jastrow basis O(3s,2p,1d) H(2s,1p) and the completely
uncontracted basis O(4s,5p,1d) H(3s,1p) with Jastrow O(3s,2p,1d) H(2s,2p). In the
calculation, the oxygen atom has been considered in its triplet ground state, whereas the
hydrogen energy EH has been set to the exact 0.5H value. All the VMC estimations are in
good agreement with the exact value of the atomization energy. It is interesting to note that
the JAGP and the JSD estimations are almost identical, whereas there is a small difference,
of the order of 2mH, between the estimations of the two different basis. The improvement,
in terms of variational energy, from JSD to JAGP, both for the water molecule and for the
oxygen atom, is ~6mH, but the fact that JSD and JAGP give the same atomization energy
indicates that this improvement is due only to a better description of the oxygen atom by the
JAGP. However, this does not imply that going from JSD to JAGP produces just a vertical
shift of the energy and that they provide an equivalent description of the molecular bonds. A
better description of the oxygen atom could turn out to an improvement in the description of
the OH bond in water and, consequently, of the potential energy surface. In the following
sections, we will see that this is actually the case, as JAGP yields an equilibrium structure
and vibrational frequencies that appears more accurate than the JSD ones.

5.4. PES Properties: Equilibrium Structure, Harmonic and Fundamental Frequencies

The equilibrium structure and the vibrational frequencies, both harmonic and fundamental,
have been calculated for several wave function types and with increasing basis sets. The
results that come from the fitting of the energies or of the forces (see Section 4), for all the
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tested wave functions, are reported in the Table S9 of the Supporting Information. In Table 4
and in Figure 3, we report a selection of the results obtained for the largest basis sets.

In agreement with Zen et al.,51 we observe that the stochastic error for the minimum energy
configuration and the frequencies obtained by the fit of the forces are much smaller than that
coming from the fit of the energies. We have also tested the correlated sampling (CS)
technique for the fitting of the energies, and, in this case, the error is not much larger than
the corresponding one obtained with the force fit. Moreover, we can observe in Table S9
that the results for the JDFT with ECP pseudopotential, obtained by the fitting of the CS
energies are not in perfect agreement with the results coming from the fit of the forces. The
reason for this discrepancy is easily understood if we consider that, in the expression used
for the forces, we are neglecting the explicit derivatives of the parameters, because they
vanish at the minimum, as explained in Section 3.4. For a JDFT wave function, this
assumption is not correct, because only the parameters in the Jastrow are optimized, whereas
the parameters in the determinant remain those of a DFT calculation, and are, in general, not
at the minimum of the VMC energy. As a confirmation of this interpretation, we observe
that the results for the JSD function with ECP pseudopotential obtained by fitting of the CS
energies and of the forces are compatible within the estimated stochastic errors.

It is evident that the equilibrium structure and the frequencies are clearly and smoothly
converging with an increasing basis set, and both the opt:all and the hybrid atomic orbitals
are very useful for this convergence. The converged equilibrium structure is in good
agreement both with other highly accurate ab initio calculations and with the experimental
values, also reported in Table 4. The calculated frequencies are slightly overestimated
compared with the experimental results of the CCSD(T) values, but they are in agreement
with the CCSD results.

By comparing the JSD and the JAGP results (with the larger basis sets), we notice that the
latter ones are closer to the experimental values, see Figure 3. This is an indication that the
JAGP ansatz provides a better description of the PES and of the chemical bonds, as
compared with the JSD ansatz.

Converged results obtained using ECP or NCP are in good agreement for the frequencies,
while it appears that the OH bond for the equilibrium structure obtained from ECP is slightly
smaller than the bond for NCP. This leads us to ask which pseudopotential is more
compatible with the all-electron calculations, either ECP or NCP. Since all-electron
calculations are computationally expensive, especially if we consider a basis that is large
enough to be considered converged, we have decided to address this question by simply
evaluating the residual force in the experimental equilibrium configuration with both
pseudopotentials. As can be observed from Figure 4, the ECP pseudopotential is more
compatible with the AE calculations.

It is clear that, by comparing the VMC frequencies with the experimental or the CCSD(T)
ones, there is still room to improve the accuracy of the QMC variational wave function as
far as the vibrational properties are concerned. We have explored the possibility to go
beyond the variational scheme using LRDMC calculations. Since these calculations are
much more computationally demanding than VMC, we have only evaluated at the LRDMC
level the frequency of vibration of the asymmetric stretching of the molecule by
interpolating the one-dimensional energy profile computed along the mode eigenvector
(computed by the VMC/JAGP/ECP). The analysis of different mesh sizes a, together with
the corresponding harmonic frequencies ω3 are reported in Figure 5(a). The interpolating
lines have been used to extrapolate an estimation of the frequency and are reported in Figure
5(b) and in Table S10 of the Supporting Information.
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Figure 5(b) shows for the LRDMC estimates a general improvement in the value of the

frequency, from the VMC  toward the experimental value

, because the LRDMC a → 0 extrapolation 
differs from  only by ~7 cm−1, that is, within 1 σ. Therefore, the size of the stochastic
error does not allow to definitively conclude that LRDMC, within the fixed node
approximation, provides a very accurate frequency, but it is likely that it improves the VMC
calculations. To definitely solve this issue, it is necessary to further decrease the stochastic
error, which is at least 1 order of magnitude computationally more expensive than the
corresponding VMC calculations. Moreover, we have seen that we need a careful a → 0
extrapolation, with almost prohibitive computations with small a values. It could be that,
always within the fixed node approximation, the DMC approach gives more accurate results.
However, the most convenient way to enhance the precision of the frequency estimation for
a fixed node calculation is probably to use the forces, as for our VMC calculations. To this
aim several other issues have to be tackled, such as having a consistent estimation of the
force with finite variance and eliminating any possible bias due to the mesh size a for
LRDMC or to the time step τ for DMC.

6. CONCLUSIONS

In this paper, we have considered the water molecule as a test system to challenge the
abilities of QMC approaches to evaluate several molecular properties: the energy, the dipole
and the quadrupole momenta, the ionization and the atomization energies, the structural
minimum, and the harmonic and fundamental frequencies of vibrations. For each of these
quantities, we have performed and compared several calculations corresponding to different
setups for the QMC algorithm, namely: different ansatzes, different basis sets and
contraction schemes, different ways to tackle the core electrons. Most of the investigation
reported are based on VMC calculations, but we have also carried out several LRDMC
calculations in order to go beyond the variational ansatz.

It is known33,53,54,65,100,101 that the accuracy of QMC evaluations, both in the variational
and diffusion approaches, strongly depends on the wave function ansatz. However,
systematic studies on the differences between the various ansatzes are typically limited to
the total energy evaluation, whereas molecular properties can be more sensitive to these
choices. Here, we have compared the JDFT, JSD, JAGPn*, and JAGP ansatzes versus a
larger set of properties, always bearing in mind that a good ansatz has to provide reliable
results using a compact wave function with a limited number of variational parameters. This
is important, because the optimization of the wave function could otherwise be difficult,
especially if large molecules and large basis sets are taken into consideration.

In the first part of our work, we focused on the study of the basis set convergence,
underlining the importance to optimize also the exponents of the orbitals in order to have a
better chemical description with a lower number of parameters. Inspired by the strong
interplay between the building of the AGP wave function and the atomic orbitals, we have
introduced a new kind of orbital contraction that we have termed atomic hybrid orbitals,
which are specifically constructed for QMC calculations and are somehow similar to the
natural hybrid orbitals expansion.77 In particular, the atomic hybrid orbitals allow us to
introduce diffusive and polarization orbitals in the wave function, with an impact in terms of
number of parameters much lower than the one introduced by ordinary contracted or
uncontracted orbitals. Even if orbital exponents are optimized, a converged basis set for the
molecular properties, such as dipole and vibrational frequencies, requires the presence of
diffusive and polarization orbitals. Atomic hybrid orbitals result therefore in a remarkable
computational advantage, especially for large systems. According to our observations, it
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emerges that the JAGP ansatz with hybrid orbitals represents the best balance between
accuracy of the results and compactness of the wave function. The reduced number of
variational parameters allows us an easy management of the wave function optimization
procedure, and opens perspectives for the application of VMC to large molecules using large
basis sets.

We have also considered the impact of the description of the core electrons of the oxygen by
energy consistent ECP91 and norm conserving NCP92 pseudopotentials, versus an all
electron AE calculation. Although some differences between these three approaches were
observed, we have noticed that for converged basis the differences are quite small and they
reach almost the same level of accuracy. Thus, the most convenient choice seems the ECP,
because it is computationally cheaper than AE, and it gives ceteris paribus a smaller
variance with respect to NCP.

The LRDMC calculations reported in this work demonstrate that the projection schemes
with fixed node approximation can partly improve the VMC results, although the
computational cost is often high. This confirms the quality of the JAGP wave function, not
only for the description of the electronic properties of relaxed molecules but also of forces
and potential energy surfaces. On the other hand, projection methods are computationally
more demanding, and as we have seen, often they are limited by a very difficult and
expensive extrapolation to the continuous limit a → 0 (that is the analogous of the
extrapolation of the time step τ → 0 for the DMC). In conclusion, the use of the JAGP wave
function in combination with the hybrid orbital contraction scheme represents a promising
way for an accurate many body calculation of properties for large molecules.
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Figure 1.
Basis set convergence of the water molecule VMC energy, variance, dipole, and Qxx

quadrupole for the Jastrow inhomogeneous term is shown here. The considered wave
function is a JAGP, with ECP pseudopotential for the two core electrons of the oxygen, and
O(4s,4p,1d)/[2s,2p,1d], H(4s,1p)/[2s,1p] determinantal basis. The Jastrow basis set is
reported in the abscissa, and the basis with d-orbitals have been highlighted with a gray
background. A yellow background has been used to indicate the basis considered for the
following calculations. The results corresponding to Opt:noZ and Opt:all are reported in
blue and red, respectively. In green, we report the expected exact value, corresponding to
zero variance, and the experimental values of the dipole and quadrupole.
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Figure 2.
LRDMC evaluation of the ionization energy of the water molecule. Two JAGP wave
functions are considered: one corresponding to an all electrons calculation (in blue) and one
with ECP pseudopotential for the two core electrons of the oxygen atom (in black). In the
right panel, the extrapolation for the lattice mesh a → 0 is shown, with a functional form y =
c0 + c1a2 + c2a4 for the fitted lines; see ref 14. In the left panel with gray background, the
LRDMC(a → 0) results are compared with other accurate ab initio computational methods
and the experimental value.
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Figure 3.
Following properties of the ground state PES of the water molecule around the equilibrium
structure are reported: the bond length r0, the bond angle ϕ0, and the harmonic frequency of
the asymmetric stretching ω3. VMC results for JDFT, JSD, JAGPn*, and JAGP wave
functions are reported, using ECP (in black) and NCP (in blue) pseudopotential for the two
core electrons of the oxygen. The LRDMC(a → 0) value of ω3 for the JAGP/ECP function
extrapolated in Figure 5 is also shown. For a comparison, the results of MP2, CISD, CCSD,
and CCSD(T) calculations are reported (see Table 4 and references therein for details).
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Figure 4.
Residual force (in H/Bohr) on the oxygen atom, calculated on the experimental equilibrium
structure. The reported values correspond to VMC calculations with AE (blue), ECP (red) or
NCP (green) core, and LRDMC calculations (black) with AE core and lattice mesh size a
equal to 0.07, 0.1, 0.14, and 0.2 Bohr. The fitting line F = f0 + f1a2 + f2a4 for the LRDMC
calculations is reported in black.
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Figure 5.
We consider a JAGP/ECP wave function. In panel (a) we report the LRDMC values of
energy, calculated for lattice mesh sizes a of 0.4, 0.3, 0.2, 0.1, and extrapolation to zero. The
displacement is along the asymmetric stretching mode, and the center corresponds to the
VMC minimum structure for this wave function. The fitting functions y(x) = c0 + c2x2 + c4x4

are represented in the plot as color coded continuous lines. In panel (b) the values for the
harmonic frequency are reported versus the corresponding values of the lattice mesh a. For a
comparison, the experimental evaluation and the value obtained from the correlated
sampling of the VMC energies is also shown, in green and red, respectively.
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Table 1

VMC Evaluation of the Energy [H], the Variance [H2], the Dipole [Deb], and the Diagonal Elements Qxx, Qyy,

Qzz of the Traceless Quadrupole Tensor [Deb·Å] for the Water Molecule, Compared with Other Accurate Ab

Initio Evaluations and Experimental Resultsa

function/core/basisb no. param.c energy variance dipole Qxx Qyy Qzz

JDFT/ECP/hybrid (33) + 724 + 210 −17.24548(8) 0.3606(3) 1.9059(8) 2.5796(9) −0.1551(9) −2.4245(9)

JSD/ECP/uncontracted 14 + 0 + 666 −17.24820(5) 0.2734(2) 1.8881(4) 2.5842(5) −0.1711(5) −2.4131(5)

JSD/ECP/contracted 40 + 10 + 14878 −17.2482(1) 0.2668(10) 1.8755(10) 2.596(1) −0.155(1) −2.441(1)

JSD/ECP/hybrid 33 + 1086 + 465 −17.24824(7) 0.2692(1) 1.8877(6) 2.5819(7) −0.1445(7) −2.4374(6)

JAGPn*/ECP/contracted 40 + 10 + 14878 −17.2513(1) 0.2489(7) 1.8629(10) 2.570(1) −0.149(1) −2.421(1)

JAGP/ECP/uncontracted 14 + 0 + 666 −17.2536(2) 0.239(1) 1.8881(10) 2.579(1) −0.174(1) −2.406(1)

JAGP/ECP/contracted (26) + 4 + 4186 −17.2529(1) 0.2665(7) 1.8609(10) 2.580(1) −0.147(1) −2.433(1)

JAGP/ECP/contracted 26 + 4 + 4186 −17.25397(10) 0.2330(10) 1.8710(10) 2.583(1) −0.145(1) −2.438(1)

JAGP/ECP/hybrid 33 + 724 + 210 −17.25383(4) 0.2308(1) 1.8648(6) 2.5740(7) −0.1500(7) −2.4240(7)

JSD/NCP/hybrid 33 + 1086 + 465 −17.20239(5) 0.3303(2) 1.8949(4) 2.5808(5) −0.1498(5) −2.4310(5)

JAGP/NCP/hybrid 33 + 724 + 210 −17.20803(6) 0.2786(1) 1.8704(7) 2.5765(8) −0.1559(8) −2.4206(8)

JDFT/AE/hybrid (45) + 1189 + 231 −76.39914(6) 1.1881(3) 1.9152(3) 2.6122(3) −0.1460(3) −2.4663(3)

JSD/AE/hybrid 36 + 1038 + 231 −76.40052(5) 1.1579(7) 1.8973(2) 2.5740(3) −0.1362(3) −2.4377(3)

JAGP/AE/hybrid 43 + 1163 + 231 −76.40741(2) 1.01531(9) 1.8894(1) 2.5875(1) −0.1466(1) −2.4409(1)

method/basis

MRSD-CI/140CGTOd  −76.3963 1.870  2.5556

HF/aug-cc-pCV6Ze 1.9813

CCSD/aug-cc-pCV6Ze 1.8808

CCSD(T)/aug-cc-pCV6Ze 1.8578

CCSD(T)/CBSe 1.858(12)

experiment f 1.8546(6)  2.63(2)  −0.13(3)  −2.50(2)

a
For the quadrupole calculation, the molecule is in the xy-plane, with the bisector of the HOH angle parallel to the y-axis, and in the reference

frame of the center of mass. The VMC expectation values for the dipole and the quadrupole have been calculated as described in Section 3.6.

b
This column reports the wave function ansatz for the VMC calculations, the description of the two core electrons of the oxygen atom, and the

basis set type for the determinantal part. The Jastrow basis is O(4s,2p,1d) H(2s,1p) for the all electrons calculations, and is O(3s,2p,1d) H(2s,1p)
for the ECP and NCP cases. Further details in the text.

c
Reports the number of parameters for the determinantal basis set, as the summation of the number of exponents (first number, that is written

between parentheses in case of opt:noZ), number of contraction coefficients (second number, that is zero for uncontracted basis), and the
independent elements of the AGP matrix (third number).

d
From ref 69.

e
From Tables I and VIII of ref 72.

f
Dipole from ref 66, quadrupole from ref 67.
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Table 2

VMC and LRDMC Evaluation of the Ionization Energy (IE) for the Water Molecule, in Comparison with
Other Accurate Ab Initio Evaluations and Experimental Resultsa

method/function/core/opt EH2O [H] EH2O+ [H] IE [eV]

VMC/JSD/ECP/all −17.2481(1) −16.7795(1) 12.684(5)

VMC/JAGPn*/ECP/all −17.2513(1) −16.7824(1) 12.692(5)

VMC/JAGP/ECP/noZ −17.2520(1) −16.7823(1) 12.714(3)

VMC/JAGP/ECP/all −17.2538(1) −16.7842(1) 12.711(3)

LRDMC(a→0)/JAGP/ECP/all −17.2647(3) −16.7954(3) 12.703(8)

VMC/JAGP/NCP/noZ −17.2050(1) −16.7253(2) 12.986(8)

VMC/JAGP/NCP/all −17.2068(1) −16.7383(1) 12.681(3)

VMC/JAGP/AE/noZ −76.3909(4) −75.9191(4) 12.771(16)

VMC/JAGP/AE/all −76.4041(3) −75.9336(3) 12.736(11)

LRDMC(a → 0)/JAGP/AE/all −76.4266(1) −75.9586(2) 12.668(6)

      method/basis

HF/aug-cc-pVQZb 10.868

B3LYP/aug-cc-pVQZb 12.610

MP2FC/aug-cc-pVTZb 12.709

CCSD(T)/aug-cc-pVTZb 12.505

      experiment b 12.621(2)

a
The ionization energy has been calculated as the sum of the energy difference ΔE = EH2O − EH2O+ and the zero point energy difference ΔZPE

between the cation and the neutral form of water. For the QMC results, we have considered the ΔZPE evaluated by a CCSD(T)/aug-cc-pVTZ

calculation,ref 97 see further details in Section 5.3.

b
From ref 97.
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Table 3

Atomization Energy of the Water Moleculea

EH2O [H] EO [H] AE [H]

VMC Calculation/ECP Core/Uncontracted Determinantal Basisb

JSD −17.24819(5) −15.87586(9) 0.3723(1)

JAGP −17.2536(2) −15.8811(1) 0.3725(2)

E JAGP − E JSD 0.0054(2) 0.0052(1)

VMC Calculation/ECP Core/Hybrid Determinantal Basisc

JSD −17.2471(1) −15.8769(1) 0.3702(2)

JAGP −17.25383(4) −15.8838(2) 0.3700(2)

E JAGP − E JSD 0.0067(1) 0.0069(2)

exactd −76.438 −75.0673 0.3707

a
The atomization energy (AE) is calculated as EH2O − (EO + 2EH) for different wave functions and basis sets. The hydrogen atom energy EH is

0.5H, with a negligible stochastic error.

b
Determinantal basis: O(4s,5p,1d) H(3s,1p). Jastrow basis: O(3s,2p,1d) H(2s,2p).

c
Determinantal basis: O(9s,9p,2d,1f)/{12} H(6s,5p,1d)/{4}. Jastrow basis: O(3s,2p,1d) H(2s,1p).

d
All electron evaluation of EH2O from ref 69 and of EO from ref 98.
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Table 4

VMC Evaluation of the Equilibrium Configuration, the Harmonic and the Fundamental Frequencies of the
Water Molecule, Compared with Other Accurate Ab Initio Evaluations and Experimental Resultsa

equilibrium structure harmonic freq. [cm−1] fundamental freq. [cm−1]

r0 [Å] ϕ0 [deg] ω 2 ω 1 ω 3 ν2[010] ν1[100] ν3[001]

function/core

JDFT/ECP 0.95497(3) 104.49(2) 1664(2) 3882(2) 3995(3) 1610(1) 3693(2) 3787(3)

JSD/ECP 0.95426(3) 104.74(1) 1670(2) 3892(3) 4006(3) 1617(1) 3702(3) 3794(2)

JAGPn*/ECP 0.95612(8) 104.17(2) 1710(3) 3896(6) 3990(7) 1654(1) 3710(3) 3800(7)

JAGP/ECP 0.95550(4) 104.41(1) 1669(1) 3872(3) 3974(4) 1613.3(6) 3677(2) 3772(2)

JSD/NCP 0.95536(3) 104.85(1) 1668(2) 3889(2) 4001(3) 1613.1(9) 3700(2) 3796(3)

JAGP/NCP 0.95668(3) 104.52(1) 1663(2) 3869(2) 3973(3) 1610.4(7) 3679(2) 3767(3)

method/basis

BLYP/aug-cc-pVTZb 0.9719 104.47 1596 3655 3757 1543 3480 3567

B3LYP/aug-cc-pVTZb 0.9619 105.08 1627 3796 3899 1575 3631 3720

FC MP2/aug-cc-pVTZb 0.9614 104.11 1628 3822 3948 1578 3653 3767

CISD/(13,8,4,2/8,4,2)c 0.952 104.8 1676.1 3947.3 4050.5

CCSD/(13,8,4,2/8,4,2)c 0.956 104.4 1662.5 3870.9 3977.8

FC CCSD(T)/aug-cc-pV7Zd 0.95831 104.452 1649.83 3835.55 3946.05 1595.58 3659.31 3757.45

experiment e 0.95721(30) 104.522(50) 1648.47 3832.17 3942.53 1594.59 3656.65 3755.79

a
For the VMC results, the equilibrium configuration, the harmonic frequencies ωi and the fundamental frequencies νi have been evaluated from the

PES fitted using the VMC forces; see details in the text and in Zen et al.51

b
From ref 99.

c
From ref 74.

d
From ref 75.

e
From ref 68.
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