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Abstract

Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. 

FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. 

The hormone-speci�c FSHβ-subunit is non-covalently associated with the common 

α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic 

hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted 

by thyrotrophs. Several decades of research led to the puri�cation, structural 

characterization and physiological regulation of FSH in a variety of species including 

humans. With the advent of molecular tools, availability of immortalized gonadotroph 

cell lines and genetically modi�ed mouse models, our knowledge on molecular 

mechanisms of FSH regulation has tremendously expanded. Several key players that 

regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues 

have been identi�ed in a physiological setting. Novel post-transcriptional and post-

translational regulatory mechanisms have also been identi�ed that provide additional 

layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs 

hold promise for a variety of clinical applications, whereas blocking antibodies against 

FSH may prove ef�cacious for preventing age-dependent bone loss and adiposity. It is 

anticipated that several exciting new discoveries uncovering all aspects of FSH biology 

will soon be forthcoming.

Introduction

Follicle-stimulating hormone (FSH) is a critical regulator 

of reproductive physiology. It is a heterodimeric 

glycoprotein that consists of two distinct subunits, α and 

β. The α-subunit is common to all pituitary and placental 

glycoprotein hormones, whereas the β-subunit is 

hormone-specific and the heterodimer confers biological 

activity. The overall regulation of FSH involves control at 

the level of subunit gene transcription, translation, dimer 

assembly, formation of different isoforms that influence 

synthesis and release and physiological functions  

(Pierce & Parsons 1981, Bousfield et  al. 2006, Ulloa-

Aguirre et  al. 2017, Narayan et  al. 2018). While earlier 

research has established FSH as an indispensable player 

in proper functioning of the reproductive axis, recent 

findings indicate its much widespread actions. In this 

review, we provide the molecular mechanisms driving 

each phase of FSH regulation from the initiation of its 

synthesis to ultimate physiological effects, with a focus 

on identifying the interlink between the encompassing 

effector pathways.
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Transcriptional regulation of α-glycoprotein 

hormone subunit -encoding gene

The α-subunit is expressed in trophoblast, gonadotroph 

and thyrotroph cell types, and its expression is 

differentially regulated depending on the specific pituitary 

or placental cell type.

An earlier study showed that a short 18-bp sequence 

serves as a cAMP response element that is independent 

of other regulatory elements around the 5′ flanking 

region of the human CGA promoter (Silver et al. 1987). 

In fact, proteins that bind to this cAMP response element 

positively regulate the alpha-subunit gene by cooperative 

interaction (Nilson et al. 1989). Another study suggested 

that placenta-specific expression of human CGA may be 

evolutionary outcome of a functional cAMP response 

element, whereas a different cis-acting element might 

be responsible for its expression in the pituitary (Bokar 

et al. 1989). It is also known that gonadotropin-releasing 

hormone (GnRH), produced by the hypothalamus, is a 

key regulator of Cga mRNA expression (Burrin & Jameson 

1989). Transcription of Cga in cultured rat pituitary cells was 

found to be altered upon pulsatile GnRH administration 

(Shupnik 1990). Later, two DNA elements were identified 

that were involved in GnRH-mediated expression of 

the mouse Cga (Schoderbek et  al. 1993). Moreover, the 

co-localization of GnRH and phorbol myristate acetate 

(an activator of protein kinase C) responsiveness indicates 

that the effect of GnRH on transcriptional regulation of 

mouse Cga is most likely through the PKC pathway.

Various groups also investigated signaling pathways in 

addition to deciphering DNA elements and transcription 

factors to better understand their regulatory mechanisms. 

Maurer and coworkers identified two unrelated DNA 

elements and designated them as GnRH response element 

(GnRH-RE), an element that was adequate to allow 

GnRH response, and a pituitary glycoprotein hormone 

basal element (PGBE), that enhanced basal expression 

of the α-subunit (Maurer et  al. 1999). GnRH-RE was 

found to encompass a consensus binding region for the 

E26 transformation-specific (Ets) family of transcription 

factors and demonstrated that GnRH-induced activation 

of MAPK pathway, mediated by GnRH-RE, is required and 

also sufficient enough for the transcriptional activation 

of Cga gene. Recently, it was established that GnRH-

mediated activation of Cga expression requires stress-

activated protein kinase 1 (MSK1) and mitogen through 

an epigenetically regulated mechanism involving histone 

modifications (Haj et al. 2017).

Other than GnRH-associated response elements, 

two upstream regions of the Cga gene were identified 

that distinctly regulate its basal promoter transcription 

and PMA-stimulated promoter activity independently 

in mature gonadotroph cells. Steroidogenic factor 1  

(SF-1) is involved in mediating these activities through its 

binding site in the promoter (Fowkes et al. 2002). Fowkes 

and coworkers have also shown that GATA factors may 

be related to ERK activation of transcription, and PKC-

induced transcription relies partially on ERK interaction on 

elements downstream of −244 bp of the promoter. Another 

study from this group reported that SF-1 also significantly 

increases forskolin-stimulated Cga transcription and a 

phosphorylation site at the Serine 203 residue seems to be 

necessary for the activity (Fowkes & Burrin 2003). A recent 

study has identified the Msh homeobox 1 (Msx1) as a 

negative regulator that represses the gonadotroph-specific 

Cga expression. A decline in Msx1 expression in a temporal 

manner relieves this repression allowing production of the 

gonadotropic hormones (Xie et al. 2013). Another study 

validated the role of Msx1 as a transcription repressor of 

the Cga gene and demonstrated that the mechanism by 

which Msx1 regulates inhibition of Cga gene expression 

involves its interaction with the TATA-binding protein in 

thyrotrophs (Park et al. 2015). Other important factors of 

Cga gene regulation includes Sine oculis-related homeobox 

3 (SIX3) homeodomain transcription factors that 

represses transcription of the alpha-subunit in immature 

gonadotroph cell lines (Xie et al. 2015).

Transcriptional regulation of FSHβ  

subunit-encoding gene

The β-subunit of FSH confers the specific biological activity 

of FSH dimer. Hence, synthesis of the FSHβ subunit is a 

rate-limiting step for the production of the biologically 

active FSH (Papavasiliou et  al. 1986). The production of 

FSHβ subunit is under tight regulation, and one of the 

most important points of control is at the level of FSHβ-

encoding gene transcription. Its expression is also under 

a critical temporal regulation as FSHβ-encoding mRNA 

level was observed to increase about 4- to 5-fold during 

afternoon of proestrous while the increase was about 

3-fold during estrus in rodents (Ortolano et  al. 1988, 

Halvorson et  al. 1994). Among many regulatory factors, 

GnRH and activins are key players in controlling FSHβ 

expression and both these act through independent as 

well as related pathways.
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Regulation of FSHβ-encoding gene 
expression by GnRH

GnRH is released in a pulsatile manner from neurons in the 

hypothalamus and reaches pituitary via the hypophyseal-

portal system. GnRH receptor is specifically expressed by 

the gonadotroph cells (Tsutsumi et  al. 1992, Stojilkovic 

et  al. 1994, Kaiser et  al. 1997). GnRH pulse frequency 

determines the rate of FSHβ production as many studies 

have shown that a decrease in GnRH pulse frequency 

favors FSHβ production over that of LHβ (Haisenleder 

et al. 1988, Dalkin et al. 1989, 2001). FSH levels in serum 

are reduced by 60–90% in mice without GnRH (Mason 

et al. 1986) and administration of GnRH to rats increased 

Fshb mRNA expression by fourfold (Dalkin et  al. 2001), 

indicating that GnRH regulation of FSHβ takes place at the 

level of transcription.

Of the several proposed effector pathways by which 

GnRH regulates mouse FSHβ expression, the major ones 

include PKC and MAPK signaling pathways (Bonfil et al. 

2004, Coss et al. 2004, Liu et al. 2005). The GnRH ligand 

binding activates GnRH receptors (GnRHR), which increase 

the activities of calcium/calmodulin kinase II and protein 

kinase C (PKC) (Liu et al. 2002, Haisenleder et al. 2003) via 

activation of Gq and G11 family of G-proteins (Stanislaus 

et  al. 1997). GnRHR activation also initiates induction 

of distinct mitogen-activated protein kinase (MAPK) 

pathways, namely ERK1/2, p38 and JNK (Roberson et al. 

1995, Sundaresan et al. 1996, Liu et al. 2002). Activation 

of the MAPK pathway is achieved via PKC (Naor 2009) 

or through GnRHR association with Raf and calmodulin, 

which play a key role in mediating Ca2+ action on ERK 

activation, independent of the phospholipase C activity 

(Roberson et al. 2005).

GnRH also regulates FSHβ expression via induction 

of immediate early genes (IEGs), which includes Jun, Fos, 

Atf3 and Egr1. One such IEG product is activator protein-1 

(AP-1), which consists of various Fos and Jun dimeric 

isoforms (c-Fos, Fra-1, Fra-2, FosB, c-Jun, JunB and JunD) 

that are induced by GnRH (Wurmbach et al. 2001, Kakar 

et al. 2003). Regulation of Jun and Atf3 by GnRH requires 

calcium, calcineurin and nuclear factor of activated  

T cells (NFAT) that confers responsiveness to various genes 

responsible for FSH synthesis (Binder et al. 2012). Strahl 

and coworkers identified two AP-1-binding sites within 

the ovine Fshb promoter sequence that are sufficient 

enough to stimulate its expression independently (Strahl 

et  al. 1997, 1998). MAPK-mediated GnRH induction of 

murine Fshb takes place via AP-1interactive sites, where 

c-Jun and FosB bind to induce the promoter (Liu et  al. 

2002, Coss et  al. 2004). AP-1 proteins have also been 

shown to regulate human Fshb promoter activity via two 

specific response elements (Wang et al. 2008). Integrated 

GnRH response also requires factors that are associated 

with basal Fshb expression, like nuclear transcription 

factor Y (NF-Y) in mouse and upstream stimulatory factor 

1 (USF1) in rat, and the mechanism involves interactions 

of these factors with AP-1 (Coss et al. 2004, Ciccone et al. 

2008). c-Fos-knockout mice demonstrate small ovaries 

and atretic follicles (Johnson et  al. 1992), similar to 

phenotypes of Fshb-knockout mice (Kumar et  al. 1997) 

indicating a possible key role of this proto-oncogene in 

regulation of FSHβ. GnRH is also reported to increase 

c-Fos half-life, thus in turn resulting in increased FSHβ 

expression (Reddy et al. 2013). In addition to these factors, 

the CREB transcription factor was found to be involved 

in GnRH-regulated Fshb expression in rats through 

interaction at a homologous CRE/AP-1 site (Ciccone et al. 

2008), although mice deficient in CREB exhibit unaltered 

FSH levels suggesting a species-specific role of this factor. 

It is further demonstrated that inducible cAMP early 

repressors (ICER) antagonize the CREB stimulatory action 

to attenuate Fshb transcription at high GnRH pulse 

frequencies (Ciccone et  al. 2010). It has been recently 

reported that ICER influenced GnRH control of Fshb 

expression is mediated via ERK1/2 regulatory pathway 

(Thompson et al. 2016).

GnRH stimulation was recently shown to increase 

intracellular reactive oxygen species (ROS) via NOX/

DUOX-mediated activity, suggesting a new concept of 

ROS involvement as a signaling intermediate in response 

to GnRH induction (Kim & Lawson 2015). This finding 

further opens up the possibility that ROS generated by 

other processes may also influence GnRH stimulation 

of FSH expression. GnRH induces β-catenin, a classical 

intermediate of the WNT signaling pathway, which 

is shown to influence FSHβ production in a murine 

model (Boerboom et  al. 2015). Another proposed factor 

is phosphoprotein-enriched in astrocytes 15 (PEA-15) 

an ERK scaffolding protein present in cytosol. It was 

suggested to mediate convergence of PKC and MAPK/

ERK pathways induced by GnRH (Choi et al. 2011). GABA 

alpha4beta3delta receptor agonist DS1 was recently 

reported to stimulate FSHβ expression in association 

with the ERK signaling pathway through the activation 

of Gnrhr promoter (Mijiddorj et al. 2015). In an alternate 

mechanism, it was suggested that GnRH regulation 

of Homer protein homolog 1 (Homer 1) splicing may 

contribute to FSH expression (Wang et al. 2014b).
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Regulation of FSHβ expression by  
activin–follistatin–inhibin loop

Activin is a dimeric peptide composed of two identical 

beta subunits that can have two major isoforms, βA and 

βB. Activins were identified as gonadal peptides, which 

stimulate the production of FSH (Ling et  al. 1986, Vale 

et al. 1986). They bind to the type II receptor, resulting 

in phosphorylation of the type I receptor (Attisano & 

Wrana 2002), which then consequently phosphorylates 

the intracellular proteins Smad2 and Smad3 initiating 

the signal response cascade. The phosphorylated proteins 

bind to Smad4 and forms the ‘activating complex’, which 

is then translocated to the nucleus where it binds DNA 

through a direct interaction of Smad-binding elements 

(SBE) with specific domains on Smad3 and Smad4 

(Massague 1998, Shi et al. 1998) to induce transcription 

of the FSHβ-encoding gene (Bernard & Tran 2013). It 

was previously reported that activin induces increased 

FSH release from the pituitary (Ling et  al. 1986) and 

FSHβ expression in gonadotropes (Weiss et  al. 1995). 

Three prominent activin-response elements have been 

identified in the FSHβ-encoding gene promoter region 

till date. A classical Smad-binding consensus sequence 

at −267, consisting a palindrome GTCTAGAC, was first 

proposed to be an important response element in rodents 

(Bernard 2004, Gregory et al. 2005, Suszko et al. 2005), but 

was later on found to have no significant contribution in 

activin induction of Fshb (Coss et al. 2007, McGillivray 

et  al. 2007). This specific site is not present in human 

FSHB promoter. Bailey and coworkers identified three 

separate elements associated with FSHβ-encoding gene 

promoter, which were essential for activin induction, and 

these proximal sites are found to be present in all species 

examined (Bailey et  al. 2004). SMAD-associated factors, 

like Pre-B-cell leukemia transcription factor 1 (Pbx1) and 

PBX/knotted 1 homeobox 1 (Prep1) proteins were also 

identified that seem to bind the response elements and 

aid in tethering of Smads to the promoter following 

activation (Suszko et  al. 2003, Bailey et  al. 2004). In 

an alternate mechanism, paired-like homeodomain 

transcription factors 1 and 2 (PITX1 and 2) regulate 

SMAD 2/3/4-stimulated Fshb transcription through 

a conserved cis-element (Lamba et  al. 2008). It was 

recently established that SMAD4 and forkhead box L2 

(FOXL2) are essential factors for in vivo transcription of 

Fshb (Fortin et al. 2014). Other than the mostly studied 

SMAD-mediated activation, TAK1 signaling pathway, 

a member of the MAPKKK family, was recognized as a 

potent player in the induction of FSHβ-encoding gene 

transcription by activin (Safwat et al. 2005). But, a recent 

study contradicted the idea by demonstrating that activin 

A signaling is independent of the TAK1 (MAP3K7)/p38 

MAPK pathway and depends on SMAD proteins (Wang 

& Bernard 2012). Other factors that can stimulate activin 

induction include morphogenetic proteins (BMPs) 

(Otsuka & Shimasaki 2002, Lee et  al. 2007, Nicol et  al. 

2008), but their mechanism of action and associated 

signaling pathways are not clear.

Inhibin and follistatin are two potent antagonists of 

activin, regulating its inductive effects via two distinct 

inhibitory loops. Inhibin is a heterodimer that consists of 

one subunit identical to activin and another unique alpha-

subunit (Nakamura et al. 1998). The production of inhibin 

from ovarian granulosa cells is stimulated by FSH, which 

in turn downregulates FSH production. The proposed 

mechanism of inhibin actions includes competitive 

inhibition at activin receptors or interaction at inhibin-

specific-binding sites that alters active activin-binding 

process (Gregory & Kaiser 2004, Robertson et  al. 2004). 

On the other hand, follistatin, a glycoprotein having 

nearly ubiquitous expression in various tissues, inhibits 

activin actions by directly binding to it (Shimasaki et al. 

1988). Taken together, functions of activin, inhibin and 

follistatin forms a complex regulatory loop that tightly 

controls FSH production at the level of transcription. A 

considerable inter-species variation of FSH regulation 

at the level of transcription was observed as evidenced 

by the identification of different TATA box and other 

regulatory elements across species by in silico analysis 

(Kutteyil et al. 2017).

Regulation of FSHβ-encoding gene 
expression by steroid hormones

The expression of FSHβ-encoding gene is under feedback 

regulation by estrogen and progesterone, both acting at 

the level of hypothalamus and anterior pituitary. But 

in rodents, estrogen does not directly modulate Fshb 

gene expression and seems to have only a partial effect 

in FSH negative feedback, as post-ovariectomy estrogen 

treatment does not show total suppression (Shupnik et al. 

1988). It was also reported that the expression of Fshb 

mRNA was not altered in overiectomized rats (Shupnik 

et al. 1989, Dalkin et al. 1993) or in rat pituitary tissue 

(Shupnik & Fallest 1994). An in vitro study with murine 

Fshb promoter also supported these results showing 

that Fshb expression was not stimulated by estrogen 

(Thackray et  al. 2006). Hence, it could be postulated 

that estrogen indirectly modulates the expression of 
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the FSHβ-encoding gene by regulating the actions of 

GnRH, activin or other effectors. It was, in fact, reported  

that estrogen receptor alpha (ERα)-knockout mouse  

had higher expression of activin B in pituitary (Couse 

et al. 2003).

Progesterone (P4), unlike estrogen, imparts both 

positive and negative feedback on FSHβ-encoding 

gene expression. It acts indirectly at the level of 

hypothalamus by regulating GnRH production and 

directly in the anterior pituitary (Levine et  al. 2001). 

Many studies have hypothesized that FSHβ-encoding 

gene expression in the anterior pituitary is induced by 

progestins (reviewed in detail in Burger et  al. 2004). 

Fshb mRNA expression and secretion were blocked by 

P4 antagonists during preovulatory (Ringstrom et  al. 

1997) and secondary FSH surge (Knox & Schwartz 1992) 

in rats. Murine Fshb promoter was also observed to be 

induced by P4 in vitro (Thackray et al. 2006). A region of 

the DNA from −500 to −95 of the proximal promoter, 

which was previously shown to consist of six response 

elements in both ovine and mouse genes, was identified 

to be responsible for progesterone responsiveness, thus 

explaining the direct involvement of P4 in Fshb gene 

expression.

Androgens can also directly upregulate FSHβ-

encoding mRNA levels in the pituitary. Various studies 

have reported that testosterone administration on GnRH 

antagonist-treated rodents showed increased Fshb mRNA 

production (Paul et  al. 1990, Wierman & Wang 1990, 

Burger et al. 2004). In vitro studies have established that 

only gonadotrope cells are enough for the induction of 

FSHβ-encoding mRNA expression, suggesting that the 

androgen effect takes place uniquely at the pituitary, 

and the androgen-driven activation of ovine and murine 

Fshb promoters involved the direct binding of androgen 

receptors to specific hormone response elements 

(Spady et  al. 2004, Thackray et  al. 2006). However, 

unlike the previous reports, testosterone-regulated Fshb 

transcription is mediated through the activin signaling 

pathway in both rat model and cell line studies (Burger 

et al. 2007).

Other than estrogen, progesterone and androgen, 

glucocorticoids are also known to regulate FSHβ production 

in the anterior pituitary. Fshb expression was shown to 

selectively increase upon glucocorticoid administration 

in both rats and primary pituitary cultures (Ringstrom 

et al. 1991, McAndrews et al. 1994, Kilen et al. 1996, Leal 

et al. 2003). A summary of major players in transcriptional 

regulation of FSH subunits is shown in Fig. 1.

Other regulators of FSHβ-encoding 
gene expression

Other than previously discussed major regulatory 

pathways, many novel mechanisms were identified to 

influence FSHβ-encoding gene expression in recent years. 

Unsaturated long-chain fatty acids were shown to suppress 

the transcriptional activity of the Fshb gene in rats, and 

their effect is mediated via a −2824 to −2343 bp region 

upstream of the promoter sequence (Moriyama et al. 2016). 

Bone morphogenetic protein 2 (BMP-2) is another factor 

that affects FSH expression via the induction of SMAD2/3 

signaling through BMP type 1A receptor activation. It 

was suggested BMP2 action may involve similar signaling 

pathway as activins (Wang et al. 2014c).

Post-transcriptional regulation of FSHβ-encoding 

gene expression

Whereas translational regulation of the FSHβ-encoding 

gene and its associated pathways have been extensively 

studied for many years, the effects of post-transcriptional 

regulation and its implication to the overall FSH synthesis 

was not clarified until recent years. Recently, microRNAs 

(miRNAs) have emerged as key players in crosstalk 

between different gonadal signaling pathways and their 

activities can effectively inhibit or upregulate a process. 

They are now considered as important regulators of the 

hypothalamic–pituitary–gonadal axis. MiRNAs primarily 

act post-transcriptionally by destabilizing or degrading 

mRNA in the cytoplasm. They bestow tight control to the 

overall gene regulation in addition to maintaining mRNA 

cell specificity (Farh et al. 2005, Cui et al. 2006, Sood et al. 

2006, Tsang et al. 2007, Lin et al. 2013). FSH regulates the 

production of a wide range of miRNAs that target genes 

encompassing diverse signaling pathways (Yao et  al. 

2009, 2010), but not much is known about how miRNAs 

affect the expression of FSH itself. Most of the studies 

investigating post-transcriptional regulation of FSH were 

done in stable cell lines or established primary cultures. 

To investigate miRNA-regulated production of the specific 

FSHβ subunit in vivo, Wang and coworkers developed 

a Dicer-knockout mouse model and established that  

DICER-dependent miRNAs are indispensable for FSHβ 

production (Wang et al. 2015).

One important control point of post-transcriptional 

regulation of FSHβ-encoding mRNA by miRNAs is exerted 

at the level of GnRH regulation as shown by a targeted 

pathway analysis approach in porcine pituitary cell 
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cultures (Ye et al. 2013). Besides identifying miRNAs that 

regulate GnRH induction of FSHβ-encoding gene, this 

study identified 3 downregulated and 10 upregulated 

miRNAs that most likely are direct targets to the 3′-

UTR region of FSHβ-encoding mRNA. Recently, they 

demonstrated that miR-361-3p directly targets FSHβ-

encoding mRNA and negatively regulates its synthesis, 

providing further functional evidence that miRNA-

mediated post-transcriptional modifications are involved 

in FSH production (Ye et al. 2017).

Another study identified that miR-132/212 are 

required for GnRH-stimulated expression of FSHβ-

encoding mRNA, and this induction involves the SIRT1-

FOXO1 pathway. MiR-132/212 is also directly involved 

in post-transcriptional decrease of the sirtuin 1 (SIRT1) 

deacetylase (Lannes et  al. 2015). Together, a regulatory 

loop that maintains high levels of miR-125b and low levels 

of miR-132 desensitizes the gonadotrope cells to GnRH 

stimuli, thereby disrupting the overall GnRH induction 

pathway (Lannes et  al. 2016). Although the importance 
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Figure 1

Transcriptional regulation of FSH subunit-encoding genes. The three major players that regulate FSH subunit gene transcription include GnRH, 

activin–inhibin–follistatin and steroids. GnRH binds to GnRH receptors expressed on gonadotropes. MAPK/ERK phosphorylation is one of the major 

downstream pathways activated by GnRH. These signals are further transmitted by translocation and recruitment of key transcription factors EGR1, 

ATF3, SF-1 and MAPK pathway-catenin-dependent activation of c-Jun-c-Fos and AP-1 onto α-GSU and FSHβ-encoding gene promoters. Estrogen, 

progesterone and testosterone can indirectly regulate FSH subunit-encoding gene transcription by suppressing GnRH. Testosterone and glucocorticoids 

can also directly regulate FSHβ subunit-encoding gene transcription. Estrogen and testosterone can also regulate activin regulation of FSHβ subunit-

encoding gene transcription. Activins bind to activin receptor type II and phosphorylate ALK4/7 type 1 receptors. This heterotrimeric complex via a TAK1 

pathway, phosphorylates receptor-speci�c SMAD 2/3 transducers, which complex with the phosphorylated common SMAD4 and bind to SMAD-binding 

elements on FSHβ-encoding gene promoter. SMAD7 is an inhibitory SMAD that negatively regulates activin action. SMADs cooperatively bind with other 

co-factors including a key transcription factor, FOXL2 (not shown in the �gure). Follistatin and inhibin bind activin and negatively regulate FSHβ 

subunit-encoding gene transcription.
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of post-transcriptional regulation of FSH synthesis by 

miRNAs has been realized, the mechanisms that control 

the process needs further investigation.

In terms of FSH action, a genome-wide study 

investigating miRNA signatures in human granulosa 

cells demonstrated that miRNA-mediated post-

transcriptional regulation might play a significant role 

in gonadotropin signaling and found a novel miRNA 

that had an intronic origin from the FSH receptor gene 

(Velthut-Meikas et al. 2013).

Post-translational regulation of FSH

Enzymatic and covalent modifications of the hormone-

specific FSHβ subunit polypeptide after its translation 

are critical steps in the assembly, synthesis and release 

of the biologically active FSH. The specific structural 

attributes and their molecular characteristics due to such 

modifications have been extensively investigated and 

reviewed (Combarnous 1992, Stockell Hartree & Renwick 

1992, Stanton et al. 1996, Sood et al. 2006, Butnev et al. 

2015). The major post-translational modifications of FSHβ 

subunit resulting in the formation of different isoforms are 

N-glycosylation and sialylation, while the contribution of 

sulfation has no major biological effect on FSH secretion 

and or function (Bousfield & Dias 2011).

Regulation of FSHβ N-glycosylation

The process of N-glycosylation is mediated by a multi-

subunit oligosaccharyl transferase (OST) enzyme 

complex. The OST complex transfers a previously formed 

oligosaccharide from a dolichol pyrophosphate molecule 

to the newly formed FSHβ chain in the endoplasmic 

reticulum and Golgi compartments (Baenziger & Green 

1988, Butnev et  al. 1996). N-acetyl-D-glucosamine 

precursors are co-translationally added to the conserved 

Asn24 and/or Asn7 residues and are consequently 

converted to complex glycans by branching through 

addition of various sugar units. There could be one, two 

or no N-glycans attached onto FSHβ, resulting in the 

formation of hypoglycosylated (FSH21/18, missing one 

glycan chain on an Asn residue) or fully glycosylated 

(FSH24, having branched glycans on both Asn residues) 

or de-glycosylated (FSH15, having no glycans on both Asn 

residues) FSH isoforms. Earlier studies have investigated 

the alterations in FSH biological activity due to differential 

glycosylation mainly through in vitro bioassays and 

radioimmunoassays. It was suggested that different 

glycosylation variants have the ability to induce changes 

in receptor stability or conformation. Thus, activation 

or inhibition of a specific signal transduction pathway 

in target tissues could be a FSH glycosylation-dependent 

feature in FSH signaling (Zambrano et al. 1999). However, 

the overall conformational integrity of the glycans is not 

essential for effective receptor binding, but the rate of 

activity is altered following deglycosylation (Manjunath 

et al. 1982).

The state of FSH glycosylation is affected by various 

physiological conditions. The process of FSH glycosylation 

and glycan composition changes dynamically throughout 

the normal menstrual cycle (Wide & Eriksson 2013). 

Galactose-1-phosphate uridyltransferase (GALT), an 

enzyme known to modulate production of different FSH 

glycoforms and its biological activity, was observed to 

have higher expression during the proestrous and estrous 

phases in rats (Daude et  al. 1996), indicating a distinct 

role of estrous cycle in determining the formation of 

glycosylated species.

Calvo and coworkers indicated that deglycosylated 

forms might be less biologically active than their native 

fully glycosylated forms in granulosa cells (Calvo et al. 

1986). Contrary to this finding, Bousfield and coworkers 

showed that hypoglycosylated FSH (hFSH21/18) was up 

to 26 times more active than the fully glycosylated 

hFSH (hFSH24). The enhanced activity of hFSH21/18 was 

suggested as a result of availability of more binding sites 

for hFSH21/18 than that for hFSH24 in the FSH receptor 

(Bousfield et  al. 2014). Further support came from an  

in vitro study that confirmed that hFSH21/18 was 

more effective in inducing cAMP production, CREB 

phosphorylation and PKA activity (Jiang et al. 2015). The 

first in vivo study by Wang and coworkers investigated 

bioactivities of the different FSH glycoforms, using Fshb-

null mice in a pharmacological rescue approach (Wang 

et  al. 2016a). This study identified that recombinant 

hFSH21/18 and hFSH24 glycoforms have identical 

bioactivities when injected into immature Fshb-

null mice (Wang et  al. 2016a). They also showed that 

N-glycosylation of FSHβ is needed for its assembly with 

the α-subunit to form the functional FSH heterodimer in 

mouse pituitaries, and the FSHβ glycans are determinants 

of FSH secretion and biological activity in vivo (Wang 

et  al. 2016b). Previous in vitro studies have also shown 

that N-linked glycan structures on FSH affect gene 

expression, thus regulating production of growth factors, 

proteins and hormones that are required for ovarian 

granulosa cell functions (Loreti et al. 2013).

Downloaded from Bioscientifica.com at 08/27/2022 03:33:46AM
via free access

https://doi.org/10.1530/JME-17-0308


https://doi.org/10.1530/JME-17-0308
http://jme.endocrinology-journals.org © 2018 Society for Endocrinology

Printed in Great Britain
Published by Bioscienti�ca Ltd.

R138N Das and T R Kumar Regulation of FSH 60 3:Journal of Molecular 
Endocrinology

The differential glycosylation of hFSHβ was proposed 

to be due to selective inhibition of the oligosaccharyl 

transferase enzyme activity (Walton et al. 2001, Bousfield 

et al. 2007). But how the selective glycosylation of FSHβ 

subunit is controlled by OST activity, while the α-subunit 

undergoes full glycosylation in the same cellular 

compartment is yet to be understood. It may be that 

different OST isoforms may be involved in the process. OST 

isoforms in mammals differ in the characteristics of their 

catalytic subunit (Kelleher et al. 2003), and it is observed 

that OST containing the STT3A subunit is involved in 

the cotranslational process of N-glycosylation, while the 

STT3B subunit is associated with the post-translational 

modifications (Ruiz-Canada et al. 2009).

After the highly conserved N-glycosylation in the 

ER, the folded proteins are translocated to Golgi where 

diversity of the glycan forms are generated, and the 

process of glycan branching is a crucial contributor 

of this diversity. Glycan branching is mediated by a 

family of N-acetylglucosamine (GlcNAc) transferases. 

A single gene encodes GlcNAc transferases I, II, and III 

in human and mouse, while the two isoforms of both 

GlcNAc transferases IV and V are encoded by separate 

genes (Bousfield & Dias 2011). Loss of GlcNAc transferase 

activity was found to be either embryonic lethal (Ioffe 

& Stanley 1994) or contributes to various reproductive 

disorders in mice (Wang et al. 2001, Williams & Stanley 

2009). The high molecular weight tri- and tetra-

antennary glycans are synthesized mainly by GlcNAc 

transferases IV and V.

Regulation of FSHβ sialylation

FSHβ sialylation involves post-translational modification 

resulting in the addition of sialic acid units to the end 

of its oligosaccharide chain. FSH contains predominantly 

sialylated oligosaccharides, unlike LH which has 

more sulfated oligosaccharides. It was speculated that 

FSH-bound sialic acid residues may aid in targeted 

translocation to separate secretory granules, thereby 

providing a regulatory mechanism distinct from other 

gonadotrophins (Baenziger & Green 1988). In vitro bioassay 

analysis had previously indicated important role of sialic 

acid in biological activities of equine FSH (Aggarwal & 

Papkoff 1981). Since number of sialic acid contributes to 

the overall acidic nature of the FSHβ subunit, sialylation 

is thought to be responsible for the regulation of the rate 

of molecular interactions that requires charge specificity. 

The less acidic or sialylated FSH isoforms may contribute 

to different or unique hormonal effects at the target cell 

level (Timossi et  al. 2000). Less sialylated FSH-induced 

increased cAMP release, tissue-type plasminogen activator 

(tPA) enzyme activity, estrogen production, along with 

upregulating cytochrome P450 aromatase and tPA mRNA 

expression (Barrios-De-Tomasi et al. 2002). On the other 

hand, more sialylated glycoforms stimulated an increased 

expression of alpha-inhibin subunit mRNA, indicating 

a possible post-translationally controlled feedback 

inhibitory mechanism mediated by the extent of FSH 

charge variation. More acidic mixtures of FSH isoforms, 

which have slower clearance rate than a less acidic 

mixture, were shown to facilitate follicular maturation 

in the ovary and stimulate estrogen production in sheep 

(West et al. 2002).

Other than enzyme-mediated post-translational 

modification of FSH glycans, GnRH and gonadal steroids 

can also affect the synthesis and release of different FSH 

isoforms. GnRH is known to induce glycosylation, whereas 

estradiol aids in the GnRH-induced glycosylation process, 

suggesting an indirect GnRH-driven FSH regulation at the 

post-translational level. Synthesis of FSH isoforms with 

differentially linked sialic acids is hormonally regulated in 

male rats (Ambao et al. 2009). In addition, testosterone also 

increases sialylation (Wilson et al. 1990). Progesterone is 

known to influence pituitary glycosylation, consequently 

altering the relative proportions of FSH isoforms in cattle 

(Perera-Marin et al. 2008).

After ovarian failure that normally occurs as a 

function of aging, more acidic FSH becomes dominant 

and significantly detectable in older premenopausal 

women (Thomas et  al. 2009). A change in FSH isoform 

abundance, toward less acidic molecules was also observed 

in cows with ovulatory follicles compared to those with 

atretic follicles, and this shift in FSH isoforms is suggested 

to decide the capability for producing a preovulatory 

estradiol rise (Butler et al. 2008). Factors like age, sex and 

reproductive state can also influence the formation of the 

type of the FSH isoforms in sheep pituitary (Moore et al. 

2000).

Regulation of FSH secretion

FSH is constitutively secreted from the gonadotrope cells 

via a complex multilayered regulatory process. Moreover, 

longer half-life in circulation and molecular heterogeneity 

makes detection of FSH secretory patterns more difficult 

through peripheral hormone measurements. The 

regulation of FSH secretion appears to be dominated by 
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factors controlling inhibition of both its synthesis and 

release. This process includes three major aspects: GnRH 

signaling, and activin–inhibin–follistatin pathways and 

control by gonadal steroids (Fig. 2).

GnRH-mediated regulation of FSH secretion

Only low levels of GnRH are sufficient for the 

stimulation and maintenance of FSH secretion. FSH 

release from gonadotrophs, unlike that of LH, is tightly 

associated with its rate of synthesis (McNeilly 1988). 

Various regulatory neuropeptides and hypothalamic 

factors are thought to be responsible for GnRH-

mediated FSH secretion. Orexin A, synthesized by a 

small population of cells in the hypothalamus, was 

found to significantly inhibit GnRH-stimulated FSH 

release from rat pituitary cells. This neuropeptide was 

shown to modify GnRH sensitivity of gonadotrophic 

cells, and its effect may be age and estrogen dependent 

(Martynska et  al. 2014). Pituitary adenylate cyclase-

activating polypeptide (PACAP) is known to facilitate 

GnRH-mediated secretion of FSH from sheep pituitary 

gonadotropes, but the increase in release is only seen 

at concentrations higher than normal physiological 

limit (Sawangjaroen et  al. 1997). GnRH itself does 

not directly regulate FSH at the level of secretion,  

but it regulates mostly at the level of FSH synthesis 

(McNeilly 1988).

Activin–inhibin–follistatin-mediated 
regulation of FSH secretion

Ling and coworkers first identified activin as a FSH-

releasing factor and coined the name to signify its opposing 

biological activity compared to inhibin (Ling et al. 1986). 

Inhibin has structural organization homologous to 

that of transforming growth factor-beta (TGF-β). Earlier 

investigations on activin–inhibin-mediated secretion of 

FSH were mainly performed in rodent primary pituitary 

cultures. Gonadotrophic secretion of activin B was 

suggested to provide an autocrine signal that selectively 

modulated FSH secretion in rat pituitary cells cultures, 

while FSH inhibitory actions of inhibin and follistatin was 

attributed to their interference with endogenous activin B 

or its activity (Corrigan et al. 1991). It was also previously 

reported that follistatin suppresses FSH secretion in a 

highly specific manner since it shows no demonstrable 

effect on the release of other pituitary hormones (Ying 

et  al. 1987). Moreover, follistatin-treated pituitary cells 

showed significantly less depletion of intracellular FSH 

content than those treated with inhibin. This suggests 

unlike inhibin, follistatin acts primarily by suppressing 

FSH secretion. The mode of follistatin action consists of 

binding and neutralization of both activin A and B forms 

(Schneyer et al. 2003), and this specific binding to activin is 

decisive in determining follistatin’s differential biological 

activity (Sidis et  al. 2002). It was later demonstrated 

that inhibin immunization with anti-inhibin serum in 

Figure 2

Regulation of FSH secretion. GnRH is secreted in 

pulses from the hypothalamus. Its secretion is 

regulated by multiple neuropeptides including 

PACAP and Kisspeptin. GnRH positively regulates 

FSH synthesis from pituitary. FSH binds to gonadal 

cell receptors and produce steroids, which directly 

or indirectly act at the level of the pituitary or 

hypothalamus, respectively. Both locally produced 

factors within gonadotrophs such as activins, 

inhibins and follistatin and other peptides such as 

PACAP and Kisspeptin whose receptors are 

expressed by gonadotrophs, regulate GnRHR and 

FSHβ subunit-encoding genes. Gonads are also an 

abundant source of activins and inhibins, which 

act like typical endocrine factors to regulate FSH 

secretion from pituitary. FSH is mostly 

constitutively secreted and its synthesis is tightly 

linked to it secretion.
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diestrous rats also significantly increased FSH secretion in 

vivo (Gordon et al. 2010).

Regulation of FSH secretion by 
gonadal steroids

Mechanisms of gonadal steroid hormone regulated 

FSH secretion are mostly interweaved with both GnRH-

mediated and activin–inhibin-regulated pathways, 

indicating the complexity and selective interdependency 

of these processes. In rodents, estrous cycle plays an 

important role in dictating this steroid hormone regulated 

FSH secretion. It was noted that anti-progestins RU486 

and ZK98299 affected levels of serum FSH and FSHβ mRNA 

in a similar manner during proestrus, while they showed 

divergent patterns on estrus indicating that the active 

functional state of progesterone receptor/transcriptional 

activation complex is different during the two cyclic 

phases (Ringstrom et  al. 1997). A study also indicated 

that estrogen and inhibin both differentially modulate 

the estrus stage-dependent increased secretion of FSH in 

bovine pituitary cells (Lane et al. 2005).

It was also shown that the suppression of both 

basal and activin-mediated FSH secretion takes place 

in an estrogen-dependent process (Szabo et  al. 1998). 

Progesterone receptors, upon induction by estradiol, 

respond to activin-induced signal transduction to regulate 

FSH release. A study in ovine pituitary cells reported that 

differential effects of estradiol on FSH secretion in ovine 

pituitary cells may be indirectly mediated by activin 

(Baratta et al. 2001). An in vivo study on rats confirmed 

the regulation of FSH secretion by estrogen and inhibins 

and identified estradiol-17 beta as the major candidate 

mediating the mechanism (Herath et  al. 2001). The 

negative estrogen feedback was associated with increased 

levels of both inhibin isoforms in plasma, while inhibin 

A seems to be the dominant species during the initiation 

of the process. The mechanism of estrogen suppression 

of FSH release in vivo was investigated in pre-pubertal 

mice in a recent study, which indicated that the process 

takes place via the activation of estrogen receptor-α 

in kisspeptin neurons directly affecting GnRH release 

(Dubois et  al. 2016). Other than estrogen, progesterone 

and corticosterone, testosterone is also known to 

stimulate the release and maintain intracellular levels of 

FSH by the activation of the androgen receptor (directly 

or as dihydrotestosterone) and conversion to estradiol or 

activation of estrogen receptors (Hiipakka & Liao 1998, 

McPhaul & Young 2001). The steroid hormone actions are 

mediated by activin, which involves a tightly regulated 

activin/follistatin autocrine–paracrine loop (Bohnsack 

et al. 2000).

Other factors regulating FSH secretion

Several other molecular factors, independently or in 

association with the above described pathways, contribute 

to the complex regulation of FSH secretion. One of 

them is corticosterone, which stimulates selectively FSH 

release (Kilen et al. 1996). Bone morphogenetic protein-4 

(BMP-4) exerts inhibitory effects on FSH release, via the 

induction of Smad1 phosphorylation and activation of 

the BMP signaling pathway (Faure et  al. 2005). BMP-4 

blocks activin stimulation of FSH release in addition to 

increasing the 17β-estradiol-mediated suppression of FSH 

secretion. Adiponectin, a protein involved in glucose 

regulation and fatty acid catabolism, is another factor that 

increases FSH release from the pituitary gonadotrophs 

(Kiezun et  al. 2014). This establishes a new crosstalk 

between the glucose-fatty acid metabolic pathways and 

the reproductive axis.

Roper and coworkers recently identified 

synaptotagmin 9 (syt-9), a Ca2+ sensor protein associated 

with exocytosis in neuroendocrine cells, as a regulator of 

FSH secretion in vivo (Roper et al. 2015). Interestingly, they 

found that syt-9 and FSH were co-localized in pituitaries 

of female but not male mice. Accordingly, loss of syt-9 

reduced FSH secretion only in females, indicating a sex-

specific regulation of FSH. A population study on human 

subjects reported that adrenocorticotropic hormone 

(ACTH) regulates FSH release. This study identified a 

novel pathway of gonadotropin secretion mediated by 

the adrenal cortex (Aleknaviciute et al. 2016). Ghrelin, a 

neuropeptide involved in the regulation of physiological 

energy balance, was also found to influence FSH secretion 

in pre-pubertal sheep (Wojcik-Gladysz et  al. 2016). 

The identification of novel factors from such diverse 

physiological pathways indicates the complexity of FSH 

regulation. It further substantiates the idea that various 

signaling networks, related or unrelated to the direct 

regulation of the reproductive axis, act in parallel to 

maintain FSH levels.

Regulation of FSH action

The actions of FSH in regulating the reproductive axis 

have been extensively investigated over the years (Loraine 

& Schmidt-Elmendorff 1963, Simoni et al. 1999, Howles 
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2000, Zafeiriou et  al. 2000, Sairam & Krishnamurthy 

2001, Smitz et  al. 2016). FSH binds and activates, a 7 

transmembrane (7TMR) domain containing FSH receptor 

(FSHR) expressed in granulosa cells in ovaries and 

Sertoli cells in testes (Simoni et  al. 1997). Inactivating 

either Fshb or Fshr leads to consistent reproductive 

defects (Matthews et  al. 1993, Layman et  al. 1997, 

Huhtaniemi et al. 2006) and based on its physiological 

target, FSH controls distinct biological responses like 

cell proliferation, differentiation, steroidogenesis, 

metabolism and apoptosis (Dias et al. 2010) (Fig. 3).

Regulation of FSH functions mediated 
by FSHR

For several decades, the canonical Gs/cAMP/PKA pathway 

has been considered as the major mechanism by which FSH 

exerts its actions within target cells (Dattatreyamurty et al. 

1987). However, in recent years, it has been recognized 

that FSH binding to its receptor also induces several other 

signaling pathways, adding to the growing complexity 

(Gloaguen et  al. 2011). Activation of protein kinase B 

(PKB/Akt) was identified as an alternative response of FSH-

FSHR binding (Zeleznik et al. 2003), which was reported 
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Figure 3

A summary of different signaling mechanisms that mediate FSH actions in target cells. FSH binds to G-protein-coupled seven transmembrane -spanning 

FSHRs expressed on target cells. This leads to the activation of a battery of signaling pathways depending on the developmental and physiological 

context. In the female, FSH mainly acts to regulate ovarian folliculogenesis and steroidogenesis. Recently, extragonadal actions of FSH mediated via 

FSHRs, have been identi�ed, particularly in osteoclasts in female rodent bones. These observations have implications for understanding and treating 

bone loss in post-menopausal women. In the male, FSHRs are expressed on Sertoli cells in the testis. FSH regulates pre-pubertal proliferation and 

maturation of Sertoli cells. Proper maturation of Sertoli cells is essential for maintaining optimal spermatogenesis. Other extragonadal functions of FSH 

have also been proposed but these are yet to be rigorously tested.
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to be a cAMP-dependent and PKA-independent pathway 

(Gonzalez-Robayna et al. 2000, Meroni et al. 2002). This 

involves an exchange protein (EPAC) directly activated 

by cAMP. Wayne and coworkers later demonstrated the 

significance of EPACs in mediating biological activities of 

FSH (Wayne et al. 2007). A more recent study suggests that 

FSH-stimulated ERK activation in granulosa cells involves 

PKA-dependent inactivation of MAP kinase phosphatase 

(3MKP3) (Donaubauer et al. 2016). FSH-responsive genes 

are also regulated by forkhead box O1 (FOXO1) protein 

in ovarian granulosa cells via the phosphatidylinositol-3 

kinase/AKT (Herndon et  al. 2016). Insulin-like growth 

factor-2 (IGF-2) expression is also regulated by FSH 

through the AKT-dependent pathway (Baumgarten et al. 

2015). Further, IGF-1 and FSH signaling pathways are 

shown to interact in granulosa cells both in vitro and  

in vivo (Zhou et al. 2013, Stocco et al. 2017).

FSHR can couple with other G protein subtypes. FSHR 

was shown to activate pertussis toxin-sensitive pathways 

upon binding certain hormone variants or depending 

upon the specific developmental stage of target cells (Arey 

et al. 1997, Crepieux et al. 2001). FSHR also activates the 

inositol trisphosphate (IP3) signaling pathway (Quintana 

et  al. 1994) and interacts directly with Gαq subunit in 

granulosa cells (Escamilla-Hernandez et  al. 2008). In an 

alternate signaling mechanism observed in Sertoli cells, 

the FSH-induced IP3 response was explained via functional 

coupling of FSHR and tissue transglutaminase (Gαh), 

which results in PLCδ activation and IP3 accumulation 

(Lin et al. 2006).

Other than the well-known heterotrimeric G-proteins, 

G protein-coupled receptor kinases (GRKs) and β-arrestins 

are two other classes of proteins shown to interact 

specifically with FSHRs upon FSH induction. GRKs and 

β-arrestins regulate FSHR stimulation by controlling 

selective sensitization, internalization and recycling of 

FSHR (Nakamura et al. 1998, Troispoux et al. 1999, Reiter 

et  al. 2001, Kishi et  al. 2002, Marion et  al. 2002, 2006, 

Krishnamurthy et al. 2003, Piketty et al. 2006). But over 

last few years, the spectrum of functions performed by 

β-arrestins has expanded. They also act as signal transducers 

in a G protein-independent manner at different 7TMRs 

(Lefkowitz & Shenoy 2005, Reiter & Lefkowitz 2006). 

Although only FSHR-mediated β-arrestin-dependent 

and G protein-independent activation of ERK and rpS6 

has so far been identified as the effector mechanism, it 

could be predicted that β-arrestins are associated with 

the G protein-independent activation of a wide array of 

differential signaling pathways downstream of the FSHR.

β-Arrestins are known to function as multifunctional 

scaffolds interacting with several proteins, thereby 

facilitating the phosphorylation of numerous intracellular 

targets at other transmembrane receptors (Xiao et al. 2007, 

Whalen et al. 2011). The adaptor protein phosphotyrosine 

interacting with PH domain and leucine zipper 1 (APPL1) 

was reported to directly bind FSHR, consequently triggering 

downstream signaling cascades. APPL1 was originally 

suggested to interact with the first intracellular FSHR 

loop and APPL1 induces FSH-dependent PI3K signaling 

(Nechamen et al. 2004). A recent study showed that FSH-

stimulated activation of the inositol–phosphate calcium 

pathway requires APPL1–FSHR interaction (Thomas et al. 

2011). PI3K pathway is also induced by the members of the 

Src family of kinases in granulosa cells (Wayne et al. 2007). 

FSH-induced activation of ERK pathway is mediated by 

Src proteins in granulosa and Sertoli cells (Crepieux et al. 

2001, Cottom et  al. 2003). FSH also induced epidermal 

growth factor receptor (EGFR) autophosphorylation in 

granulosa cells via Src activation (Cottom et  al. 2003, 

Wayne et  al. 2007). This suggests an important role of 

EGFR transactivation in relaying the FSH signals in the 

target cells. In addition, EGRF inhibition reduced the 

ability of FSH to stimulate CDK4 activation and ERK/

Akt phosphorylation in different model systems (Cottom 

et  al. 2003, Andric & Ascoli 2006, Shimada et  al. 2006, 

Yang & Roy 2006, Wayne et al. 2007). FSH also regulates 

the initiation of germ cell mitosis/meiosis in embryonic 

chicken through the involvement of progesterone and 

upregulation of miR181a. This miRNA inhibits meiotic 

initiation by suppressing the nuclear receptor subfamily 

6 group A member 1 (NR6A1) transcript (He et al. 2013).

Mouse models for studying FSH actions 
in vivo

The development of transgenic mouse models contributed 

to major advancements in the field of reproduction 

research. Several mouse models were generated that 

largely facilitated our understanding of how FSH acts in 

normal reproductive physiology and under pathological 

conditions. The models belong to two categories. In the 

gain-of-function, reporter gene (e.g., transgenes encoding 

subunits of a protein or CRE recombinase enzyme) 

expression is driven by specific promoter sequences. In 

the loss-of-function model (knockout, KO), mutations at 

a target locus are first produced in embryonic stem cells 

(ES) followed by propagation of the resulting mutant 

allele through germline (Kumar et  al. 2009). Multiple 

Downloaded from Bioscientifica.com at 08/27/2022 03:33:46AM
via free access

https://doi.org/10.1530/JME-17-0308


https://doi.org/10.1530/JME-17-0308
http://jme.endocrinology-journals.org © 2018 Society for Endocrinology

Printed in Great Britain
Published by Bioscienti�ca Ltd.

R14360 3:N Das and T R Kumar Regulation of FSHJournal of Molecular 
Endocrinology

KO mutations could be combined and an intercross of 

KO model with a gain-of-function model results in a 

genetic rescue model. Cell- or tissue-specific deletion 

of a gene is of interest, since such a technology allows 

us to investigate molecular mechanisms in a tissue of 

interest selectively, when global null mutations result in 

undesired or even lethal phenotypes. LoxP-flanked genes 

of interest combined with CRE-expressing transgenic lines 

as drivers are used to achieve such tissue-, cell-specific 

deletions (Schmidt-Supprian & Rajewsky 2007, Bouabe & 

Okkenhaug 2013, Deng 2014).

A transgenic mouse model overexpressing the human 

CGA gene was generated, which did not show any major 

reproductive abnormalities (Fox & Solter 1988). Kumar and 

coworkers developed the first transgenic mouse model for 

FSH. They demonstrated gonadotroph-specific expression 

of a 10 kb human FSHB transgene in mouse pituitaries 

(Kumar et al. 1992). Overexpression of the human FSHβ 

subunit did not result in any overt phenotypes in female 

transgenic mice. Transgenic males, however, showed a 

marginal increase in testis weight without any major 

male reproductive consequences (Kumar et al. 1992). This 

mouse model was further used to demonstrate differences 

in steroid hormone regulation between mouse Fshb and 

human FSHB gene expression (Kumar & Low 1993, 1995) 

and GnRH regulation (Kumar & Low 1995). This model 

also served as a genetic platform to further identify and 

narrow down regulatory elements controlling human 

FSHB expression in vivo (Kumar et al. 2006).

A bi-transgenic human FSH-expressing model was 

developed by a genetic intercross between two independent 

transgenic lines. One line expressed a human CGA mini-

gene and another the FSHB gene. Both the transgenes were 

expressed from a mouse metallothionein-1 promoter. This 

ectopic expression of human FSH dimer was achieved at 

low and very high levels (Kumar et al. 1999). The low level 

human FSH-expressing mice developed normally, do not 

display any abnormalities and are fertile. The very high 

level human FSH-expressing male mice were infertile, 

displayed hyperandrogenemia and consequently enlarged 

seminal vesicles but spermatogenesis looked qualitatively 

normal in testes of these mice (Kumar et  al. 1999). The 

transgenic female mice expressing very high levels of 

human FSH were infertile, their ovarian histology was 

normal initially up to 2 weeks, and several abnormalities 

were noticed by 3 weeks and beyond. In transgenic mice at 

6 weeks of age, the ovaries contained many hemorrhagic 

follicles with totally disrupted folliculogenesis. At this age, 

serum levels of estrogen, progesterone, testosterone and 

activins were elevated. Very few (~5%) transgenic female 

mice survived and died by 13  weeks of age presumably 

secondary to urinary bladder and kidney defects (Kumar 

et al. 1999). Thus, female mice ectopically expressing high 

levels of human FSH demonstrate at least some features of 

polycystic ovarian syndrome in women.

Allan and coworkers developed another ectopic 

human FSH dimer expressing line of mice, in which the 

human FSH subunit-encoding cDNA transgenes were 

engineered in tandem and targeted to liver using a rat 

insulin II promoter (Allan et al. 2001). These transgenic 

mice were later intercrossed with hpg mice and maintained 

on the hpg genetic background (hpg; hFSH+). Because of 

a naturally occurring mutation in the Gnrh gene, hpg 

mice do no produce GnRH and hence gonadotropins 

and ovarian steroids and are infertile (Allan et al. 2001). 

Thus, this genetic approach allowed the investigators to 

test the effects of ectopically expressed human FSH in the 

absence of LH and gonadal steroids. Male transgenic mice 

on hpg background, with human FSH at levels >1 IU/L 

showed partial rescue of the testis and spermatogenesis 

phenotypes. Testis size increased and histological analysis 

revealed that spermatogenesis progressed until early post-

meiosis (Allan et al. 2001, Haywood et al. 2003), similar to 

the phenotypes observed in Lhb-null mice (Ma et al. 2004). 

When supplemented with testosterone, spermatogenesis 

was fully restored in these hpg; hFSH+ mice. Female hpg; 

hFSH+ mice also showed rescue; the ovarian follicle reserve 

increased and ovarian histology demonstrated many antral 

follicles and serum inhibin levels elevated. Surprisingly, 

hFSH+ transgenic mice alone (not on hpg background) by 

~6  months of age showed accelerated aging leading to 

premature ovarian failure (Allan et al. 2001).

Because hpg mice lack both FSH and LH as a result 

of loss of functional GnRH, to study the in vivo roles of 

exclusively FSH, a loss-of-function mouse model for FSH 

action was generated using embryonic stem cell technology 

(Kumar et  al. 1997). Fshb-null mice developed normally 

and demonstrated reproductive phenotypes. Fshb-null 

males were fertile despite displaying reduced testis size 

as a result of reduced Sertoli cell- and germ cell-carrying 

capacity (Wreford et al. 2001), reduced sperm number and 

motility (Kumar et al. 1997). Fshb-null females displayed 

hypoplastic ovaries and uterine horns. Ovarian histology 

showed a preantral stage block in folliculogenesis, and 

no evidence of corpora lutea indicating that these null 

mice were anovulatory (Kumar et al. 1997). However, in a 

superovulation protocol, when injected with exogenous 

hormones, these null female mice responded and released 

comparable number of oocytes similar to control mice 

(Kumar et al. 1997). Thus, FSH responsiveness is retained 
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in these null female mice in the absence of FSH ligand 

from birth. Subsequent studies with Fshb-null females 

showed that FSH regulates transzonal projection-mediated 

communication between granulosa cells and oocytes 

(Combelles et  al. 2004), gap junction proteins between 

granulosa cells (El-Hyek & Clarke 2015, Clarke 2018) and 

epidermal growth factor receptor expression in granulosa 

cells to prime the follicles for ovulation prior to LH action 

(El-Hayek et al. 2014).

Knockout mice lacking Fshr gene display defects in 

reproductive function in both male and female mice, 

similar to those seen in mice lacking FSH (Kumar et  al. 

1997, Dierich et al. 1998, Abel et al. 2000). Fshb genetic 

rescue, activin, inhibin and follistatin knockouts, FSH 

glycosylation mutants and FSH rerouted transgenic 

models were used in various studies to investigate the 

entire spectrum of FSH actions in vivo (Matzuk et al. 1992, 

1995, Guo et al. 1998, Kumar et al. 1998, Jorgez et al. 2004, 

Sandoval-Guzman et al. 2012, Abel et al. 2014, Wang et al. 

2014c). Recently, these models were reviewed in detail 

(Kumar 2016) and summarized in Table  1. Inactivating 

mutations in human FSHB and FSHR are although rare, 

Table 1 Mouse models for FSH synthesis, secretion and action.

Model Phenotypes Reference

Cga transgenic Cell-speci�c expression and regulation of the human alpha-
subunit transgene in the pituitary. No detectable expression in 
placenta

Fox & Solter (1988)

Cga knockout A loss-of-function mutation. Hypogonadism and 
hypothyroidism

Kendall et al. (1995)

Human FSHB transgenic Human FSHβ-overexpression in pituitary gonadotropes. 
Increased testis weight in males. No overt phenotypes in 
females

Kumar et al. (1992)

MT-CGA/MT-FSHB bi-transgenic Multiple reproductive defects including hemorrhagic and cystic 
ovaries in females. Males infertile with enlarged seminal 
vesicles and elevated serum testosterone

Kumar et al. (1999)

Fshb knockout Males fertile with decreased testis size. Females infertile with a 
per-antral stage block in folliculogenesis. Increased bone 
density

Kumar et al. (1997)

Fshb genetic rescue Testis size, sperm number, and motility defects in Fshb-null 
males rescued. Folliculogenesis resumed normally in females

Kumar et al. (1998)

FSHB rerouted transgenic Fshb-null mice rescued by rerouted FSH. Enhanced ovarian 
follicle survival, increase in ovulation number, and prolonged 
reproductive lifespan in females

Wang et al. (2014a)

FSHB glycosylation mutant 
transgenic rescue

The double N-glycosylation mutant (Asn7∆ Asn24∆) transgene 
fails to rescue Fshb-null mice

Wang et al. (2016a)

Human FSH/hpg transgenic rescue Males showed increased testis weight up to 5-fold. Females 
exhibited enlarged ovaries and a strong FSH dose-dependent 
increase in serum inhibin B levels

Allan et al. (2001)

Fshr knockout Phenocopy Fshb-null mice. Males fertile but with reduced testes 
size. Females infertile

Dierich et al. (1998), Abel 
et al. (2000)

Activating Fshr transgenic (D580H) Hemorrhagic cysts, accelerated loss of small follicles, increased 
gonadotropins, prolactin and elevated estrogen

Peltoketo et al. (2010)

Inha knockout Development of gonadal stromal tumors, elevated levels of 
serum FSH, activins and estradiol

Matzuk et al. (1992)

Inha/Fshb double knockout Slow-growing and less hemorrhagic testicular tumors in males 
and ovarian tumors in females, and with minimal cachexia

Kumar et al. (1999)

Acvr2a knockout Suppressed FSH production and defects in reproductive 
performance. Males subfertile or infertile and exhibit male 
sexual behavior defects; females with parturition defects

Matzuk et al. (1995),  
Ma et al. (2005)

MT-Follistatin transgenic Multiple reproductive defects. Marginally elevated FSH in on 
line with widespread expression of the FS transgene

Guo et al. (1998)

Smad3/Smad4 gonadotroph-
speci�c knockout

Phenocopy of Fshb-null mice Li et al. (2017)

Foxl2 knockout Impaired FSH synthesis and secretion, ovarian function Schmidt et al. (2004), Uda 
et al. (2004), Justice et al. 
(2011)

Foxl2 gonadotrope-speci�c 
knockout

Impaired FSH synthesis and fertility Tran et al. (2013)

Smad4/Foxl2 double knockout Phenocopy of Fshb-null mice Fortin et al. (2014)
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they have been reported (Huhtaniemi & Themmen 2005, 

Narayan et  al. 2018). While mouse models lacking Fshb 

are somewhat discordant, those lacking Fshr mostly 

phenocopy human mutations in the corresponding gene 

(Kumar 2016).

Extragonadal actions of FSH

The central dogma of classical FSH actions in gonads 

has been challenged in the past decade by studies that 

demonstrated a direct involvement of FSH in bone 

physiology (Sun et al. 2006). FSH levels increase sharply in 

contrast to declining estrogen levels as observed in post-

menopausal women with osteoporosis. A direct effect of 

FSH on the skeletal system was discovered using Fshb- and 

Fshr-null mice, which have increased bone density (Sun 

et al. 2006). Gi2α-coupled FSH receptors were identified in 

osteoclasts and their precursors. An increase in osteoclast 

formation and function was demonstrated by an FSH-

FSHR-dependent activation of MEK/Erk, Akt and NF-ΚB 

pathways, suggesting a positive correlation of circulating 

FSH with hypogonadal bone loss (Sun et  al. 2006). FSH 

was also shown to regulate FSHR-induced alveolar bone 

loss in rats by an estrogen-independent process (Liu et al. 

2010). The mechanism of FSH-induced increase alveolar 

bone loss was addressed in a recent study that showed 

that the FSH effect was mediated by upregulation of 

the cyclooxygenase-2 (COX-2) protein and the process 

involves Akt, Erk and p38 signaling pathways (Zhu et al. 

2016a). A new concept advocated that a reciprocal cross 

signaling operates between FSHR signaling by FSH and bone 

morphogenetic protein-9 (BMP-9)-induced activation 

of BMP/Smad signaling in mouse embryonic fibroblasts. 

This study identified the cross signaling between FSH 

and BMP-9 promoted osteogenic differentiation (Su et al. 

2017). Controversy exists with regard to FSH actions on 

bone (Kumar 2018) as data obtained using both mice and 

humans, contradict the original observations made by 

Sun et al. (2006).

In addition to its previously discussed functions in 

skeletal system, FSH was reported to act on the endothelial 

cells of human umbilical cord and monocytes (Robinson 

et al. 2010, Cannon et al. 2011, Stilley et al. 2014b). FSH 

receptors have been identified in female reproductive tract 

and the developing placenta, and the functional relevance 

on this finding was confirmed by the observation that Fshr-

knockout mice exhibit feto-placental defects (Stilley et al. 

2014a). Low levels of Fshb expression was also detected 

in various non-ovarian tissues, maternal uterine decidua, 

placenta and uterine myometrium in pregnant women. 

Tumor blood vessels were also shown to express FSHRs 

(Radu et  al. 2010) and FSH action has been implicated 

in endometriosis (Ponikwicka-Tyszko et  al. 2016). Data 

are also available on FSH action on prostate tumors (Ide 

et al. 2013, Siraj et al. 2013, Zhu et al. 2016b). Finally, a 

blocking antibody against FSH shown to be efficacious 

in reducing white fat accumulation and conversion to 

brown fat accompanied by mitochondrial biogenesis in 

ovariectomized mice (Liu et  al. 2017). The biochemical 

identity and the key downstream components of 

extragonadal FSH receptors are not clear. At least in mouse 

bone osteoclasts and adipocytes, FSH signaling pathways 

appear to be different and involve non-cAMP-mediated 

effects (Sun et al. 2006, Liu et al. 2017). The physiological 

relevance of FSH actions in at least some extragonadal 

tissues was challenged recently (Stelmaszewska et al. 2016), 

yet to be rigorously tested and may require development 

of novel genetic models (Kumar 2018).

Conclusion

Over the past several decades, studies on FSH have identified 

the molecular mechanisms for its overall regulation. 

Starting from signals mediating the initial synthesis to 

those needed for exerting successful biological actions, 

every step of FSH regulation is under tight control. Thus, 

the regulation FSH is highly complex and multilayered. 

Crosstalk between various signaling pathways modulate 

specific steps and further adds up to the complexity. As 

discussed in this review, novel findings related to the 

transcriptional, translational, post-translational and 

functional regulatory mechanisms validate that FSH 

plays a more comprehensive role in controlling various 

physiological functions than just being classified as a 

reproductive effector.

Appreciation of diverse functions of FSH and their 

regulation would be instrumental in developing effective 

therapies related to both reproductive disorders and 

other pathological conditions known to be directly or 

indirectly affected by FSH. For example, with the new 

understanding that FSH may be a key player in age-related 

bone loss, effective estrogen and related therapies for bone 

loss treatment could be implemented. One concept is to 

develop novel antagonists for both FSH and its receptor. 

Our knowledge of novel FSH functions in extragonadal 

is currently limited. More comprehensive investigations 

are needed to decipher the underlying molecular 

mechanisms that interweave FSH regulation across 

different physiological systems. A deeper understanding 

of such mechanisms of the overall FSH regulation will 
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facilitate the development of novel hormonal therapies 

in the coming decade.
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