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ABSTRACT Molecular property prediction is important to drug design. With the development of artificial
intelligence, deep learning methods are effective for extracting molecular features. In this paper, we propose a
multichannel substructure-graph gated recurrent unit (GRU) architecture, which is a novel GRU-based neural
network with attention mechanisms applied to molecular substructures to learn and predict properties. In the
architecture, molecular features are extracted at the node level and molecule level for capturing fine-grained
and coarse-grained information. In addition, three bidirectional GRUs are adopted to extract the features
on three channels to generate the molecular representations. Different attention weights are assigned to the
entities in the molecule to evaluate their contributions. Experiments are implemented to compare our model
with benchmark models in molecular property prediction for both regression and classification tasks, and
the results show that our model has strong robustness and generalizability.

INDEX TERMS Molecular graph, molecular property prediction, substructure-graph.

I. INTRODUCTION

The prediction of molecular properties plays a vital role in
drug discovery [1], [2]. Traditional methods such as biochem-
ical experiments are always time-consuming and expensive.
Molecules are special graph-structured data carrying speci-
fied chemical properties. The computer-aided prediction of
molecular properties based on molecular structures could
accelerate the drug discovery process. The development of
artificial intelligence provides an effective method for learn-
ing molecular features and predicting properties, and it has
been applied to predict drug-disease associations [3].

There are many types of molecular representations used
in deep learning [4]-[7]. The first type is SMILES (sim-
plified molecular-input line-entry system), which encodes a
molecule into a meaningful sequence following a specified
grammar [8], but rings might be broken when the SMILES
format is used. It is possible that one benzene ring may
correspond to diverse SMILES considering different bro-
ken positions. On the other hand, a fingerprint represents a
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molecule via a sparse binary vector that records the appear-
ance of molecular substructures [9]. However, for a large
molecule dataset, too many substructures could result in the
sparse representation problem. In addition, the duplication
substructure removal process [10] of a fingerprint could also
cause molecular information loss.

Compared with fingerprints and SMILES, the graph repre-
sentation could retain the molecular structure and topological
information [5]. Graphs have been applied in many areas and
achieved good results [11], [12]. Through the graph represen-
tation, one molecule is interpreted as an undirected graph in
which an atom is regarded as a node and a bond is regarded
as an edge. With the help of graph structures, a number
of methods have applied deep learning on molecules and
achieved good results such as graph neural networks [13].
Duvenaud et al. [14] extracted molecular fingerprints from
molecular graphs via a convolutional neural network, which
is different from predefined fixed mode. In addition, the fea-
ture vectors of atoms become differentiable, which could
predict the molecular properties more precisely. Inspired
by Duvenaud, Youjun proposed a molecular graph encod-
ing convolutional neural network (MGE-CNN) architecture
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for acute oral toxicity prediction [15], and Coley utilized
a graph-based convolutional neural network for molecular
embedding to predict physical properties [16]. The descrip-
tors obtained by a graph neural network perform better than
traditional predefined or handcrafted descriptors.

In the above algorithms, the connection relationships pro-
vided by molecule edges are very important in the molecular
convolution process because information could be passed
and updated when using them. The message passing neu-
ral network (MPNN) [17] merges related algorithms [14],
[16], [18]-[20] into a single framework to predict quantum
chemical properties. These models learn the features of atoms
from a message passing algorithm and aggregate them to
represent the input molecular graph. Here, the atom features
in local chemical environments are included, and also the
edge features could be learned in the training process. The
weave module [18] uses an edge convolutional neural net-
work combined with a node convolution neural network to
learn the properties of molecular structures. Moreover, a gen-
eral framework for unifying and extending existing methods
as blocks has been put forward [21]. The graph defined in the
general framework contains node attributes, edge attributes
and global attributes. Node, edge, and graph features all
update simultaneously. MEGNet [22] uses a defined graph to
extend the general framework for predicting state-dependent
properties, i.e., the free energy.

In traditional graph convolutional networks, the informa-
tion of a graph structure is represented by the adjacency
matrix and the matrix size is fixed during training; however,
the number of atoms in different molecules is diverse. There-
fore, how to choose a suitable matrix size is a hard nut to
crack. A recurrent neural network such as the RNN, long
short-term memory (LSTM) and gated recurrent unit (GRU)
has an outstanding ability to handle different sized sequences.
These networks are good at handling temporal sequencing
problems such as natural language processing [23], [24]
and even spatiotemporal graphs [25]. Since general graphs
such as social networks and chemical compounds are nonse-
quential structures, some studies tried to convert graphs into
sequences, which could avoid the matrix size problem. Zayats
and Ostendorf [26] proposed a Graph-Structured LSTM in
which each node in the tree was the input of each single
LSTM unit. Jin and JaJa [27] used the random walk approach
to sample graph node sequences and extended the RNN mod-
els to graph representations. For graphs, neighbors play vital
roles in the features of the current node. Teney et al. [28] used
GRU to update the node state, and neighbors’ information
could be passed to the center node through multiple iteration.
Furthermore, the recurrent neural network has been widely
used in molecule generation. Segler et al. trained an RNN as
a generative model, and the generated atoms could be added
one by one according to the target properties. In addition,
GraphRNN [29] divided a graph into a sequence and learned
to generate a new graph based on a sequence. These stud-
ies verify that recurrent neural networks have the ability to
handle graphs. However, in the original graphs, there is no
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sequential information. Therefore, defining the node ordering
is important to ensure the accuracy and robustness of the
graph-based RNN model.

Although graph-based deep learning methods have
achieved good results for predicting molecular properties,
there are still some problems that need to be solved.

First, the atoms in a molecule are not independent of each
other. In the molecular graph structure, atoms are regarded
as nodes and bonds are regarded as edges. Different from
the graph of a social network [30]-[32], where each node
is independent, there are common pairs of electrons between
the atoms in a molecule, which are chemical bonds, causing
the connections between atoms to be constrained by the
valence. Directly treating atoms as basic units of graphs is not
conducive to maintaining molecular chemical information
since some atoms compose the substructure with chemical
characteristics, i.e., the benzene ring. If the atoms of the
benzene ring are decomposed into several independent atoms,
the connections between atoms in the benzene ring are hard
to obtain, which will also destroy the properties of benzene
rings.

Second, the chemical environments of each substructure
determine the connections with other substructures, which
are also important factors of molecular properties. Although
JunctionTree [33] transformed a molecule into a joint tree
to retain the substructure information, it did not discover
the internal information between substructures in the tree
structure, which limited the chemical property prediction
performance.

Third, a molecular graph is structured data in which differ-
ent substructures may have various contributions to the prop-
erties. Summation and average operations could not capture
this characteristic. An attention mechanism [34] addressed
concerns regarding weighing different parts of the input to
make decisions. Although there are several studies focusing
on the contributions of different nodes to the graph [35],
[36] for molecules, we are more concerned with the role
of the different functional groups on the overall molecular
properties.

To address above problems, we propose a multichan-
nel substructure-graph gated recurrent unit architecture with
attention mechanisms to learn and predict molecular prop-
erties. The three main contributions of this paper are high-
lighted as follows.

1) A molecule is transformed into a substructure-based
graph called the S-Graph, which is inspired by Junction-
Tree [33]. The basic unit is a molecular substructure, which
contains several linked atoms and bonds. Each substructure
is regarded as a node in the graph, which could preserve
the chemical properties. The fine-grained and coarse-grained
features of molecules at the node level and molecule level are
learned from the S-Graph, which generates a more compre-
hensive description of the molecule.

2) The joint feature is introduced to capture the detailed
connectivity between substructures, which utilizes the precise
linking position to obtain not only the inside topology of
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FIGURE 1. The architecture of MSGG.

the substructure but also the information of the topological
connections between substructures.

3) The bidirectional gated recurrent units (Bi-GRUs) and
an attention mechanism are combined on three channels to
extract the features of different aspects of molecules in order
to mine the deep information for molecular property pre-
diction. Three GRUs are adopted to extract the features of
the node channel, neighboring node channel and edge chan-
nel to generate molecular representations. Different attention
weights are assigned to the entities in the sequence to evaluate
their contributions.

Il. METHODS

In this paper, we propose a multichannel substructure-graph
GRU (MSGG) algorithm, which is a novel GRU-based neural
network with attention mechanisms applied to molecular sub-
structures to learn and predict properties. In this architecture,
substructures are generated to capture the fine-grained molec-
ular information containing several linked atoms and bonds,
and the node and edge features within the substructure are
learned through neural networks, which are called node-level
features. Each substructure is regarded as a node and the
shared atoms are regarded as edges in the S-Graph, and the
coarse-grained information including the nodes, neighboring
nodes and edge channels of molecules is captured at the
molecule level. Three Bi-GRUs are adopted to extract the
features on three channels to generate the molecular repre-
sentations. Different attention weights are assigned to enti-
ties to evaluate their contributions. The outputs of the three
channels are concatenated as the final molecular descriptors,
and a simple multilayer perceptron (MLP) is applied to learn
the molecular properties. The main architecture is shown as
Fig. 1.

A. S-GRAPH

At first, each molecule is divided into multiple substruc-
tures as basic nodes of the molecular graph the same as
JunctionTree [33] considering their chemical properties. In a
molecule, shared electron pairs are expressed as a bond
between connected atoms, and the bond is regarded as a fun-
damental entity in the substructure. In the original molecule,
each bond and the atoms linked to the bond are assembled
into a substructure. If the atom owns more than one bond,
it belongs to more than one substructure. Fig. 2 shows the
corresponding relationship between the substructures in the
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FIGURE 2. The composition of the nodes in the S-Graph and the
corresponding substructures in molecules.

molecule and the nodes in the S-Graph with the same color.
The shared atom becomes an edge that connects two substruc-
tures in a new substructure-graph. Moreover, if there are three
or more nodes connected to the same atom, an extra node
(1184 in Fig. 2) is added to represent the atom to avoid the
dead loop problem of message passing.

It is important to assign a label to the new substructure.
If two substructures are identical, including the internal types
of atoms and bonds, topology, and the connection position
with the adjacent substructure, these two substructures are
regarded as one type and will be assigned same label in new
graph. The original molecule is represented as a graph Sg =
(S, E, C) in which the nodes correspond to substructures
S = {s1,52...5,}, edges E = {ey, e2, ...e,} correspond to
the shared atoms between two nodes, and n and m are the
numbers of substructures and edges, respectively. Assigning
a type to an edge could preserve the potential connectivity
of two adjacent nodes. C is a collection containing all nodes
appearing in the molecule dataset and each node owns an
index in C.

As for the molecular decomposition, the condition for
classifying the substructures in JunctionTree [33] is that the
entities (atoms and bonds) belonging to the two substruc-
tures are identical, which cannot sufficiently distinguish the
substructures. In this paper, in order to capture the detailed
distinction between substructures, the linking position of the
substructure is introduced. Even if entities within two struc-
tures are the same, it is possible that they belong to differ-
ent categories because of the different linking positions. For
instance, the nodes labeled as 662 and 675 both correspond
to the benzene ring in the molecule shown in Fig.2. The
entities including atoms and bonds belonging to these two
benzene rings are identical, which will be regarded as the
same node 131 without a linking position. However, the link-
ing positions indicating the atomic unsaturated valence of
them are different. In addition, the linking positions represent
the potential positions to connect with other substructures.
Therefore, these two benzene rings are labeled by different
indexes in the S-Graph.

B. NODE-LEVEL FEATURES
After obtaining the S-Graph, it is important to extract the
features of each node for further processing, which is called
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FIGURE 3. Node-level features.

the node-level features. There are three kinds of features:
the atom feature, the bond feature and the joint feature.
The node-level feature records the internal features of sub-
structures in order to capture the fine-grained features for
molecular substructures. Moreover, the edge feature is also
introduced to discover the relationship with each node.
Fig. 3 describes the four types of feature extraction methods
at the node level.

1) ATOM FEATURE

At first, the one-hot encodings of the properties of the atomic
element of the substructure are concatenated including the
atom type, the atom degree, the number of attached hydrogen
atoms, and the chiral and aromatic characteristics. In addition,
each feature is transformed into a vector through a fully
connected layer, which is shown in Fig. 3. Because there is
usually more than one atom in a node, all node features are
combined through the sum operation using (1) to obtain the
final atom feature.

Xa(s) =Y 0 (Wa X fa(@) + by) (1)

aes

where a is the atom belonging to substructure s and f,(a)
is the one-hot encoding of the properties of atom a. Wy is
the learned weights for the atomic neural network, o is the
activation function, and b, is the bias.

2) BOND FEATURE

Similar to the atom feature, the one-hot encodings of the
properties of bond d including the bond type, stereo descrip-
tor, and aromatic and ring characteristics are concatenated
as feature f;(d). In addition, the features of two connected
atoms fa(a‘f) and fa(ag) are also concatenated, and a linear
transformation is used to obtain the final bond representation
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Xg through (2).

Xa(s) =Y o(Wp x [fula]), fa(d). fu@)] +ba)  (2)

des

where [, ] is the concatenation operation and d is the bond
belonging to s. Wp is the learnable weights for the bond
neural network, and by is the bias.

3) JOINT FEATURE

The joint feature indicates the link position of one node to
others, where one node is a substructure composed of several
atoms and bonds. Even if the types of atoms and bonds of
two nodes are the same, there may be potential differences in
the properties due to different linking positions of nodes. The
type of atom a that links the atoms belonging to other nodes
are recorded as one-hot encoding fj(a). A neural network is
applied to obtain the feature vector X; that captures the linking
features of node through (3).

Xi5)= Y o(W; x fi(@) + b)) 3)

aeN(s)

where N(s) is set of all linking atoms of node s, W is the
learnable weights, and b; is the bias.

Finally, all these three features including atom feature,
bond feature and joint feature are combined into the final
feature of node.

Xo(s) = [Xa(s), Xa(s), Xj(s)] “

4) EDGE FEATURE

After extracting the features of each node, the molecule
can be regarded as a graph structure whose basic unit is a
node. Edge information is also important in the graph, and
the different types of edges e in the S-Graph are distin-
guished by their shared atomic types, which are encoded as
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one-hot vector f,(e), and the edge feature X, (e) is described as
follows:

Xe(e) = o(WE X fe(e) + be) &)

where Wg is learnable weights, and b, is the bias.

5) EMBEDDING FEATURE

To capture the information on the similarity between each
node, the embedding feature is introduced. Each node owns
an index in vocabulary C, which could be regarded as a
word. Inspired by the word2embedding method [37], each
node could obtain an embedding vector that represents the
attributes of the node in a molecule. Therefore, a node-
embedding layer is implemented, which maps a node vocab-
ulary into an embedding matrix Wi € R%*%_ where d,, is
the dimension of the embedding feature and d, is the size
of vocabulary C. The embedding matrix is trained based
on the connectivity of the nodes in the S-Graph. As shown
in Fig. 4, all the molecules in the dataset are transformed
into an S-Graph with the nodes index. After processing
the embedding, each node obtains a vector indicating its
attributes. If several nodes link to one same node in different
molecules, the value of the specified attribute will be close.
The node embedding that is to be trained as a part of model
focuses on the similarity of the nodes’ attributes in molecules.
After obtaining the embedding matrix, given the index of a
node, its embedding is calculated through (6), where id(s)
returns the ID number of node s.

Xg(s) = Wg(id(s)) (6)

C. MOLECULE-LEVEL FEATURES

We proposed a two-level structure to explore the compre-
hensive representation of a molecule. After obtaining each
feature of each substructure, the molecule-level feature is
extracted. Most algorithms focus on extracting the features
from the whole structure of the molecule [8], [10], [12].
However, a molecule is a special graph in which different
substructures interact with each other. In addition, differ-
ent molecules have diverse sizes, which is inconvenient for
the traditional graph convolutional network. To provide a
size-free method, the bidirectional GRU that could learn the
relationships between substructures is applied in this paper.
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The molecule-level feature of the S-Graph is extracted
from three channels: the node channel, the neighboring node
channel and the edge channel, as shown in Fig. 5. All nodal
information is processed through the node channel, which
includes the basic structure of the molecule graph. The neigh-
boring node channel gathers information on the direct neigh-
bors of the centered nodes, which is used to cover more com-
prehensive property features. The edge channel collects all
edge information. Our model can fit to the message passing
block and independent recurrent block in [21]. The molecules
in the dataset are stored in SMILES form and the beginning
character of SMILES is fixed for each molecule [38]. When
the SMILES is converted to a graph structure, the node
containing the beginning atom in SMILES is set as the root,
which ensures that the root node is fixed in the S-Graph.
BFS is applied to traverse the S-Graph starting from the root
node to generate the node sequence. In the S-Graph, each
node is labeled with the index. When BFS searches from the
current depth level to the next depth level, all nodes at the
next depth level are sorted by their index in ascending order.
The traversing order of nodes is the final node order in the
sequence.

1) NODE CHANNEL
The feature vectors of all nodes constitute the sequence M1
through (7).

MD = X,(51), Xo(52), Xo(53), - - -, Xo(sn) (7

The node order in the sequence is determined through the
BFS method and the sequence length is equal to the number
of nodes in a molecule.

2) NEIGHBORING NODE CHANNEL

In this channel, not only the node itself is included but also the
direct neighbors of the node are included to introduce wider
and comprehensive node features. Connected nodes share a
common atom, which is described as edge e in the S-Graph.
For a node in the S-Graph, all its direct neighbors and their
linked edge information are aggregated in the neighboring
node channel through (8). The length of the neighboring node
sequence is equal to number of nodes in a molecule.

M® = H(s), H(s2), ..., H(sp) (8)
H(s) = [Xo(s), Y [Xe(€™™), Xo(s)]] ©)
s’ €h(s)

where M is the neighboring node channel of the whole
molecule, A(s) is set of direct neighbors of node s, and *
is the edge between s and s'.

3) EDGE CHANNEL

The edge channel contains the edge information, and it also
covers the two node embedding features linked to this edge.
The edge channel pays more attention to the global molecule
architecture. We want to extract information about the overall
properties of the molecule in terms of the edges. Therefore,
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the node embedding vector that records the node attributes in
molecules is used in the edge channel. The item in the edge
sequence is depicted as E(e) in (11). All the edge items in
a molecule constitute M in the node order. The length of
M® is equal to the number of edges in a molecule.

M® = E(e)), E(e), ..., Een) (10)
E(e) = [X,(s7), Xe(e), X,(s5)] (11)

where s¢ and 5§ are the two nodes linked by the edge e.

D. MODEL STRUCTURE

Different molecules vary in their numbers of atoms and
edges, which results in different numbers of nodes in graphs.
Therefore, the multilayer bidirectional gated recurrent units
(Bi-GRUs) [39] is adopted for three channels, which could
be adapted to different numbers of nodes. Considering the
connections between nodes, a graph could be transformed
into a node sequence following BFS. The input vectors of the
three channels are in order of their node sequence. A standard
two-layer property prediction is conducted because the model
architecture is bidirectional. One item corresponds to two
outputs in the GRU model structure, which could capture the
bidirectional information for molecules. If the input sequence
has n items, there will be 2n outputs. The calculation of each
single direction layer GRU is as follows:

re = o (Wyxs + by + W/ha—1) + b.) (12)
7 = o(Wex, + by + Wh 1)) + b)) (13)
pe = tanh(Wpx; + b, + r,(WI;h(,_l) + b;,) (14)
he = (1 = 2)ps + 2ehe—1) (15)

where x; is the item input at position ¢ of the sequence and
h(;—1y is the hidden state of the layer at position t — 1. ry, z;,
and p; are the reset, update, and new gates, respectively. W,.,
W, and W), are the parameters for input x;. b, b, b, are the
bias for input x;. W, W, and W,, are the parameters for input
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h—1). b, by, and b}, are the bias for input hi—1). o is the
sigmoid function. %, is the hidden state at position .

Our model is composed of two stacked Bi-GRUs. Each
layer is calculated as follows:

n = f PG+ WORTY w60 ae)
K s
the hidden state of layer / at position ¢ — 1. W}EZ) and Wl.(l) are
the parameters for layer /. h;l_l) is the hidden state of layer
| — 1 at position .

The final output is represented as follows:

where hgl) is the hidden state of layer / at position 7.

Y, = PR PP W (17)

where h,(f) and h’f) indicate the bidirectional outputs at posi-
tion n of the second layer. Y}, with size 2n is the output of the
two-layer bidirectional GRU.

The features of all items are aggregated with different
attention weights to obtain the final molecular graph feature.
The molecule is assigned an initial value with the average
values Y of all features. The assignments of the attention
weights are calculated by the feature similarity between each
item and ¥, which is calculated as (19).

n

vV = M (18)
n
exp(LeakyReLU(W; x [W(Y), W(Y;)]))

>, exp(LeakyReLU(W, x [W(Y), W(¥)]))

i = 19)

where ¥; € R is the feature of the i sequence item. Y € RF

is the average feature of all nodes in the S-Graph, and W (Y;)

is the linear transformation of ¥;. W, € R2F is the parameter

of a simple feedforward neural network. LeakyReLu is the

activation function. «; is the attention weight for the i item.
The final graph output is as follows:

Gr(Y)=0()_ai x W(¥) (20)

i=1
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where G¢(Y) is the final feature of input sequence Y in a
single channel. W(Y;) is the linear transformation of the i
item’s feature Y; and «; is the corresponding attention weight.

Three input sequences of channels are fed into the three
layer bidirectional GRU neural network and attention model
separately. The whole molecular feature gathering informa-
tion of the three channels is represented as follows:

Gu =[Gy, G, Gpa] 2n

where Gfu) is the node channel feature. Gf(z) is the neighbor-
ing node channel feature. Gf<3) is the edge channel feature and
G, is the whole molecular feature.

To learn the molecular properties, a multilayer perceptron
is applied on the learned molecular descriptors for the predic-
tion and classification. The architecture is shown in Fig. 6.

lll. DATASET

To objectively prove the advantages of the proposed model,
multiple datasets with different properties are adopted for
regression and classification tasks.

A. REGRESSION TASK

Four datasets are prepared for the regression task with
root-mean-square error (RMSE) metric. The Free Solva-
tion Database is a dataset of experimental and calcu-
lated hydration free energies for small neutral molecules in
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water [40] and has a size of 642. ESOL is a dataset con-
taining the water solubility data for 1128 compounds [41].
Lipophilicity provides the experimental results of the
octanol/water distribution coefficient of 4200 molecules
screened from the ChEMBL database [42]. These three
datasets are randomly split into training/validation/test sets
as in MoleculeNet. PDBbind is a dataset that collected the
experimentally measured binding affinities for protein-ligand
complexes [43], [44], and has a size of 9880 (since 1982).
The complexes in PDBbind are updated over time, and are
split into training/validation/test sets by time.

B. CLASSIFICATION TASK

The BACE dataset and Blood-Brain Barrier Penetra-
tion (BBBP) dataset are used to evaluate the performance
of the proposed model. The BACE dataset measures the
binding results for the inhibitors of human J-secretase
1 (BACE-1) [45]. MoleculeNet [46] provided a collection
of 1552 compounds with binary labels for the classification
task from the BACE dataset. The BBBP dataset collected data
from studies on the modeling and prediction of the barrier per-
meability [47], and it contains 2053 compounds with binary
labels for the permeability properties. We adopted the same
splitting method as MoleculeNet to compare the results with
other state of the art methods. The BACE and BBBP datasets
were split using the scaffold splitting method relying on the
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FIGURE 7. Performance of the different algorithms on FreeSolv.

2D structure information [48] through RDKit [49]. Compared
with random splitting, scaffold splitting increases the differ-
ence between the training, validation and tests dataset, which
could better verify the generalizability of the models.

IV. EXPERIMENTS

All models were trained using the stochastic gradient
descent (SGD) algorithm with the ADAM optimizer [50].
The initial learning rate was randomly chosen from 5e~* to
5¢73. Different seeds were selected for all models to verify
the robustness of the models and grid search was utilized
for hyperparameter screening. In the experiments, we com-
pared our model with models mentioned in MoleculeNet on
these six datasets. The models not only include state of art
graph-based deep learning methods such as graph convolu-
tions (GC) [14], directed acyclic graph (DAG) models [51],
weave models (Weave) [18], and message passing neural
networks (MPNN) [17], but also include classic conventional
algorithms such as random forests (RF) [52], multitask net-
works (Multitask) [53], gradient boosting (XGBoost) [54],
logistic regression models (Logreg) [55], support vector
machines (KernalSVM) [56], influence relevance voting
(IRV) [57], bypass networks (Bypass) [58] and kernel ridge
regression (KRR) [59]. All trained MSGG models are
available at https://github.com/ShuangWangCN/MSGG. The
results of the comparison of our algorithm and these models
are given as follows, and the comparisons of the different
algorithm designs are also described.

A. PERFORMANCE ON THE REGRESSION TASK
For the regression task, the performance metric is the root-
mean-square error (RMSE), and a lower value represents
better performance. Our model was applied to three datasets
(FreeSolv, ESOL, Lipophilicity) in which the number of
molecules is smaller than 5000 and the results are shown
in Fig. 7- Fig. 9. It is demonstrated that our algorithm is
superior to all models on the FreeSolv (0.94), ESOL (0.55)
and Lipophilicity (0.653) datasets, which proves that the gen-
eralizability of our model is better than that of other methods.
To evaluate the performance of our model on a large
dataset in which the number of molecules is close to 10000,
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FIGURE 9. Performance of the different algorithms on Lipophilicity.

an experiment was carried out on the PDBbind dataset and the
results are shown in Fig. 10. Different from the other datasets,
PDBbind, which records the binding affinities for protein-
ligand complexes, contains the molecules (ligands) and the
corresponding proteins. There are several methods [60]-[62]
focusing on the comprehensive three-dimensional repre-
sentation of a protein-ligand interaction to investigate the
binding affinities, which have shown good performance.
Potentialnet gathered the bonded ligand information and spa-
tial proximity to protein atoms in one graph [60]. In [61],
a CNN-based model is applied to the 3D grid representation
of the protein-ligand structures. However, the 3D informa-
tion is not considered in our molecular processing model.
Instead, the ligands are processed with MSGG. The cor-
responding protein sequences are processed by embedding
and the 1D CNN (convolutional neural network), which is
same as GraphDTA [63]. These two representation vectors
are then concatenated, and a multilayer perceptron is utilized
to predict the binding affinities. Our model obtained the best
performance among all methods on PDBbind. In general,
our model performed the best on all four datasets on the
regression task, which proves that the generalizability of our
model is better than that of other methods.

B. PERFORMANCE ON CLASSIFICATION TASK

As for the classification task on the BBBP and BACE datasets
in Fig. 11 and Fig. 12, the AUC-ROC metric was adopted,
for which a higher value represents better performance.
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FIGURE 11. Performance of different algorithms on BBBP.

FIGURE 12. Performance of different algorithms on BACE.

BBBP and BACE are two imbalanced classification datasets
in which the positive/negative weights are 3.25 and 0.84,
respectively. In the training process, we assigned different
weights to the positive and negative samples, which is the
same as MoleculeNet. Our MSGG obtained the best perfor-
mance with 0.753 on the BBBP dataset and 0.874 on the
BACE dataset. On the two classification tasks, our model
achieved the best results among both the graph-based deep
learning methods and the conventional machine learning
algorithms.
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TABLE 1. Training time/epoch for the six datasets.

Dataset FreeSolv ESOL lipophilicity
Time 19s 51s 339s
Dataset PDBbind BBBP BACE

Time 1316s 142s 170s

node
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node+neighbor
edge+neighbor
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-
——
-
——
——

T T T T T T 1
10 15 20 25 30 35 40 45 50
Iteration

FIGURE 13. The performance of different combinations of channels.

In summary, these results indicate that our model performs
well in both regression and classification tasks on many kinds
of datasets, which suggests that the proposed model is robust
enough to handle diverse predictions of molecular properties.
To take it a step further, our model could extract the deep
information of molecules. Biologically meaningful substruc-
tures are the basic units in our model, which guarantees the
rationality of the feature extraction. The combination of dif-
ferent channels that capture the node, neighboring node and
edge features, respectively, could cover richer information
compared with other graph-based models, which enhances
the feature discrimination. Therefore, the proposed method
could perform well on complex tasks.

Our algorithm based on PyTorch was performed on a
workstation with 64 GiB of RAM, an Intel(R) Xeon(R)
CPU E5-2603 v4 CPU, and a TITAN Xp Graphics card.
The training time of one epoch for the six datasets is shown
in Table 1. The training time is highly related to the size of
the dataset. It took approximately 22 minutes for one epoch
on the PDBbind dataset because it is a large dataset containing
7904 molecules for training.

C. COMPARISON FOR DIFFERENT COMBINATIONS OF
CHANNELS

Here, a more detailed experiment to illustrate the necessity of
combining the three channels was performed. Fig. 13 illus-
trates the performance of different combinations of the three
channels on the FreeSolv test dataset with different num-
bers of training iterations (8, 18, 28, 38, and 48), including
three single channels, combinations of two channels and a
combination of three channels. Seven models were trained
with the same hyperparameters and architecture. From the
figure, we could see that the RMSE gradually decreases as
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FIGURE 15. The comparison of the substructure + GNN, atom + Bi-GRUs
and the proposed model.
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FIGURE 16. The comparison of the substructures with and without linking
information on the regression task.

the training iteration increases. The convergence speed of the
combination of three channels is the fastest and obtains the
lowest RMSE.

D. COMPARISON WITH DIFFERENT RECURRENT NEURAL
NETWORKS

As for the main model architecture, the GRU network is
selected due to its ability to filter the sequence information.
To verify its effectiveness, an experiment comparing it with
other two widely used recurrent neural networks (the standard
RNN and LSTM) was carried out. The three models were
applied to the ESOL test dataset. The results are shown
in Fig. 14. We trained all models with different numbers of
epochs (5, 10, 15, 20, 25, 30, 35, and 40). From Fig. 14, it can
be seen that GRU model performs better than the other two
models as the number of epochs increases.
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E. COMPARISON OF DIFFERENT COMBINATIONS OF
SUBSTRUCTURES AND BI-GRUS

The molecules in our model are decomposed into substruc-
tures. These substructures consist of a new S-Graph that
describes the original molecule. Node-level features are uti-
lized to describe the basic nodes and edges in the S-Graph.
The molecule-level features obtained by the Bi-GRUs are
applied to describe the whole molecular properties. In this
section, an experiment was performed to evaluate the com-
binations of substructures and Bi-GRUs. Two other models
are introduced for comparison purposes. The first one is the
combination of substructures with node-level features and a
higher-order graph neural network [64], which is an advanced
graph-based deep learning method. The second model is
the combination of an atom-based molecular graph and
Bi-GRUs. The results are shown in Fig. 15. From the
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FIGURE 20. The comparison of the molecules that are similar in structure but distinct in SMILES.

comparison of Fig. 15 and Fig. 8, it is obvious that these
two methods are superior to the GC and DAG which are
graph-based deep learning methods, but the proposed method
that combined both substructure encoding and Bi-GRUs per-
formed better than these two.

F. COMPARISON OF SUBSTRUCTURES WITH LINKING
AND WITHOUT LINKING

To improve the generalizability, the linking information is
added to distinguish the different substructures. We designed
an experiment to compare the performance of substructures
with and without linking information. The experiment was
performed on six public datasets, in which only the sub-
structure identification methods were different and the feature
extraction procedures were the same. The substructures with
linking features have more categories those that without link-
ing features. For example, there are 1254 categories (IDs) of
the substructure with linking and 281 categories (IDs) of the
substructure without linking in the BBBP dataset. Fig. 16 and
Fig. 17 illustrate the comparison of the substructures with
linking features and without linking features on the regression
task with the RMSE metric and on the classification task
with the AUC-ROC metric, respectively. As shown in the
two figures, the substructure with linking outperformed the
substructure without linking on all datasets for the regression
task and on both datasets for the classification task, which
proves that substructure splitting including linking informa-
tion improves the performance of MSGG. The linking feature
of nodes represents chemical information in the molecule.
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Although the atoms and bonds belonging to two nodes are
same, they may connect with different nodes if the linking
information of the two nodes is different. The potential con-
nectivity possibilities between nodes could be learned in the
training process.

G. COMPARISON OF GRU AND BI-GRUS

In the training and prediction process, the bidirectional
GRUs was adopted considering that there are dependencies
between molecular substructures, and bidirectional connec-
tions between substructures are helpful to discover the rela-
tionship between the adjacent nodes in a graph. The compari-
son between the GRU and Bi-GRUs was implemented and the
results are shown in Fig. 18 and Fig. 19. The Bi-GRUs model
outperformed the GRU model on all four regression datasets
and the two classification datasets, which demonstrates that
the design of the bidirectional GRU is the best because the
connections between the nodes in molecules are bidirectional,
and the standard GRU could not capture the complete connec-
tivity information.

H. COMPARISON FOR MOLECULES WITH SIMILAR
STRUCTURES BUT DISTINCT SMILES

Three pairs of molecules are selected from the Lipophilic-
ity test dataset, which provides experimental results on the
octanol/water distribution coefficient (logD at pH 7.4). For
each pair, the two molecules are very similar in structure but
very distinct in SMILES. The visualizations of the three-pair
molecules with the SMILES and logD values are displayed
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in Fig. 20. The real experimental logD of the molecule and
the average prediction of our trained models are also labeled.
It can be observed that the experimental logD values of
the two molecules in each pair have little difference, which
suggests that the logD value is affected by the structure.
Moreover, the predicted logD values are close to the ground
truth, which demonstrates that our model could capture the
molecular structures.

V. CONCLUSION

In this paper, we proposed a novel MSGG architecture based
on molecular substructures. A new S-Graph that decom-
poses molecules into substructures was put forward. Features
were extracted both at the node level and molecule level,
which capture the fine-grained and coarse-grained connectiv-
ity information of molecules. Three Bi-GRUs were adopted
on three channels for molecules to cover more elaborate
information. The experiments on both the regression and
classification tasks on different datasets support the general-
izability and robustness of our model, which outperformed
state of the art algorithms for molecular property predic-
tions. Molecules are special graph-structured data contain-
ing much chemical information, and molecular functional
groups play important roles in molecular properties. In the
future, we will aim to explore the molecular properties
based on molecular functional groups utilizing deep learning
methods.
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