Molecular Properties through Polarizable Embedding
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Introduction

We present a multilevel model which we denote the

polarizable embedding (PE) method™) and is imple-
mented in the DALTON program(?).

@ Layered model designed for effective inclusion of

an anisotropic environment in a QM calculation
@ Atomistic representation including terms up to
ocalized octupoles and anisotropic dipole
polarizabilities

@ Fully self-consistent nonequilibrium formulation
of the environmental response

@ Combined with TDQM linear and nonlinear
response

@ Parallelized for large scale calculations

Figure 1: The DsRed protein tetramer: the chromophore
subsystem is treated using QM while the protein environment
Is represented by a classical potential

The PE method accurately models the effects from
the environment surrounding a central core subsys-
tem by including the effects directly in the den-
sity /wavefunction of the core. Here we outline the

PE-DFT method:

@ Effective Kohn-Sham operator
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@ Polarizable Embedding operator
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@ Electrostatic contribution
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@ Polarization /induction contribution
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@ induced dipoles obtained as classical linear response
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Theory (continued)

The PE method is combined with linear, quadratic
and cubic response in a fully self-consistent formal-
ism. Here we show the linear response PE-TDDFT
formalism:

@ Linear response function
(A B),=-A(E-wS) 'B
@ Polarizable Embedding contribution

Erex” = —(0[[6. Q¢ + Q50)

@ response from static environment
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@ dynamical response from the environment

@ transformed electric field
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The contributions to the quadratic and cubic response
are obtained in a similar manner.

Typical Worktlow

@ Obtain structures

@ MD snapshots
@ crystal structure
@ geometry optimization

@ Fragment environment (see Fig. 5)

@ amino acid residues
@ nucleotide fragments
@ solvent molecules

@ (Calculate localized properties of fragments

@ multipole moments upto octopoles
@ anisotropic dipole polarizabilities

@ Merge fragments to create the polarizable
embedding potential

@ (Calculate property of interest using PE-DFT
@ excitation energies with OPA, TPA and 3PA
o (hyper)polarizabilities: o, § and ~
@ excited state dipole moment and polarizability
e magnetic properties using GIAOs/LAOs
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Acetone in Water Solution
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Figure 2: Solvent shift of the n — 7™ excitation in acetone
compared to experiment

Computational details:

@ Classical MD run using polarizable force field
e extracted 120 snapshot (every 10th ps)

@ Calculated average n — 7™ excitation energy

o LoProp'® force fields
o CAM-B3LYP /aug-cc-pVDZ

Potential Analysis

Here we present an analysis of the quality of the clas-
sical potentials of the H,O and CCl; molecules. The
plots show the RMSD, with respect to the distance
from the molecular van-der-Waals surface, of the elec-
trostatic potential due the classical potentials com-
pared to a QM reference. K,q,, is a factor of the vdw
distance. Mx designates a potential with multipole
moments upto xth order and M* includes only RESP
fitted charges.
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Figure 3: Water

0.025

0.020

0 0.015 |
n

& 5010 }

0.005 |

0.000

1.0 1.5 2.0 2.5 3.0 3.5 4.0
dew

Figure 4: Tetrachloromethane
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Figure 5: Outline of a fragmentation procedure for proteins
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