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Abstract: The recent advances in plant biology have significantly improved our understanding of
reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular pro-
cesses. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing
complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by
thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved
protein families. The molecular and biological functions of redox regulation in photosynthesis are
usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle
sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the
recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioin-
formatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression,
phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species
revealed conserved key features including functional domains catalyzing oxidation and reduction
reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achiev-
ing homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress
cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic
efficiency and plant productivity.

Keywords: reactive oxygen species; signaling transduction; phylogenetic analysis; photo-protection;
gene family evolution; photosynthesis

1. Introduction

Oxygenic photosynthesis originated in cyanobacteria and subsequently the evolution-
ary pressure for higher redox potentials (electron source and oxygen (O2)) resulted in the
evolution of reaction centers or photosystems. The findings that O2 evolving reaction center
2 (photosystem II; PSII) was originated from reaction center 1 (photosystem I; PSI) through
a series of evolutionary events in algae and plants [1]. Molecular evolutionary events of
photosynthesis were largely associated with genome duplication, gene fusion, and splitting,
and lateral gene transfer, which drove the metabolic fluxes and photosynthetic components
among diverse species of algae and plants [2]. Further, the evolution of aerobic respiration
and novel biosynthesis pathways provide insights into the modern biology of complex
multicellular organisms [3].

A fraction of captured light energy is utilized in converting water (H2O) and carbon
dioxide (CO2) to glucose and O2 as end products [4]. The hypothesis that the first O2
molecules were produced as a by-product of photosynthesis is still debatable. Earlier stud-
ies proposed the appearance of O2 molecules as a result of the photo-dissociation of CO2

Antioxidants 2022, 11, 2085. https://doi.org/10.3390/antiox11112085 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11112085
https://doi.org/10.3390/antiox11112085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-8957-4099
https://orcid.org/0000-0002-2577-9001
https://orcid.org/0000-0002-1395-9996
https://orcid.org/0000-0001-7742-5195
https://orcid.org/0000-0002-7531-320X
https://doi.org/10.3390/antiox11112085
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11112085?type=check_update&version=2


Antioxidants 2022, 11, 2085 2 of 23

and H2O by ultraviolet (UV) radiations [5,6]. However, it has universally been accepted
that cyanobacteria were the first organisms to evolve photosynthetic machinery on Earth,
releasing O2 on a large scale into the atmosphere. Chloroplasts, the core photosynthetic
organelle, have evolved with plastids from photosynthetic prokaryotes, precisely, ancestors
of cyanobacteria into plants via endosymbiotic evolution more than 1 billion years ago [7].
Subsequently, the continuous oxidation of H2O to O2 has remarkably changed the redox
status of the Earth, oceanic, and atmosphere.

Reactive oxygen species (ROS) occurred soon after the first O2 molecules originated
on Earth by the ancestors of cyanobacteria about 3.8 billion years ago [8]. Since then, these
signaling molecules have been produced constantly through aerobic metabolism. It has
also been proposed that ROS initiated from atmospheric oxygen soon after its release from
biological systems [9,10]. Green plants (Viridiplantae) and algae produce oxygen radicals
and their derivatives during aerobic photosynthesis and respiration [11]. These include
free radicals [e.g., superoxide anion (O2

•−), hydroxyl radical (•OH), hydroperoxyl radical
(HO2

•) and alkoxy radical (RO•)] and non-radical, e.g., singlet oxygen (1O2) and hydrogen
peroxide [(H2O2)] molecules [12,13]. Early reports showed that ROS are toxic signaling
molecules accumulated in plant cells to disturb cellular homeostasis. Overaccumulation of
ROS disrupts cell metabolism which may lead to DNA damage, genome instability, and
programmed cell death [14,15]. In addition, ROS are known to regulate photorespiration,
growth, and stress response in plants [16–18]. However, our understanding regarding ROS
signaling and molecular functions in cell compartments and organelles, has been limited
due to technological difficulties over the last few decades [11,19,20].

As an important metabolic process, photosynthesis regulates ROS production in algae
and plants. The excessive ROS as a by-product of oxygenic processes in chloroplast, mito-
chondria, peroxisomes, and nuclei [11,15,20–24], disturb photosynthetic electron transport
(PET), PSII, PSI, as well as photorespiration and gene expression levels [25–28]. Photosyn-
thetic cells have diverse layers of defense to cope with oxidative stress. The prevailing
concepts show that redox signaling is carried out within antioxidative systems at the cel-
lular level [29], and many of those associated proteins are evolutionarily conserved in
plants and algae [30]. The multilayered defense systems fine-tune the ROS balance during
PET, and excessive ROS diffusion and reactivity are also balanced at the organellar level
throughout the life cycle [10,20,30], which is also known as redox homeostasis [31].

Here, we review the current knowledge of ROS homeostasis and oxygenic photosyn-
thesis. We discuss ROS toxicity and signaling in the important organelles of a plant cell. We
then analyze the molecular evolution of protein families associated with photosynthesis
and redox regulation in plants and algae. In addition, we compare the evolution of ROS
signaling in photosynthetic machinery in chloroplasts of distinct C3, C4, Crassulacean
acid metabolism (CAM) plants and early divergent lineages of plants and algae. Finally,
we highlight a few key mechanisms of how plants are adapted to high light intensities.
We thus propose efficient plant biological modification of ROS homeostasis and photo-
synthesis to achieve better crop productivity for global food security. Also, we direct
the reader to some excellent recent reviews that have focused on ROS toxicity, signaling,
or photosynthesis [28,32–37].

2. ROS Signaling Is a Double-Edged Sword in Plant Photosynthesis

ROS affects almost all aspects of plant life. ROS toxicity in different species is com-
monly regarded as oxidative stress, potentially causing a level of damage that led to
intracellular and intercellular lethality. The O2

•−, •OH, H2O2 and 1O2 reactivity may vary
across or within cells, due to the site of generation, and the nature of the biomolecules.
Among them, O2

•− and 1O2 have longer half-lives ranging from 1–4 µs with a migration
distance of 30 nm in mitochondria, chloroplast, and nuclei, conversely, H2O2 is closer to
1 ms with a migration distance of 1 µm reacting with DNA and sensitive cysteine (Cys)
and methionine (Met) residues. Additionally, •OH’s half-life is approximately 1 ns with
a migration distance of 1 nm in the Fenton reaction [37]. Furthermore, •OH’s very short
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migration distance allows this ROS molecule to be extremely reactive with DNA, RNA,
lipids, and proteins. The expression levels of ROS also vary across the subcellular organelles
suggesting that the regulation of ROS is dynamic and that compartmentalization is utilized
to reduce ROS lethality (Table S1). ROS signaling can be mediated by mitochondrial nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidases, specifically, the respiratory
burst oxidase homologs (RBOHs) induce ROS production in the apoplast [38,39] (Figure 1).
The redox signaling complex largely consists of RBOHs, superoxide dismutases (SODs;
different metal cofactors), catalases (CATs), peroxidase (PODs), glutathione peroxidase
(GPXs), iron-dependent mechanisms and a network of thio- and glutaredoxins [40–42].
Knockout or knockdown of any of them results in modified redox signaling in plants [43].
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Figure 1. The oxidative stress signaling in plant cell compartments. ROS, such as O2
•− and H2O2

are produced by NADPH oxidases specifically RBOHs at the apoplast, accumulating in chloroplast,
mitochondria, peroxisomes, and nuclei. Accumulation of H2O2 in the presence of F2+ form hydroxyl
radicals and initiates oxidative stress that results in distorting the structure of lipids, proteins, and
DNA. Later, the integration of enzymes, such as SODs, APXs, DHAR, and CAT in cell organelles
maintains ROS levels and gene expression.

In general, some physiological functions of plants are regulated via the interaction of
ROS with Cys and Met residues of key proteins [44,45]. The oxidative posttranslational
modifications (oxiPTM) oxidize the residues at physiological pH, thus altering the structure
and functions of proteins [44,45]. Therefore, the passive ROS diffusion through aquaporins
and the direct interaction occurring in chloroplasts and nuclei should be tightly controlled
by antioxidant systems to neutralize ROS and oxidation to mitigate damage [46,47]. For
example, H2O2 profiling analyses showed that it catalyzes the biochemical reactions at
lower concentration (e.g., average H2O2 concentration, 10 µM in cellular compartments
especially peroxisomes and apoplast mediate normal cell division) but creates oxidative
damage at higher concentrations in plants (Supplementary Figure S1) [48,49]. The H2O2
scavenging is accomplished by coordinated activities of antioxidative enzymes [50] such as
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SODs, which processes O2
•− to H2O2 and are ubiquitously expressed in apoplast, cytosol,

peroxisomes, chloroplasts, mitochondria and nuclei [51,52].
Photosynthesis in chloroplasts is directly linked to cellular redox regulation in plants [16].

Chloroplast-associated 1O2 is produced from chloroplast triplet state (3Chl) by interacting
with O2 molecules (ground state 3O2), specifically in PSII under varying irradiance [49,53].
Elevated 1O2 levels in the PSII reaction center cause photo-inhibition resulting in oxidative
damage [54] and metabolic breakdown, leading to oxidation of the D1 protein, which specif-
ically dephosphorylates the PSII reaction center [55]. The irreversible photo-inhibition
drives the expression of 1O2 related genes, which activate the antioxidative system, and
ultimately induce resistance against high light (HL) and other stresses in plants [54,56,57].
Moreover, PSI oxidation is known as the Mehler reaction—photo-reduction of O2 [58].
This reaction is catalyzed by thylakoid and stromal-associated SODs, producing O2

•−

as the first product and then dismutase O2
•− to H2O2. H2O2 may cause oxidation to

Calvin-Benson Cycle (CBC) components regulated by the thioredoxin system [59], 2-Cys
peroxiredoxin and ascorbate peroxidase (APX) [60]. Further reduction of H2O2 to H2O
is catalyzed by the integration of APX, thiol related enzymes such as thioredoxin (TRX),
peroxiredoxin (PRX) and NADPH. However, the enzymatic system is tightly regulated
in cellular compartments where H2O2 retains the potential to move out of chloroplast
and mitochondria interacting with transcription factors for retrograde signaling [56,61–64],
which regulate the gene expression in the nucleus. In Arabidopsis, the NAC domain
containing protein 17 (ANAC017) interacts with enhanced H2O2 levels and modulates the
gene expression [65]. The ANAC017 activity is inhibited by radical-induced cell death 1
(RCD1), which mediates ROS-related retrograde signaling in mitochondria has also been
anticipated [66]. Examining the dynamics of chloroplast demonstrate that this organelle
can actively sense environmental cues, regulating the nucleus-chloroplast communica-
tion and gene expression. Chloroplast associated ROS retrograde signaling is largely
dependent on 1O2, produced as a by-product of PSII reactions. The production of 1O2
facilitates the chloroplast to nuclear communication, which ultimately modulates the gene
expression, responds to stress, and programmed cell death [67]. Taken together, these
studies provide a mechanism for how PSII and PSI mediate redox reactions are the keys to
balance photosynthesis.

Both PSII and PSI are sensitive to light intensities and other abiotic stresses. Redox
homeostasis is disturbed when the rate of damage is higher than repair, causing photoinhi-
bition [68]. The excessive energy under HL can be dissipated as heat via non-photochemical
quenching (NPQ), which subsequently adjust the chloroplasts composition and metabolism.
The presence of an antioxidant system in chloroplast helps in nucleus-chloroplast com-
munication that drives the gene expression. In addition, peroxisomes accumulate H2O2
under photorespiration [49], which is removed by peroxisome associated CATs [69]. Recent
findings indicate that antioxidants ascorbate (Asc) and glutathione (GSH) regulate gene
expression under stresses [70,71], suggesting their dynamic nature and high sensitivity to
stress cues. In summary the mechanisms are now well-defined, reveal that moderate levels
of ROS are essential for cell proliferation, photosynthesis mechanisms, and maintaining re-
dox homeostasis at a basal level within chloroplasts. However, ROS signaling components
are less studied in relation to the evolution of the key protein families from algae to plants.

3. Molecular Evolution of Redox Regulatory Network

Modern chloroplasts arise from photosynthetic prokaryotes. Green plant chloroplast
genomes contain small proportions of genes than their ancestors [7], indicating that en-
dosymbiosis resulted in the loss and relocation of genetic information. During the transition
from aquatic life to terrestrial habitats, green plants have evolved some new pathways for
redox regulation and defense systems. Trx-based redox regulation has been observed in all
groups of life, indicating a significant role under diverse redox environments [72,73].

The alterations in the environment cause large evolutionary pressure, leading to the
emergence of new functions to existing genes and the formation of new genes [74,75].
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Comparative genomic analyses revealed the regulatory roles of conserved regions of key
gene families for diverse cellular functions such as photosynthesis in eukaryotes [76].
Thus, the evolutionary histories of redox homeostasis and photosynthesis can be drawn
through comparative genetic analysis, gene expression profiles, phylogenies, conserved
domain analysis, and prediction of 3D protein structures. In our previous comparative
molecular evolution studies, we have revealed conserved features of over 100 gene families
in green algae and land plants [77–84]. Here, the functional regulatory networks among
distinct species were analyzed through comparative genetic analysis of sequences in redox
signaling of photosynthesis from evolutionarily important lineages of plants and algae
(Figures 2 and 3, Supplementary Figures S2–S5).
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Figure 2. Comparative molecular evolution of key photosynthetic redox regulators and photosynthe-
sis protein families in algae and land plants candidate proteins were extracted using BLASTP (NCBI),
and the all-against-all BLASTP search with satisfied E-value of 10−10 and query coverage of 50%.
Heat map was generated using TBtools [85] from the data of seven photosynthesis-related proteins
and four redox-related families. Black squares indicate the proteins that do not satisfy the selection
criteria. ACHTs: atypical Cys His-rich, CF1-y: gamma subunit of ATP synthase; CP12; FBPase:
fructose-1,6-bisphosphatase; GADPH: glyceraldehyde-3-phosphate dehydrogenase; NADP-MDH:
NADP+ dependent malate dehydrogenase; RCA: ribulose-1,5-bisphosphate carboxylase/oxygenase
activase; SBPase: sedoheptulose-1,7-bisphosphatase; TrxLs: Trx-like.
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4. ROS Related Gene Families Are Highly Conserved across Land Plants and
Green Algae

We found that there are evolutionarily conserved features for ROS signaling and photo-
synthesis in the examined major green plant lineages (Figure 2, Supplementary Figure S3).
Phylogenetic analysis suggests that these families may have evolved from streptophyta.
The structure of TrxLs contains conserved WCRKC domain with two cysteine residues
which serve as redox switches.

The dominant regulators with oxidation activities in chloroplast are Trx-like, NADPH-
dependent Trx- reductase C (NTRC) proteins [88]. These proteins further comprise Trx-like
2 (TrxL2), and atypical Cys His-rich Trx (ACHT) groups based on oxidation factors [89–95],
and catalyze H2O2 reduction through interacting 2-Cys PRX (2CP). Different subfamilies
of Trxs may exist, such as Trx-x in Arabidopsis [96], Trx-y in green algae Chlamydomonas
reinhardtii and Trx-z in Arabidopsis and Solanum lycopersicum [97,98]. The Trx- gene number
in plant species is largely expanded in angiosperms, for example, there are more than
twenty Trx isoforms in Arabidopsis [99]. The oxidation factors family proteins can be
further classified into Trx-like f-, m-, x-, y-, or z- with unknown functions except for TRX-f,
which specifically carried out the oxidation of target photosynthesis proteins [93,100]. In
addition, five isoforms of ACHT were reported in Arabidopsis [101], concomitantly ACHT1
and ACHT2 revealed an association with targeted oxidation.

Recent in vivo experiments confirmed the roles of Trx and ACHT in oxidation pro-
cesses in the chloroplast [102]. Yokochi et al. [102] discovered that the Trx-f and TrxL2.1
serve as oxidation factors of CBC enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase
activase (RCA) and gamma subunit of ATP synthase (CF1-γ), respectively ACHT1 and
ACHT2 play a redundant role in oxidizing fructose-1,6-bisphosphatase (FBPase) while
phosphoribulokinase (PRK) regulation under Trx- system is still elusive. Comparative
genomic studies suggest that TrxL2.1 and TrxL2.2 are conserved in photosynthetic organ-
isms including flowering plants, mosses, and streptophyte algae (Figures 2 and 3), but
not in chlorophyte algae such as Chlamydomonas reinhardtii [88]. Both TrxL2.1 and TrxL2.2
share functional residues and biochemical features but differ in expression patterns [90].
In Arabidopsis, TrxL2.1 and ACHT2 highly express in leaves [102,103]. The trxl2.1 and
acht knockout mutants displayed similar phenotypes and physiology (chlorophyll content
and photosynthetic parameters) compared to those in the wild type under low light. In
contrast, ntrc mutants showed reduced ROS levels with reduced growth and pale green
phenotypes. Interestingly, ntrc mutants with background Trxl2.1 largely recovered the
wild-type phenotype, suggesting that 2CP retains the potential to accept electrons from
both TrxL2.1 and ACHT, and the NTRC oxidation system. In addition, it was revealed
that reduced growth of Arabidopsis ntrc mutants was associated with overoxidation of
CBC proteins rather than imbalanced redox regulation or reduced H2O2 scavenging. A
remarkable positive association was observed between ACHT levels and NPQ, which
reveals overexpressed ACHT led to high NPQ [102]. These studies suggest that TRX and
ACHT are key players in redox regulation in CBC. Future experiments will uncover the
underlying mechanism of remaining redox regulators for photosynthesis.

5. Key Photosynthesis Related Gene Families Are Evolved from Streptophyta Algae

We found that CBC enzymes share common features among all tested evolutionary
lineages (Figure 2, Supplementary Figure S4). Phylogenetic analysis suggests that these
families may have evolved within streptophyta. For instance, the structure of GAPDH
holds a conserved functional NAD binding domain that is used as a coenzyme.

The CBC enzymes including RCA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
CF1-γ, FBPase, SBPase, and PRK [59,73] are highly sensitive to irradiance with high activi-
ties under light conditions. RCA is involved in the activation of Rubisco and belongs to
the AAA+ family [104], which contains the α and β isoforms. These two isoforms may
be generated from alternate splicing or encoded by different genes [105] in green algae
and land plants with the exception few species including Chlamydomonas have only a
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short RCAβ isoform [106]. Both RCA isoforms differ with the presence of two conserved
C-terminal Cys residues, where reduction is catalyzed by Trxf and ATP/ADP ratio under
light conditions. GAPDH is further grouped into gapA and gapB, sharing similar compo-
sition with a distinction C-terminal extension residing 30 amino acids (aa) in gapB. These
extended aa contain Trx- target Cys residues regulating light and dark reactions. gapA
and gapB are present in streptophyta and green algae [107,108], with the exception that
gapB was found absent among most oxygenic phototrophs, containing only gapA copies or
additional gapC [109].

FBPase is required for dephosphorylation of fructose-1,6-bisphosphate (F1,6P) to
fructose-6-phosphate (F6P). Light activation of FBPase and PRK was first discovered in
Chlorella [110] and subsequently observed in higher plants [111,112]. PRKs show strik-
ing features along the evolutionary lineages, for example, homodimeric in eukaryotes,
heterodimeric in cyanobacteria, and octameric in non-photosynthetic prokaryotes [113].
Considering the redox regulatory components, FBPase and PRK activities are largely depen-
dent on Trxf and Trx-m, respectively, which carry out disulfide reduction and make them
activated [114]. As an oxidizing enzyme, SBPase catalyzes sedoheptulose-1,7-bisphosphate
(S1,7P) to sedoheptulose-7-phosphate (S7P), which has been discovered in many photo-
synthetic organisms except cyanobacteria. However, cyanobacteria contain a bifunctional
SBPase with similar activities [115]. The findings that share sequence similarity with SBPase
and Trxf indicate that both enzymes may have a common evolutionary origin [116].

C4 and CAM photosynthesis metabolism is regulated by NADP+-dependent malate
dehydrogenase (NADP-MDH). NADPH serves as an electron donor during C4 CO2 fixation
by reducing oxaloacetate into malate during the day and at night in CAM plants [117].
The molecular mechanism associated with NADP-MDH was first observed in the C4
plant, Sorghum bicolor, and subsequently in C3 and CAM plants [118]. NAPH-MDH is
highly dependent on light-responsive Trxs, possibly Trxf or Trxm types evolved from
Chlamydomonas reinhardtii [119]. In plants, NADP-MDH reside Cys extensions both at the
C- and N- terminals, but green algae contains only C-terminal residues [119]. Although
enzymes associated attributes have been reported, functional validations in a range of
evolutionarily important green plants are yet to be conducted in future research work.

6. Antioxidant Related Gene Families Are Conserved across Land Plants and
Green Algae

In our previous publications, we reported an early evolution of antioxidative enzymes
from Chlorophyte algae [63,78]. SOD, CAT, POD, GPX, GR, glutathione S-transferase
(GST), ascorbate peroxidase (APX), monohydroascorbate reductase (MDHAR) and de-
hydroascorbate reductase (DHAR), Asc, GSH, and antioxidant, phenolic compounds,
alkaloids, flavonoids, carotenoids, free amino acid, and alpha tocopherols [40–42] play
crucial roles in catalyzing oxidation-reduction reactions to regulate redox homeostasis
in plants. The first reported antioxidant enzyme was SOD, which removes ROS, and is
thought to have evolved even before the origin of eubacteria and archaea [30]. In cyanobac-
teria, several antioxidants containing protein and non-protein molecules have evolved from
Synechococcus PCC [120]. The constant release of O2

•− anions from the photosynthetic ma-
chinery and respiratory electron transport chain [120], and on other cellular surfaces [121]
are scavenged by SODs and superoxide reductase (SORs). Similarly, PODs and CATs
potentially reduce the stability of H2O2, RO• and •OH radicals [122]. Although O2

•- are
produced as by-products of aerobic life, they also promote iron acquisition, cell signaling,
and growth [121,123]. O2

•− appears to function differently upon over-accumulation in
plant cells, destabilizing DNA by inducing Fenton reactants [124] and depletion of 4Fe-4S
clusters in proteins [125], which are required for photosynthesis and amino acid biosynthe-
sis, respectively. Taken together, the results provide a clue that redox homeostasis needs to
be maintained to regulate both the molecular and biological functions of organisms. This
study highly supports the existence of SODs in the genomes of Eukarya, e.g., land plants
and green algae (Supplementary Figure S5A,B), archaea, and bacteria [126].
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7. Redox Regulation during Photosynthesis

The light-driven electron transport chain (ETC) mediates its function by recruiting
H2O, generates reducing power NADPH in the thylakoid membrane, and initiates the pro-
ton (H+) gradient that leads to ATP synthesis [3]. In chloroplasts, redox status is regulated
by Cys residues of photosynthetic enzymes, which are highly conserved and retain the
potential to switch ON or switch OFF signaling [127], indicating some fine-tuned mecha-
nisms are involved during photosynthesis. The dominant ROS that reduces photosynthetic
efficiency are 1O2, H2O2 and O2

•−, in PSI [128]. Plant chloroplasts have evolved different
strategies to minimize photo-oxidative stress. One such strategy includes the maintenance
of CBC enzymes that contain redox switches as Cys residues [59,129]. Other strategies
involve non-cyclic electron flow (NCEF, reduced photochemical energy; PQ and ETC), and
cyclic electron flow (CEF), photorespiration, balanced PSI/PSII ratio, O2 photo-reduction,
and protein quality have been adopted to increase photosynthetic efficiency [130–133]. Low-
ering PQ and ETC initiates NPQ which results in subsequent reductions in the excitation
energy of chlorophyll a, which is then dissipated as heat [133–135]. On the other hand, CEF
produces higher ATP relative to NADPH; thus O2

•− and H2O2 become the acceptors of
energy in PSI [136]. CEF seems to be important because it reduces 1O2 synthesis at PSII and
increases the proton gradient in thylakoid membrane and activates NPQ processes [137]
(Supplementary Figure S6). Whether the cyclic or non-cyclic mechanism activates to protect
the photosynthetic machinery is highly dependent on photosynthetic cell and/or organelle
types and environmental cues.

8. Regulation in Calvin Benson Cycle

Here, we propose a simplified model of the mechanisms of conserved enzymes in the
operation of photosynthesis (Figure 4A). Light and dark reactions are catalyzed by unique
regulatory pathways involving enzymes with conserved functional Cys residues [59,129].
Among them, Trx- and NTRC systems play a significant role in maintaining redox home-
ostasis in the chloroplast [73]. As well, Trx- system encoding multicomponent may be
localized in chloroplast, mitochondria, nucleus, and cytoplasm [99], thus plant chloroplasts
have widely adapted Trx- system that carried out CO2 fixation via disulfide reduction of
CBC enzymes, including RCA, CF1-γ, FBPase, SBPase and PRK [59,73]. Increasing evidence
suggest that regulatory proteins become higher in expression under light, while lower
in the dark reactions [138,139]. The reducing powers from ETC are transferred to TRX
through ferredoxin (fd) and ferredoxin-TRX reductase (FTR) [140]. Further, the activated
TRX targets the corresponding photosynthetic enzymes, and reduce the disulfide bond.
Also, it was found that NTRC power transfer efficiency is higher than TRX proteins; thus,
NTRC may function as main regulator donating an electron to 2CP. In plants, the affected
stability of NTRC led to phenotypic abnormalities, decreased chlorophyll content, and
higher NPQ [141–147].

Under dark reactions in the chloroplast stroma, the redox-related proteins are reoxi-
dized and reoxidation is needed to balance the NADPH status in the chloroplast, especially
under light fluctuations. This phenomenon is accomplished by a plastic malate valve,
consisting of oxaloacetate/malate transporter 1 (OMT1) [148] and malate dehydrogenases
(MDHs), which carry out stromal OAA reduction to malate [149]. Coexisting MDHs iso-
forms have a differential preference for coenzymes, such as NADPH-MDH has a strong
preference for NADP [H] [150] while NAD-MDH chooses NAD [H] [151]. Interestingly,
their co-existence has caused much confusion among scientists for several years. The
opinion is that chloroplasts use NAD, merely converting it into NADP by NAD kinase
2 (NADK2) under light, while NADH is not further phosphorylated [152]. Earlier stud-
ies showed that FNR’s have strong affiliations for NADP [H] [153–155]. Similarly, the
chloroplast stromal NADPH conversion into NADH interferes with balanced NADP [H]
synthesis and utilization and thus affects photosynthesis, precisely CBC [156]. A recent
study revealed that NADP-MDH plays a crucial role in chloroplast redox homeostasis
under varying light intensities [127]. This pathway activates chloroplast NADP+ dependent
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MDH via Trxs, subsequently, the generation of NADP+ and increased reducing power is
transported and discharge pressure from the chloroplast. The loss function of MDH in
Arabidopsis leads to stunted growth in response to short days or fluctuating light while in
the dark the phenotypic differences are still unchanged. MDH-mediated redox regulation
plays a crucial role in response to prolonged dark period and varying light intensities [127].
Considering the importance of oxidation, the identification of uncharacterized players will
further explore the associated pathways for redox homeostasis in photosynthesis.
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activate and deactivate the target photosynthesis enzymes. (A) Calvin-Benson Cycle (B) Kranz
anatomy (C) CAM photosynthesis (D) Early divergent land plants and green algae. Trx-like proteins
carry oxidation and reduction reactions to maintain PSI homeostasis. RCA: ribulose-1,5-bisphosphate
carboxylase/oxygenase activase; FBPase: fructose-1,6-bisphosphatase; SBPase: sedoheptulose-1,7-
bisphosphatase; PRK: phosphoribulokinase; PSI: photosystem I; PQ: plastoquinone, PTOX: plastid
terminal oxidase; PGR5-PGRL1: 5-PGR5-like photosynthetic phenotype 1; FNR: ferredoxin; NADPH
reductase; Fd: ferredoxin.

The core photosynthetic enzymes have also been found in microorganisms [157,158].
The question arises, how redox switches are regulated by nonplastidial type homologs
of CBC enzymes? It should be noted that these homologs do not hold redox switches
while remaining activated without reduction via redox transmitters. Dark conditions are



Antioxidants 2022, 11, 2085 11 of 23

essential for maintaining redox status, such as FBPase restricts excessive ATP utilization
during the reaction catalyzed by phosphofructokinase [73]. In addition, ATP synthase
restricts a useless reverse reaction and ATP hydrolysis [159,160] and MDH limits the
reducing molecules’ export to chloroplasts through the malate valve [149,161,162]. The
structure of MDH contains Cys residues both at N- and C- terminals indicating that dark
mediated MDH regulation is tightly controlled [161,163]. While FBPase and MDH have
essential functions in chloroplast metabolic homeostasis under varied light intensity and
metabolic states [139,164]. the detailed mechanism of redox regulation for plant metabolism
is still elusive.

9. Regulation in Kranz Anatomy

C4 photosynthesis appears in two types of cells [mesophyll cell (MC) and bundle
sheath cell (BSC)], known as Kranz anatomy (Figure 4B). It utilizes an additional two ATPs
and results in a higher photosynthetic rate, lower photo-respiratory flux [165] and reduced
CO2 compensation point [166]. The transition of photorespiration between both cell types
upregulates uncoupling protein (UCP) and bundle sheath mitochondria alternative oxidase
(mAOX), which serve as a valve to scavenge NADH via glycine carboxylase mediated
mechanism [166]. The activated carboxylation in C4 bundle sheath export NADH to the res-
piration electron chain, and AOX maintain the ROS balance [166]. Earlier studies showed no
significant alterations in the redox systems of C4 and C3 (comprising only MC). The differ-
ences indicate the use of alternative decarboxylation enzymes in distinct species [165,167].

In general, C4 species employ CEF around PSI, export electron from Fd to plasto-
quinone (PQ) and generates an H+ gradient in the thylakoid membrane. That the outcome is
a loss of PSII activity, and subsequent accumulation of PSI subunits in chloroplasts [168,169],
which may involve the 5-PGR5-like photosynthetic phenotype 1 (PGR5-PGRL1) path-
way [170,171]. This pathway diverts the excessive flux via plastid terminal oxidase, namely
PTOX or IMMUTANS, and discharges pressure from chloroplast [172]. These differences
indicate that some aspects of redox homeostasis in C4 photosynthetic machinery may
have resulted from divergent evolutions from C3 to C4 in angiosperms. In addition, the
carboxylation pathway may differ with the prevalence of CEF between MC and BSC and
the CEF/NCEF ratio in plant species [173,174]. Looking forward, studying the regulation
of redox status between photosynthetic cycles and redox distribution between MC and BSC
and other associated cycles will uncover the regulation underlying redox homeostasis in
C4 plants.

10. Regulation in Crassulacean Acid Metabolism (CAM)

Crassulacean acid metabolism (CAM) functions by closing stomata during the daytime
and fixing CO2 at nighttime [175,176] (Figure 4C). CO2 fixation occurs in malic acid at night,
which is subsequently stored in the vacuole of MC. Similar to C4 photosynthesis, NADP-
MDH dependent oxidation linked with Trx systems has been observed in CAM plants [117].
In C3 angiosperms, over-reduction of acceptor side of PSI and chloroplast stroma medi-
ated “match valve” system transfer reducing equivalents to the cytosol, which generates
NADP+ under light fluctuations [163,177]. It is still largely unknown whether CAM plants
have a water-water cycle as C3 plants for adjusting PS1 redox status or restricted CO2
fixation under malic acid exhaustion. Recently, studies based on redox regulation in CAM
photosynthesis of Bryophyllum pinnatum [178], Dendrobium officinale [179,180], and Vanilla
planifolia [181] demonstrate that CEF and water-water cycle could be an important regulator
as adjusting PSI redox homeostasis under light fluctuations. However, research work
on redox homeostasis and photosynthesis in CAM plants requires acceleration to better
compare the research advances in C3 and C4 plants.

11. Regulation of Redox in Early Divergent Plants and Green Algae

Green plants acquired the potential of oxygenic photosynthesis, which produces ATP
and NADPH for CO2 fixation and subsequent pathways. Dominant Trx-based redox regu-
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lation is important in all groups of life under diverse redox environments. The transition of
plants from an aquatic environment to land may have enabled the evolutionary innovation
of new pathways or new components of pathways for oxidative regulation and defense
systems. Considering the redox regulation in oxygenic photosynthetic organisms, the FTR
mechanism appeared dominant [157] (Figure 4D). It has been hypothesized that plant
NTRC functional pathways resemble cyanobacteria FTR and are directly associated with
metabolism in response to light [182,183]. However, future research work is required to
test these hypotheses experimentally.

12. Metabolism of Redox Regulators in Maintaining Redox Homeostasis
for Photosynthesis

The detoxification of ROS in chloroplast and associated organelles during photosyn-
thesis is carried out via complex pathways. For instance, the ascorbate pathway plays
crucial roles in diverse photosynthetic processes with ascorbate-dependent and indepen-
dent routes. Ascorbate is produced in mitochondria and utilized in the chloroplast, whereby
the transportation to chloroplast membranes from cytosol occurs via ascorbate transporters
and stabilizes the thylakoid membrane against oxidation by reducing tocopheroxyl radicals
to non-oxidizing form [184]. In the ascorbate-dependent pathway, oxidation of H2O occurs
due to damage to PSII [173]. Later, the integration and interaction of antioxidative enzymes
reduce H2O2 to water. On the other hand, the ascorbate-independent cycle is regulated
via Fd/Fd-dependent Trx reductase (FTR)/TRX or NADPH/NADPH Trx C (NTRC) and
PRX [185]. It was revealed that more than one type of ascorbate transporters may exist,
which facilitates the ascorbate diffusion from cytosol to chloroplast stroma [186,187]. One
such group includes nucleobase- ascorbate transporters (NATs) or nucleobase- cation sym-
porter 2 (NCS2) comprising ascorbate transportation and DNA bases [188]. They have
been found in all kingdoms of life ranging from unicellular bacteria to multicellular ani-
mals [188,189]. All members in the NAT family share similar features regarding amino acid
sequences and conserved trans-membrane proteins [190,191]. Functional characterization
of NAT proteins in plants figures out their vital roles in plant growth and development.
Taking an example, leaf permease 1 (Lpe1) was first identified as a NAT family member
in plants [192], which helps in the transport of xanthine and uric acid but not ascorbic
acid [191]. Loss function of Lpe1 phenotype shows defective chloroplasts and lost plasma
membrane integrity [192]. Other group includes phosphate transporter proteins, such as
Arabidopsis AtPHT4.4 is a member of the phosphate transporter 4 family that facilitates
ascorbate movement into chloroplast envelope membranes [193]. AtPHT4;4 serves as a
co-transporter with Na+/Pi and Cl− dependent activity facilitating the ∆ψ to become a
driving force. The loss function of AtPHT4;4 reduces ascorbate levels and disrupts the
xanthophyll cycle, which is ultimately responsible for removing excessive photosynthetic
energy as heat [193]. Remarkably, the loss of AtPHT4.4 does not affect shoot phenotype
and shows HL tolerance when its antioxidative properties are most required. In addition,
AtPHT4.4 is localized in palisade cells rather than MC, which calls for further investigations.

The cellular functions and comparison of antioxidants have been investigated in
model and non-model C3 and C4 plants, such as, Helianthus annuus (C3) and Sorghum bicolor
(C4) [194], Triticum aestivum (C3) and Zea mays (C4) [195,196], Cleome spinosa (C3) and Cleome
gynandra (C4) [197], and Flaveria sp. [198]. Flaveria sp. had higher redox scavenging for
CATs under C3 while APXs and GRs were found up-regulated in C4 photosynthesis [198].
CATs activities were inhibited in a C4 species Flaveria bidentis, which were later confirmed
at the protein level [198], suggesting the change in photorespiration may result in altered
antioxidant activity. Similarly, APXs-associated scavenging was found to be lower in C4
when compared to C3 species [197,199]. Taking the example of Flaveria bidentis, these
changes occur from young leaves (C3) to mature plants (C4) due to chloroplasts’ dimorphic
nature [200]. Furthermore, APX-mediated H2O2 scavenging was down-regulated four-fold,
while PRXs were up-regulated five-fold [199]. Their results provide a potential mechanism
for antioxidant activity in both types of photosynthesis, which may be activated vice versa
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depending on chloroplast responses. Interestingly, both APX and PRX work in coordination;
for instance, any genetic change in one will be compensated by the other enzyme to release
ROS from chloroplast [201,202]. Considering the role of antioxidative enzymes in redox
regulation, we anticipate that future efforts will uncover the uncharacterized genes at the
cell/organelle level and further explore their scavenging functions.

13. Manipulating ROS Signaling to Enhance Plant Photosynthetic Efficiency and
Crop Yield

Plants being sessile organisms are routinely exposed to environmental fluctuations
(Figure 5). Photosynthetic machinery is sensitive to changing light intensities, and photo-
damage may occur in response to HL intensities. Photosynthate production (i.e., crop yield)
is highly dependent on light energy conversion into chemical energy during photosynthe-
sis [203]. Photoinhibition or damaged PSII affects the D1 protein turnover, which takes part
in PSII repairing, encoded by a chloroplastic psbA gene [204]. The activated PSII repair pro-
cess first degrades the damaged D1 proteins and then synthesizes D1 precursors (pre-D1)
and D1 to reactivate PSII [205]. Recently, a bioengineering strategy was employed to install
a D1 pathway in the nucleus that enhance the D1 turnover, ultimately leading to enhanced
photosynthesis and plant yield under both control and high-temperature conditions [204].
Genetic engineering of nuclear D1 with plastid peptide sequence of RuBisco under the
control of heat shock promoter AtHsfA2 promotes PSII activities with tolerance against heat
stress in Arabidopsis thaliana, Nicotiana tabacum, and Oryza sativa. The de novo synthesis of
D1 precursors both in chloroplast and nucleus mitigates the deficient D1 demand required
for repairing PSII under photo-damage [204].

In addition, plants have adopted photo-protective mechanisms, such as NPQ, which
prevent the over-excitation of photosynthetic light-harvesting antenna complexes [134].
Although the excitation of NPQ chlorophyll fluorescence may happen rapidly, the relaxation
phase is gradual [206], thus exposing the PSII to repeated, varying light intensities and low
quantum yield. The slow recovery and decreased CO2 fixation under quenched and non-
quenched states, allow the photosynthetic apparatus acclimatization to occur via thylakoid-
associated protein PsbS and the xanthophyll cycle [207,208]. Under light fluctuations, the
xanthophyll reactions are catalyzed by the reversible inter-converted pigment molecules,
zeaxanthin and violaxanthin, which are mediated by zeaxanthin epoxidase (ZEP) and
violaxanthin de-epoxidase (VDE) respectively. It was revealed that ZEP accumulation
and NPQ installation show a similar mechanism in Oryza sativa, Hordeum vulgare, and
Spinacia oleracea under varying irradiance absorbance [209]. In addition, the plants retain
the potential to establish NPQ under HL and more rapid re-establishment of photosystem
complexes under decreased light has also been anticipated [210,211] indicating balanced or
increased plant biomass under varying light intensities. Recently, Kromdijk et al. [212] and
Garcia-Molina et al. [213] employed bioengineering of xanthophyll cycle components and
PsbS protein in Nicotiana tabaccum and Arabidopsis thaliana, respectively. The findings that
overexpression of VDE, ZEP, and PsbS enhanced photo-protection in response to NPQ in
both species, and promoting biomass in tobacco, demonstrating that NPQ is essential for
plant growth but may interfere with decarboxylation capacity, excessive energy distribution,
or retrograde signaling. Moreover, the overexpressed lines in tobacco revealed higher
capacities for CO2 uptake, accounting for the accumulated biomass [212].

The core component of the xanthophyll cycle and PsbS protein with NPQ activities
have been found conserved among flowering plants and green algae [214]. In the mi-
croalgae, Chlamydomonas reinhardtii, random mutations in Light Response Signaling protein
1 (LRS1), a homolog of plant phospholatory protein COP1 were found to be associated
with HL adaptation [215]. Similarly, in the cyanobacteria Synechocystis sp., the functional
characterization of representative mutant proteins revealed higher adaptation under HL
cues. In contrast, a significant negative correlation was found between the overexpres-
sion of antioxidative systems and plant biomass accumulation. Such as APXs hinder the
accumulation of H2O2 accumulation in the nucleus inhibiting the HL-responsive gene
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expression [62]. Therefore, we are still in the early stages of understanding the role of
bioengineering for regulatory elements and antioxidants for increasing crop productivity.
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Figure 5. Manipulation of ROS toxicity in response to environmental cues. Excessive ROS production
under extreme environment damage chloroplast-related proteins. Using bioengineering approaches,
supplementing the nuclear D1 protein pathway into chloroplast and installation of xanthophyll cycle
mediating reversible inter-conversion of ZEP and VDE could enhance photosynthetic efficiency. In
addition, functional characterization of random mutations could help plants to adapt to undesirable
environmental cues efficiently.

14. Concluding Remarks and Future Perspectives

ROS toxicity affects almost all aspects of plant metabolism and plants have evolved
ROS scavenging both at cellular-based and antioxidant-based systems. ROS such as H2O2
and O2

− have important functions in chloroplast, mitochondria, and nuclei. Excessive
ROS is either passively diffused via aquaporins or scavenged by antioxidative enzymes
and antioxidants. Although several antioxidative enzymes and antioxidants have been
identified in plants, a clear model for ROS toxicity at all levels and the participation
of each antioxidant in response to multiple external and internal stimuli has yet to be
described. Furthermore, there may exist other antioxidant members or isoenzymes of
complex photosynthesis ROS regulation awaiting discovery in plants. Photosynthesis
metabolism is regulated by evolutionary conserved systems, such as TRX and NTRC.
Transcriptome-wide identification of redox regulators of photosynthesis has been analyzed
in green algae and higher plants. Recent studies suggest that Trx and NTRC systems play
important roles in maintaining photosynthetic efficiency. Therefore, the existing question
of how redox systems interact with photosynthesis machinery is becoming clearer than
before. However, some redox regulators and systems are still uncharacterized in plants.
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Considering that redox regulatory pathways have been established, we anticipate that
future studies will explore these uncharacterized components at transcriptome levels and
functional validation in photosynthesis. Such as, several isoforms and groups related to
Trx- system, such as, m-, h-, z-, etc. have been identified but a few provide clear insights into
the association with CBC enzyme and others’ participation in reduction processes either
directly or indirectly has yet to be evaluated. In addition, redox homeostasis was shown to
be regulated by evolutionarily conserved enzymes with antioxidative properties catalyzing
photosynthetic efficiency and stress response.

Distinct photosynthetic machinery has evolved similar and diverse features for reg-
ulating ROS levels within chloroplasts. In Calvin cycles, Trx and NTRC interaction with
photosynthesis enzymes are clearer than C4 photosynthesis, which involves chloroplasts
of mesophyll and bundle sheath cells. To further enhance understanding of these types
of photosynthesis, key steps will involve the identification of redox regulatory genes, Cys
residues, and their interaction with C4 and CAM photosynthetic enzymes. Recently, a few
studies have characterized Trx-based regulators in the model plant Arabidopsis and their
associated cellular and biological functions, while it remains elusive in other plants. In
addition, antioxidant-mediated pathways regulating plant growth, development, and stress
response in all types of photosynthesis will be helpful in future crop breeding programs for
the enhancement of photosynthesis.

Considerable bioengineering and fast-forward genetic approaches have been utilized
to maintain protein efficiency in model plants and some staple crops, but fewer studies were
conducted in key early divergent evolutionarily important green plant species and many
crops. Therefore, future research focus should be placed on those plant species to improve
our understanding of the molecular evolution of redox homeostasis of in photosynthetic
machinery and to increase crop yield potential for future food security.
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