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Hodson N, West DW, Philp A, Burd NA, Moore DR. Molecular regulation of
human skeletal muscle protein synthesis in response to exercise and nutrients: a
compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol
317: C1061–C1078, 2019. First published August 28, 2019; doi:10.1152/ajp-
cell.00209.2019.—Skeletal muscle mass, a strong predictor of longevity and health
in humans, is determined by the balance of two cellular processes, muscle protein
synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly
sensitive to changes in mechanical load and/or nutritional status; therefore, much
research has focused on understanding the molecular mechanisms that underpin this
cellular process. Furthermore, older individuals display an attenuated MPS re-
sponse to anabolic stimuli, termed anabolic resistance, which has a negative impact
on muscle mass and function, as well as quality of life. Therefore, an understanding
of which, if any, molecular mechanisms contribute to anabolic resistance of MPS
is of vital importance in formulation of therapeutic interventions for such popula-
tions. This review summarizes the current knowledge of the mechanisms that
underpin MPS, which are broadly divided into mechanistic target of rapamycin
complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogen-
esis-related, and describes the evidence that shows how they are regulated by
anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This
review also summarizes evidence regarding which of these mechanisms may be
implicated in age-related skeletal muscle anabolic resistance and provides recom-
mendations for future avenues of research that can expand our knowledge of this
area.
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INTRODUCTION

Skeletal muscle not only serves to aid locomotion, posture,

and respiration in humans, it is also a major metabolic tissue

contributing to glucose disposal, lipid oxidation, and basal

metabolic rate (187). For this reason, it is well established that

a greater amount of skeletal muscle mass is positively associ-

ated with longevity, health, and independence (163). Skeletal

muscle mass is determined by the balance of muscle protein

synthesis (MPS) and muscle protein breakdown (MPB). There-

fore, when MPS exceeds MPB, such as after ingestion of an

amino acid (AA)- and/or protein-containing meal (27), an

individual will be in a state of net muscle protein accretion.

When MPB exceeds MPS, for example, in the postabsorptive

state, an individual will be in a state of net muscle protein loss.

While both MPS and MPB are relevant to skeletal muscle net

protein balance (or remodeling), MPS seems to be more

sensitive to alterations in contractile activity and nutritional

state, in the absence of an extreme catabolic situation such as

burn injury or renal failure (17, 18, 127). Importantly, eleva-

tions of MPS are not always inextricably linked to positive net

protein balance, nor do they exclusively contribute to muscle

growth (hypertrophy), but they may represent enhanced non-

hypertrophic remodeling (26), which would help maintain

skeletal muscle proteostasis through removal and replacement

of damaged and/or dysfunctional proteins.

Therefore, the aim of this review is to examine the

cellular and molecular mechanisms that underpin MPS and

then to explore the evidence for each mechanism in young

healthy skeletal muscle. Finally, a discussion of whether

these signaling events may contribute to age-related ana-

bolic resistance is presented. The predominant focus will be
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on the effects of mechanical stimuli and protein ingestion on
these mechanisms, as resistance exercise and essential AAs
(EAAs) seem to be the predominant drivers of MPS in
human skeletal muscle (27, 171). Although insulin is also
able to elicit dose-dependent elevations of several of the
signaling events that will be described (73), this review will
not focus on this aspect, as insulin is permissive in the
activation of MPS when AA availability is high (63) and can
lead to a dissociation between anabolic signaling and MPS
(73; see Ref. 1 for an in-depth review of the effects of
insulin on MPS/anabolic signaling).

MUSCLE PROTEIN SYNTHESIS: WHAT IS IT?

MPS involves translation of a strand of messenger ribonu-
cleic acid (mRNA) into a fully functioning protein by ribo-
somes within a muscle cell (Fig. 1). This process is initiated
when mRNA is recognized by eukaryotic initiation factor (eIF)
4E (eIF4E), which binds to the 5= end of the strand (78). This
initiation factor can then recruit eIF4G, eIF4A, and eIF4B to
this site to form the translation preinitiation (eIF4F) complex
(67). This complex serves to “prime” the mRNA strand for
translation through unwinding of the secondary structure (co-

ordinated by eIF4A and eIF4B) (145) and recruitment of the
small (40S) subunit of the ribosome to the strand (67). Also
attached to the 40S subunit is a complex of eIF2, guanosine
triphosphate (GTP), and a transfer RNA (tRNA) loaded with
methionine (eIF2-GTP-Met-tRNA), which corresponds to
the mRNA start codon (67). This group of proteins forms the
43S initiation complex, which is required to initiate trans-
lation at the start codon. The 43S complex moves along the
mRNA strand until it encounters the start codon (AUG
nucleotides in eukaryotes); at this point, the initiation fac-
tors are released to allow the large (60S) subunit of the
ribosome to bind and form the full 80S ribosome needed for
translation (67, 99).

Once the full ribosome has been constructed at the start
codon, the process of translation elongation begins, with the
60S subunit recognizing each subsequent codon and recruiting
the corresponding tRNA, which is loaded with the AA coded
for by the codon (81). Once recruited, the catalytic activity of
the ribosomal RNA (rRNA) produces a peptide bond between
AAs, and the ribosome moves along the mRNA strand to the
next codon and releases the now-empty tRNA back to the
cytoplasm, where it can bind to another AA (14). Energy for

Fig. 1. Schematic illustration of mRNA translation into protein. After transcription of a new strand of mRNA in the nucleus, this mRNA strand will undergo
splicing and then be transported to the cytosol, where eukaryotic initiation factor (eIF) 4E will bind to its 5=-end and allow formation of the preinitiation complex
(eIF4G, eIF4A, and eIF4B). This complex will unwind the secondary structure of the mRNA strand, “priming” it for translation. Next, the 40S subunit,
complexed with eIF2-guanosine triphosphate (GTP), and a transfer RNA (tRNA), loaded with methionine (eIF2-GTP-Met-tRNA), is recruited, forming the 43S
initiation complex, which recognizes the start codon (AUG) on the mRNA strand. Upon arrival at the start codon, this complex of initiation factors is released,
and the large (60S) ribosomal subunit binds with the 40S subunit to form the full 80S subunit needed for translation. The 60S subunit recognizes each codon
and recruits the corresponding loaded tRNA. The catalytic activity of the rRNA then forms a peptide bond between 2 amino acids (AAs), and the ribosome moves
to the next codon, while the now-empty tRNA is released to the cytoplasm to bind with another AA. This process, aided by translation elongation factors,
continues to occur along the entire mRNA strand until the ribosome hits a stop codon. Here, a release factor, which aids release of the newly formed peptide
chain from the ribosome, is recruited. This peptide chain then undergoes various folding steps to achieve full functionality.
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this process is provided by hydrolysis of GTP to form guanos-

ine diphosphate (14). Eukaryotic elongation factors (eEFs) aid

this entire process by enhancing the recruitment of loaded

tRNAs to the ribosome and accelerating the shift of the

ribosome to the next codon once a peptide bond has been

formed (4). Translation elongation continues along the whole

mRNA strand, forming a polypeptide chain. Translation is

terminated when the ribosome shifts to one of three stop

codons, none of which is recognized by tRNA (14). Instead,

these codons elicit the recruitment of release factors to the

ribosome, which causes release of the polypeptide chain and

mRNA strand from the ribosome and dissociation of the two

ribosomal subunits (14).

The polypeptide chain then undergoes folding steps to pro-

duce the correct secondary or tertiary structure for the func-

tionality of that protein (40). Some tertiary proteins also need

to form multiprotein complexes, termed the quaternary struc-

ture, to carry out their functions. These folding mechanisms are

not described here but are reviewed in detail elsewhere (40,

132).

MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1-

DEPENDENT REGULATION OF MPS

Increases in rates of MPS are regulated at numerous molec-
ular levels within the translation initiation and elongation
processes to respond to anabolic (e.g., mechanical loading) and
nutritional (e.g., EAA provision) stimuli. Until recently, these
mechanisms were believed to be primarily, if not entirely,
governed by the mechanistic target of rapamycin (mTOR), in
particular mTOR complex (mTORC) 1 (mTORC1) (Fig. 2).
mTOR is an evolutionarily conserved serine/threonine kinase
belonging to the phosphatidylinositol 3-kinase (PI3K)-related
kinase family (151). In muscle cells, mTOR resides as the core
of two complexes, mTORC1 and mTORC2. As its downstream
effects are known to elevate mRNA translation and repress
autophagy (78), mTORC1 and its substrates have been the
predominant focus of research aimed at understanding the
molecular regulation of MPS. mTORC1 comprises mTOR and
several regulatory proteins: regulatory-associated protein of
mTOR (RAPTOR), proline-rich AKT substrate of 40 kDa
(PRAS40), DEP domain-containing mTOR-interacting protein

Fig. 2. Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent regulation of protein translation. Once activated, mTORC1 phosphorylates
several downstream targets that regulate protein translation. The first is ribosomal protein S6 kinase 1 (S6K1), which is phosphorylated at Thr389 by mTORC1.
This kinase phosphorylates its downstream targets, eukaryotic elongation factor (eEF) 2K (eEF2K), ribosomal protein S6 (rpS6), eukaryotic initiation factor (eIF)
4B (eIF4B), and upstream binding factor (UBF), which cause an elevation of translation initiation (eIF4B), translation elongation (eEF2K), and rRNA
transcription (UBF). A second direct mTORC1 target is eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which is phosphorylated and
inhibited by the kinase complex. 4EBP1 is then removed from its association with eIF4E and allows the preinitiation complex to bind with the 5= cap of the
mRNA strand. mTORC1 also directly phosphorylates eIF4G on several residues in a further mechanism to enhance translation initiation. P, phosphorylation;
RAPTOR, regulatory-associated protein of mTOR; PRAS40, proline-rich AKT substrate of 40 kDa; DEPTOR, DEP domain-containing mTOR-interacting
protein; G�L, mammalian lethal with SEC13 protein 8/G protein �-subunit-like.
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(DEPTOR), and mammalian lethal with SEC13 protein 8/G
protein �-subunit-like (mLST8/G�L), each of which is essen-
tial for the proper functionality of the kinase complex (16, 78).
The notion that mTORC1 signaling was vital for alterations in
MPS was based on the finding that rapamycin treatment led to
a 95% block in compensatory hypertrophy (19). Furthermore,
use of the Rheb-specific inhibitor NR1, which elicits complete
mTORC1 inhibition without affecting mTORC2 (110), signif-
icantly reduces protein synthesis in MCF-7 cells, implying that
mTORC1 is an important regulator of protein synthesis in
eukaryotic cells (110). Subsequent work in humans has shown
that inhibition of mTORC1 through rapamycin ingestion pre-
vents the increase in MPS after EAA ingestion (39) and muscle
contraction (48), but not in the fasted state (38), highlighting its
importance in regulation of muscle protein remodeling in
response to acute anabolic stimuli. The key downstream targets
of mTORC1 and how they regulate MPS are summarized
below (see Ribosomal Protein S6 Kinase 1 and Ribosomal
Protein S6). As recent reviews have addressed the activation of
mTORC1 specifically (e.g., association with the lysosome and
mTOR trafficking) (8, 83, 112), the current review will focus
on the downstream effects of its activation in response to
resistance exercise and or protein/EAA feeding.

Ribosomal Protein S6 Kinase and Ribosomal Protein S6

The most characterized substrate of mTORC1 is ribosomal
protein S6 kinase 1 (S6K1). S6K1 is hyperphosphorylated at
Thr389 in response to mTORC1 activation (30), which en-
hances the kinase activity of S6K1 and leads to phosphoryla-
tion of its downstream targets. S6K1 is known to phosphory-
late ribosomal protein S6 (rpS6) at two key serine residues,
Ser235/236 and Ser240/244 (78, 150). The specific function of this
phosphorylation was initially believed to allow enhanced re-
cruitment of 5=-terminal oligopyrimidine (TOP) mRNAs to
ribosomes (170). More recently, however, this mechanism has
been questioned (158, 166), as translation of 5=-TOP mRNAs
has been reported to be regulated by PI3K signaling in a
manner that is independent of rpS6 (166). Furthermore, al-
though rpS6 phosphorylation can occur in the muscles of S6K1
knockout animals (111), deleterious effects of the absence of
S6K1 are apparent, suggesting that rpS6 may not be the
predominant mechanism of S6K1 activity in tissue. Neverthe-
less, rpS6 phosphorylation serves as an accurate and reliable
readout of S6K1 activity and, therefore, has been extensively
investigated in human skeletal muscle.

Insights from healthy human skeletal muscle. Many studies
in healthy human skeletal muscle have shown that S6K1Thr389

phosphorylation is potently elevated after mechanical loading
and/or AA feeding (5, 48, 62, 96, 100, 101, 186). While either
of these anabolic stimuli alone elevates S6K1Thr389 phosphor-
ylation (5, 62, 101), a combination of the two elicits a much
greater effect (5, 100, 122, 124). Elevations of this phosphor-
ylation event often occur in the first 6 h after anabolic stimuli,
with peak phosphorylation at ~1–1.5 h (5); however, some
reports note that S6K1Thr389 phosphorylation remains above
the basal level up to 24 h postexercise (24). A variety of dietary
protein sources increase S6K1Thr389 phosphorylation (20, 71,
87, 91, 96, 120, 143). However, most work has used isolated
proteins, such as whey or soy, to assess protein phosphoryla-
tion events in human muscle and showed a particularly pro-

longed response to ingestion of whey compared with soy
protein (120). Few studies have assessed the regulation of
S6K1Thr389 phosphorylation based on eating patterns more
relevant to humans (e.g., whole foods or food combinations),
but another factor that may impact this phosphorylation event
is the leucine content of a meal. If leucine is removed from an
EAA supplement, the extent of phosphorylation of S6K1Thr389

is significantly reduced in the early postexercise recovery
phase compared with the same supplement containing leucine
(5, 122).

Mechanical loading variables also modulate S6K1Thr389

phosphorylation. In work-matched resistance exercise bouts,
high loads [~70% 1 repetition maximum (RM)] elicit greater
elevations of S6K1Thr389 phosphorylation (85). Conversely, if
low loads (30% 1 RM) are lifted to failure and, therefore, a
greater volume of weight is lifted, higher elevations of this
phosphorylation event are elicited than when high loads (90%
1 RM) are lifted to failure (29). Our laboratories recently
reported a significant positive relationship between S6K1Thr389

phosphorylation and myofibrillar protein synthesis (myoMPS)
after resistance exercise and ingestion of isonitrogenous
amounts of egg whites or whole eggs (3). Other studies have
reported qualitative associations between S6K1Thr389 phos-
phorylation and myoMPS, in that interventions that elicit
greater S6K1Thr389 phosphorylation are generally associated
with higher rates of myoMPS (21, 42, 91, 174). However,
establishing a direct causal relationship between a particular
phosphorylation event and MPS in human skeletal muscle from
any population is challenging, as other reports have shown that
alterations in S6K1Thr389 phosphorylation are not paralleled by
directionally or proportionally similar changes in synthetic
rates of sarcoplasmic or mitochondrial fractions (21, 24, 28).
This could highlight the relatively greater importance of
S6K1Thr389 phosphorylation for regulating changes in the more
abundant myofibrillar proteins and/or the limitations of tradi-
tional Western blotting techniques that estimate kinase activity
from changes in phosphorylation and may be prone to meth-
odological variability (9). Moreover, this posttranslational
modification at 5 h postexercise has been reported to positively
correlate with skeletal muscle hypertrophy following 16 wk of
resistance training (118), suggesting, under some circum-
stances, that this signaling event associates with both acute
muscle turnover and chronic muscle growth.

A [�-32P]ATP kinase assay (116) may therefore provide a
more valid and reliable measure of S6K1 activation, although
one study suggests that this measure is positively correlated to
S6K1Thr389 phosphorylation (5). Nevertheless, with resistance
exercise and AA feeding, S6K1 kinase activity is elevated (5,
82, 121), and to a greater extent when these stimuli are
combined. Moreover, if more AAs are added to a supplement,
S6K1 kinase activity increases in a stepwise fashion (121), as
long as leucine content remains constant (5). Therefore, col-
lectively, S6K1Thr389 phosphorylation is generally considered
an essential event to enhance the synthetic rates of the abun-
dant myofibrillar protein fraction in human muscle.

Phosphorylation of rpS6 is frequently determined in studies
of human skeletal muscle anabolism as a readout of mTORC1/
S6K1 signaling. Phosphorylation of either rpS6Ser235/236 or
rpS6Ser240/244 often mirrors the other (48, 114) and, after
anabolic stimuli, follows a pattern similar to that of S6K1Thr389

(100, 101, 126, 167, 169), its predominant upstream kinase. As
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such, the effect of anabolic stimuli on these phosphorylation
events is generally similar to that of S6K1Thr389, peaking at
~60–90 min after exercise/feeding, and can remain elevated
for ~24 h following exercise (25, 100, 101). Phosphorylation of
rpS6 may be influenced by total exercise volume. Terzis et al.
(169) showed that lifting the same load for 1, 3, or 5 sets
elicited a stepwise rpS6Ser235/236 phosphorylation response at
30 min after exercise. A similar finding was reported by Burd
et al. (25) at 5 h postexercise, when rpS6Ser240/244 phosphory-
lation was elevated to a greater extent upon completion of 3
sets than 1 set of resistance exercise. Thus, greater exercise
volume and, therefore, mechanical stimulation may directly
impact the degree of rpS6 phosphorylation.

Eukaryotic Initiation Factor 4B

A second target of S6K1 kinase activity is eIF4B, a
component of the translation preinitiation complex. This
protein is phosphorylated on Ser422 by S6K1 (140), which
enables eIF4B to associate with the preinitiation complex
and activate the helicase activity of eIF4A (67). eIF4A then
unwinds the mRNA secondary structure, permitting efficient
binding of the ribosome to mRNA (145). Therefore, this
may be an additional mechanism by which mTORC1 elicits
S6K1-dependent effects on mRNA translation.

Insights from healthy human skeletal muscle. To our knowl-
edge, investigations of the posttranslational modification of the
translation initiation factor eIF4B in healthy human skeletal
muscle are limited to one study (186). Witard et al. (186)
reported that acute lower-body resistance exercise did not alter
eIF4BSer422 phosphorylation either immediately or 6 h after
exercise. Phosphorylation of S6K1Thr389, the upstream kinase
of eIF4B, was also not elevated at these time points, so the time
course of any change in eIF4BSer422 phosphorylation may have
been missed. Therefore, as there is very little research regard-
ing this phosphorylation event in human skeletal muscle,
regardless of age or health, further investigations are required
to fully understand its role in the initiation of MPS.

Eukaryotic Elongation Factor 2

When mTORC1 is activated, phosphorylation of eEF2 at
Thr56, an inhibitory site, is reduced (141). This relieved inhi-
bition allows eEF2 to bind with ribosomes and accelerate their
movement along mRNA strands (98, 141, 142). The phosphor-
ylation status of eEF2 is primarily regulated by eEF2 kinase
(eEF2K), which is phosphorylated and inhibited on Ser366 by
S6K1 (23, 178). Therefore, mTORC1 regulates translation
initiation as well as elongation.

Insights from healthy human skeletal muscle. Although not a
direct target of mTORC1 or S6K1, eEF2Thr56 phosphorylation
is often used as a readout of the activity of this pathway, as its
upstream kinase eEF2K is phosphorylated and inhibited in
what is believed to be a mTORC1-dependent manner (23). In
young human skeletal muscle, the contraction-induced reduc-
tions in eEF2Thr56 phosphorylation are ablated by rapamycin,
supporting the notion that this posttranslational modification is
mTORC1-dependent (48). Many investigations in healthy hu-
man skeletal muscle report reduced eEF2 phosphorylation in
response to AAs and/or resistance exercise (5, 42–44, 48, 62,
117, 121, 122), with several displaying a qualitative associa-
tion to MPS; i.e., interventions/time points that show the

largest reduction in eEF2Thr56 phosphorylation also elicit the
greatest increases in MPS (43, 44, 48, 62, 117). A direct
correlation between these two measures is yet to be reported;
therefore, further research is required to understand the true
relationship between them. Conversely, some reports suggest
no impact of anabolic stimuli on eEF2Thr56 phosphorylation,
despite elevated mTORC1/S6K1 activity (45, 54, 85).

Increased intracellular Ca2� concentrations immediately
postexercise may activate eEF2K and increase eEF2Thr56 phos-
phorylation (93, 136, 146), suggesting that translation elonga-
tion is repressed. This effect has also been associated with
changes in energy status (i.e., increased ADP-to-ATP ratio)
immediately postexercise in rodent skeletal muscle (185). Nev-
ertheless, by 60 min following resistance exercise or protein
ingestion, eEF2Thr56 phosphorylation is commonly reported to
decrease below basal levels (5, 42, 62, 121, 122) and can
remain attenuated for 3 h poststimulus (121), a response that is
similar in men and women (44, 122). Reports suggest that this
mechanism may be more sensitive than AA provision to
alterations in mechanical loading, as addition of EAAs after
resistance exercise did not further reduce eEF2Thr56 phosphor-
ylation (5, 121), although feeding alone has been reported to
reduce eEF2Thr56 phosphorylation in some (62), but not all
(39), investigations. In agreement with this notion, eEF2Thr56

phosphorylation is not overly responsive to changes in protein
source/composition after resistance exercise (5, 121, 122). This
suggests that maximal inhibition of eEF2K may be achieved
primarily by resistance exercise alone, with little additional
role for the acute nutrient environment.

Changes in resistance exercise-rest interval/volume, how-
ever, do seem to influence eEF2Thr56 phosphorylation. In a
cohort in which rest intervals were longer and, thereby, a
greater volume was lifted, McKendry et al. (117) showed a
greater reduction in eEF2Thr56 phosphorylation during
postexercise recovery. Another report (25) of reduced eEF2
phosphorylation at 4 h postexercise when a greater overall
volume of resistance exercise is performed concurs with this
notion. Collectively, eEF2Thr56 phosphorylation appears to
be regulated by anabolic stimuli, mechanical loading in
particular, in healthy human skeletal muscle; however, more
work is required to understand its full impact on regulation
of human MPS.

Eukaryotic Translation Initiation Factor 4E-Binding
Protein 1

A second major substrate of mTORC1 is eukaryotic trans-
lation initiation factor 4E-binding protein 1 (4EBP1) (66).
mTORC1-dependent phosphorylation of 4EBP1 occurs at four
different serine residues, which are phosphorylated in a hier-
archical manner, and all are required to relieve the inhibition of
4EBP1 toward eIF4E (66, 78, 79). Initially, Thr37 and Thr46 are
phosphorylated (66), acting to prime 4EBP1 for subsequent
phosphorylation of Ser65 and Ser70 and removal of 4EBP1
from eIF4E (66, 76). Thereafter, the binding site for eIF4G is
unblocked, and the preinitiation complex can be recruited to
the mRNA strand before translation initiation (79).

Insights from healthy human skeletal muscle. 4EBP1 is
phosphorylated on four different residues (Thr37, Thr46, Ser65,
and Ser70) in a mTORC1-dependent manner, with the most
common in human skeletal muscle being Thr37/46. Results
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surrounding the effect of anabolic stimuli on this phosphory-
lation site are equivocal, with some studies reporting elevations
(5, 42, 62, 96, 121, 124) and others showing no change or even
reductions (43, 49, 95, 96). These findings may be due to the
hierarchical nature of 4EBP1 phosphorylation following
mTORC1 activation (66), as this particular site may no longer
be phosphorylated at certain time points. Interestingly, in one
study, phosphorylation at this site 6 h after resistance exercise
and AA feeding correlated to skeletal muscle growth, but not
acute myoMPS (119). In contrast, 4EBP1Thr37/46 phosphoryla-
tion at 24 h postexercise has been directly, and positively,
correlated to myoMPS (29), potentially linking these two
processes later in the postexercise recovery period. Addition-
ally, phosphorylation at this site is qualitatively associated with
elevations of MPS following AA feeding alone (62) and
protein-carbohydrate ingestion following resistance exercise
(42); however, further research across a variety of time cours-
es/interventions is needed to fully determine if a direct asso-
ciation exists. Similar to S6K1Thr389, 4EBP1Thr37/46 phosphor-
ylation, on this occasion measured 1 h postexercise, has been
shown to associate with chronic resistance-training-mediated
alterations in skeletal muscle volume (119). This seemingly
supports the notion that mTORC1-dependent signaling path-
ways are implicated in the control of both acute skeletal muscle
turnover and chronic muscle adaptation; however, it is impor-
tant to note that 4EBP1Thr37/46 phosphorylation was not signif-
icantly elevated above basal levels at this time point, even
though it was significantly associated with muscle hypertrophy
(119).

It is intriguing that both 4EBP1Thr46 and 4EBP1Ser65 phos-
phorylation were elevated following resistance exercise and
intake of a variety of AAs (leucine, branched-chain AAs, and
EAAs), which mimicked the response noted with S6K1 kinase
activity, whereas the response of 4EBP1Thr37/46 did not (121).
This could suggest that relatively novel residues could be a
target for future studies in human skeletal muscle. Alterna-
tively, coimmunoprecipitation techniques, which, to our
knowledge, have been used sparingly and in the absence of
parallel measures of MPS (121) to measure the association
between 4EBP1 and eIF4E, may provide additional insight into
the molecular regulation of human MPS, especially consid-
ering that phosphorylation of 4EBP1 dissociates these pro-
teins (67).

Eukaryotic Initiation Factor 4G

mTORC1 is also believed to phosphorylate a further com-
ponent of the translation initiation machinery, eIF4G (78). This
protein comprises three subunits that act as a scaffold for other
translation initiation factors in the preinitiation complex at the
5= end of mRNA (161). eIF4G is phosphorylated at three sites,
Ser1108, Ser1148, and Ser1232, when mTORC1 activity is high
(139). While the precise implication of these phosphorylation
events is unclear, they are purported to elicit a conformational
change in these subunits, allowing for more efficient construc-
tion of the ribosomal preinitiation complex (78).

Insights from healthy human skeletal muscle. Similar to
phosphorylation of eIF4B, phosphorylation of eIF4G has been
relatively underinvestigated in healthy human skeletal muscle
[to our knowledge, only 1 study (48)]. Drummond et al. (48)
reported that acute lower-body resistance exercise elicited an

elevation of eIF4GSer1108 phosphorylation at 1 and 2 h postex-
ercise and that this effect occurred despite the presence of
rapamycin (although the authors acknowledge that the rapa-
mycin dosage may not have been high enough to fully inhibit
mTORC1 activity). Further research is required to fully under-
stand the effects of anabolic stimuli on the phosphorylation
event and its association to MPS.

mTORC1-INDEPENDENT REGULATION OF MPS

Although data from young, healthy human skeletal muscle
suggest that mTORC1 activation is required to enhance MPS in
response to anabolic stimuli (17, 21), it is important to ac-
knowledge that these investigations measured MPS during a
short (2-h) period. Therefore, the requirement of mTORC1 for
persistent elevation of MPS in healthy human skeletal muscle
is unknown. Several recent investigations in rodent skeletal
muscle suggest that mTORC1 inhibition does not ablate the
effects of muscle contraction on MPS during a more prolonged
recovery period following isometric/eccentric contractions,
mechanical overload, or endurance exercise (130, 131, 135,
181, 188). These observations are potentially important, as
they imply that mTORC1-independent mechanisms may stim-
ulate MPS after anabolic stimuli, especially later in the recov-
ery period. Collectively, these studies (130, 131, 135, 181, 188)
have begun to identify mechanisms that are rapamycin-sensi-
tive, rapamycin-insensitive, and mTORC1-independent. In this
section, the possible candidates for mTORC1-independent reg-
ulation of MPS (Fig. 3 and Table 1) are summarized, with a
focus on the mitogen-activated protein kinase/extracellular
signal-regulated kinases 1/2 (MAPK/ERK1/2) pathway.

MAPK/ERK1/2 Pathway

The MAPK/ERK1/2 pathway consists of several kinase-
mediated steps that phosphorylate and initiate activation of
MAPK/ERK1/2 (107). This cascade begins at the plasma
membrane via binding of a ligand to a receptor or activation of
focal adhesion kinase and integrins by mechanical stimuli
(107, 152, 153). In response, guanine exchange factors become
activated and recruit Ras proteins toward the plasma membrane
(51). Ras proteins become GTP-loaded (active), elevating the
kinase activity of rapidly accelerated fibrosarcoma proteins
(104). These kinases then phosphorylate and activate MAPK
and ERK kinases (MEKs), which serve to phosphorylate and
activate ERK1/2 at Thr202 and Tyr204 (ERK1/2Thr202/Tyr204)
(147, 156). In most cases, this phosphorylation event is unaf-
fected by rapamycin and, therefore, is believed to occur in a
mTORC1-independent manner (31, 138, 181). Activated
ERK1/2 can then phosphorylate several downstream targets,
some of which are implicated in protein translation.

Insights from healthy human skeletal muscle. Phosphoryla-
tion of ERK1/2Thr202/Tyr204 in human muscle seems to be
mainly initiated by mechanical loading, as protein feeding
alone has no effect on these residues (124) and addition of
BCAA ingestion does not augment the exercise-induced ele-
vation (97). Changes in ERK1/2Thr202/Tyr204 phosphorylation
following mechanical loading are commonly noted within 1 h
of a resistance exercise bout (37, 88, 114, 124, 168, 184),
although elevations up to 24 h postexercise have been reported
(37, 114). Conversely, some studies report no change (69, 123)
or a reduction (174) in ERK1/2Thr202/Tyr204 phosphorylation in
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postexercise recovery. Although this cellular mechanism is
believed to be mTORC1-independent, investigations utilizing
rapamycin in young, healthy human skeletal muscle have
shown an ablation of the resistance exercise-induced elevations
of ERK1/2Thr202/Tyr204 when rapamycin is ingested (48). This,
however, is in conflict with both in vitro and rodent skeletal
muscle data, which show ERK1/2Thr202/Tyr204 phosphorylation
to be mTORC1-independent (31, 35, 135, 181), suggesting that
further investigations are required for a full understanding of
the regulation of this pathway in humans.

Resistance exercise volume may affect the magnitude of
ERK1/2Thr202/Tyr204 phosphorylation. Completion of an exer-
cise bout consisting of 5 sets of 10 repetitions (at 10 RM)
compared with 15 individual repetitions (at 1 RM) (~3-fold
greater volume in the 10-RM condition) elicited greater changes
in ERK1/2Thr202/Tyr204 phosphorylation 30 min postexercise (88).

These results mirror reports showing greater ERK1/2Thr202/Tyr204

phosphorylation when 30% 1-RM loads are lifted to volitional
failure than when 90% 1-RM loads are lifted to failure (29).
Collectively, this suggests that the volume of mechanical
loading is associated with the extent of ERK1/2Thr202/Tyr204

phosphorylation, given full motor unit recruitment in both 30%
and 90% 1-RM conditions (29).

Endurance exercise has also been reported to elevate ERK1/
2Thr202/Tyr204 phosphorylation, with elevations occurring im-
mediately following a 60-min cycling bout at 70% of peak O2

uptake (6, 13) and returning to basal levels by 3 h postexercise
(13), although a more prolonged activation is reported after
treadmill running (2). In addition, high-intensity sprints elevate
phosphorylation of these residues (61), suggesting that varied
mechanical stimuli activate the MAPK/ERK1/2 pathway. De-
spite elevations of ERK1/2Thr202/Tyr204 phosphorylation and

Fig. 3. Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-independent regulation of protein translation. The majority of mTORC1-independent
mechanisms governing protein translation occur via the MAPK/ERK1/2 pathway. This pathway begins at the cell membrane with activation of Ras kinases via
conversion of GDP to GTP. These RAS proteins then initiate a signaling cascade, culminating in phosphorylation and activation of ERK1/2, which will
phosphorylate several downstream targets, the most predominant of which is p90 ribosomal protein S6 kinase (p90RSK). This kinase phosphorylates a set of
substrates similar to ribosomal protein S6 kinase 1 (S6K1). ERK1/2 will also phosphorylate MAP kinase-interacting kinase 1 (MNK1), which elevates translation
initiation through phosphorylation of eukaryotic initiation factor (eIF) 4G and eIF4E. rRNA transcription is also elevated in an ERK1/2-dependent fashion via
phosphorylation of c-myc and upstream binding factor (UBF). Finally, ERK1/2 signaling may affect mTORC1 activation through phosphorylation of tuberous
sclerosis complex 2 (TSC2), which is removed from mTORC1’s direct activator Rheb. eEF, eukaryotic elongation factor; FAK, focal adhesion kinase; P,
phosphorylation; RAPTOR, regulatory-associated protein of mTOR; PRAS40, proline-rich AKT substrate of 40 kDa; DEPTOR, DEP domain-containing
mTOR-interacting protein; G�L, mammalian lethal with SEC13 protein 8/G protein �-subunit-like.
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MPS across exercise modalities, direct correlations between
the two measures, as well as an understanding of the impact of
ERK1/2Thr202/Tyr204 phosphorylation on muscle subfraction
(e.g., myofibrillar and mitochondrial pools) synthesis rates, are
lacking. However, the mechanically sensitive nature of this
posttranslational modification implies that it may be mainly
related to turnover of the contractile portion of human skeletal
muscle (myoMPS).

p90 Ribosomal Protein S6 Kinase

The first target of the ERK1/2 kinases to be linked to protein
translation is p90 ribosomal protein S6 kinase (p90RSK), as
phosphorylation of this kinase at Thr573 initiates a cascade that
culminates in Ser221 phosphorylation and full activation of
p90RSK (36). Similar to S6K1, p90RSK primarily coordinates
phosphorylation of rpS6 at Ser235/236 (148). As previously
discussed, the full effects of rpS6Ser235/236 phosphorylation are
unclear but are purported to contribute to cap-dependent trans-
lation (149). Furthermore, in several studies in rodent skeletal
muscle, rpS6 phosphorylation at these sites was inhibited by
rapamycin/mTORC1 inhibition (135, 181, 188), suggesting
that this may not be the mechanism whereby ERK1/2 signaling
exerts its mTORC1-independent effects on translation. In ad-
dition to targeting rpS6, p90RSK has several other downstream
targets that contribute to mRNA translation. p90RSK can
phosphorylate eIF4B at Ser422, the same site at which S6K1
phosphorylates this initiation factor (157); however, again,
rapamycin treatment blocks Ser422 phosphorylation, suggesting
that the mTORC1 pathway is dominant at this site (86, 140).

Insights from healthy human skeletal muscle. Similar to
ERK1/2 phosphorylation, alterations in p90RSK phosphoryla-
tion (Ser380 and Thr573) have been observed within 10 min of
exercise cessation (33, 114), and p90RSK phosphorylation
(Ser380 and Thr573) can remain elevated for 5–24 h postexer-
cise, depending on the phosphorylation site measured (25,
124). Another phosphorylation site on p90RSK, Thr359/Ser363,
is shown to be elevated only following eccentric contractions
(58). Completion of 3 sets vs. 1 set of resistance exercise did
not further augment p90RSKThr573 phosphorylation (25), de-
spite greater increases in rates of MPS after 3 sets. Feeding
seems to have little to no effect on p90RSKThr380 phosphory-
lation (124); however, only one site (Thr380) has been inves-
tigated in response to feeding alone, so further research is
needed. In summary, existing evidence suggests that p90RSK
phosphorylation occurs in response to mechanical loading and
may contribute to mTORC1-independent increases in MPS
after resistance exercise.

As p90RSK and S6K1 share a variety of downstream sub-
strates, it is difficult to separate the activities of these two
kinases following anabolic stimuli in human skeletal muscle.
One potential way to separate p90RSK and S6K1 is by use of
rapamycin, which in theory should specifically inhibit S6K1
(mTORC1-dependent), but not p90RSK. The Rasmussen lab-
oratory (48) reported a rapamycin-induced ablation of postex-
ercise elevations of MPS that was accompanied by elevated
rpS6Ser235/236 phosphorylation at 2 h postexercise. Although
this could suggest that p90RSK was catalyzing this phosphor-
ylation event, S6K1Thr389 phosphorylation was also elevated,

Table 1. Summary of evidence regarding phosphorylation events implicated in regulation of MPS

Protein

Phosphorylation

Site AA Ingestion

Resistance

Exercise

AA Ingestion �

Resistance

Exercise

Implicated in Age-

Related Anabolic

Resistance? References

S6K1 Thr389 11 111 11111 ✓ 5, 20, 22, 24, 29, 34, 48, 57, 59, 62,
71, 75, 87, 91, 96, 100, 101, 103,
117, 120, 123, 124, 143, 186.

rpS6 Ser235/236 11 111 11111 ✓ 48, 59, 100, 114, 167, 169.
Ser240/244 11 111 11111 ✗ 22, 25, 48, 114.

eIF4B Ser422 N/A N/A ↔ N/A 186
eEF2 Thr56 1/↔/? 222 222 ✗ 5, 22, 25, 42, 43, 44, 47, 48, 62,

121, 122, 160.
4EBP1 Thr37/46 11 1/2/↔/? 11 ✓ 5, 33, 34, 42, 43, 49, 59, 62, 95, 96,

103, 119, 121, 124.
Thr46 N/A ↔ 11 N/A 121
Ser65 N/A ↔ 11 N/A 121

eIF4G Ser1104 N/A 1 N/A ✗ 52, 115.
ERK1/2 Thr202/Tyr204 ↔ 111 111 ✓ 29, 37, 47, 59, 88, 114, 124, 168,

184.
p90RSK Thr573 N/A 11 N/A ✓ 25, 33, 184.

Ser380 ↔ N/A 11 N/A 114, 124.
MNK1 Thr197/202 N/A 11 N/A ✓ 47, 48, 55, 56, 60, 114, 124, 184.
eIF4E Ser209 N/A 11/↔ (Possible

effect of
trained state)

11 (Only in
trained state)

✗ 5, 56, 114, 173, 183, 184.

UBF Ser388 N/A 11 N/A N/A 56, 65.
Ser484 N/A 1 (Only in later

stages of
recovery)

N/A ✗ (Only measured in
early stages)

22, 56.

MPS, muscle protein synthesis; S6K1, ribosomal protein S6 kinase 1; rpS6, ribosomal protein S6; eIF, eukaryotic initiation factor; eEF2, eukaryotic elongation
factor 2; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; p90RSK, p90 ribosomal protein S6 kinase; MNK1, MAP kinase-interacting kinase
1; UBF, upstream binding factor. Arrows indicate effect on phosphorylation event as follows:1/2, small effect;11/22, moderate effect;111/222,
large effect; ↔, no effect. Combined effect of amino acid (AA) ingestion and resistance exercise is shown by summation of arrow number from each individual
stimulus. N/A, no data available for this scenario;?, lack of conclusive data.

C1068 MECHANISMS OF MPS IN HUMAN SKELETAL MUSCLE

AJP-Cell Physiol • doi:10.1152/ajpcell.00209.2019 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell (106.051.226.007) on August 4, 2022.



so a mTORC1 effect cannot be ruled out. Therefore, further
research is required to fully elucidate whether substrates such
as rpS6 are phosphorylated in a mTORC1-independent manner
in human skeletal muscle.

MAP Kinase-Interacting Kinase 1

A second target of ERK1/2 is MAP kinase-interacting kinase
1 (MNK1), which is phosphorylated at Thr197/202 by both
ERK1/2 and p38 mitogen-activated protein kinase in a
mTORC1-independent manner (179). It is believed that once
MNK1 becomes phosphorylated, it binds with eIF4G, the
scaffolding of the translation preinitiation complex (137, 159).
MNK1 then initiates phosphorylation of eIF4G at Ser1186 to
stabilize this interaction while also phosphorylating a second
component of the preinitiation complex, eIF4E, at Ser209 (41,
172). The interaction among MNK1, eIF4G, and eIF4E seems
to be vital for MNK1-mediated kinase activity toward eIF4E
(137). Given that 4EBP1 must be removed from eIF4E in a
mTORC1-dependent process before eIF4G can bind to the 5=

cap of the mRNA strand, a synergism between mTORC1 and
ERK1/2 pathways is possible (66). Thus, MNK1-dependent
phosphorylation of eIF4E provides another mechanism by
which anabolic stimuli may exert mTORC1-independent ef-
fects on protein translation; however, full functionality of this
particular mechanism may also rely on mTORC1-dependent
events.

Insights from healthy human skeletal muscle. MNK1 is a
downstream substrate of ERK1/2 that is phosphorylated at
Thr197/202. MNK1Thr197/202 phosphorylation has been relatively
well characterized in healthy human skeletal muscle following
anabolic stimuli, increasing immediately after acute exercise
(114, 184) and remaining elevated for up to 3 h of recovery
(47, 56, 114). Although the influence of protein ingestion alone
on MNK1Thr197/202 phosphorylation is yet to be studied, given
that its upstream kinase ERK1/2 is activated by mechanical
stimuli, it could be postulated that MNK1Thr197/202 is similarly
mechanically regulated (124).

MNK1Thr197/202 phosphorylation is increased by low-load
resistance exercise, but only in the blood flow-restricted state
(60), implying the importance of increased metabolic load in
the absence of mechanical stimuli. Training status does not
seem to affect MNK1Thr197/202 phosphorylation, as an identical
bout of resistance exercise elicits similar elevations of
MNK1Thr197/202 phosphorylation before and after 8 wk of
resistance exercise training (55). This suggests that the con-
traction-mediated regulation is conserved across both naïve
and accustomed stimuli. Intriguingly, and similar to ERK1/
2Thr202/Tyr204 phosphorylation, rapamycin ingestion may atten-
uate the effects of contraction on MNK1Thr197/202 phosphory-
lation in human muscle (48), which could suggest that, con-
trary to in vitro data (31, 35), it is a mTORC1-mediated event
in humans. This suggests the need for further research in
young, healthy human skeletal muscle to establish the true
upstream signaling pathways that affect MNK1Thr197/202 phos-
phorylation.

The two main substrates of MNK1 are eIF4G and eIF4E,
which are phosphorylated on Ser1186 and Ser209, respectively
(137, 159, 172). In human skeletal muscle, eIF4GSer1186 has
not been investigated, and the more commonly used readout of
MNK1 activity is eIF4ESer209, most likely as it is more directly

associated with translational capacity (64). eIF4ESer209 phos-
phorylation rises at 1–2 h postexercise in untrained individuals
(48, 56) and, in some cases, can remain elevated 24 h following
a bout of unaccustomed resistance exercise (115). Moreover,
eIF4ESer209 phosphorylation in young, healthy human skeletal
muscle does not seem to be affected by rapamycin ingestion,
reinforcing the notion that it is a mTORC1-independent mech-
anism (48). However, in other reports, training status seems to
affect eIF4ESer209 phosphorylation (183), in contrast to its
upstream regulator, MNK1Thr197/202, suggesting that training
status may actually affect MNK1 kinase activity without alter-
ations in its phosphorylation status or that other kinases are
able to phosphorylate eIF4E on this residue. Wilkinson et al.
(183) utilized a contralateral exercise model whereby one leg
completed chronic endurance exercise training and the other
completed chronic resistance exercise training. An acute bout
of either exercise type in the untrained state did not affect
eIF4ESer209 phosphorylation; however, when performed after
10 wk of training, both exercise types elicited an increase in
eIF4ESer209 phosphorylation immediately postexercise (183).
Moreover, resistance exercise elicited a further elevation of
this phosphorylation event at 4 h postexercise, whereas endur-
ance exercise did not. This suggests a divergent response
between exercise types, but only in the trained state. This
notion has been further reinforced by the absence of a change
in eIF4ESer209 phosphorylation immediately postexercise in
untrained individuals (184) and an elevation of phosphoryla-
tion at 5 h postexercise in untrained individuals only when
resistance exercise was completed (173). How training status
creates a molecular environment favoring eIF4ESer209 phos-
phorylation postexercise and whether this contributes to sub-
sequent fraction-specific increases in rates of MPS postexercise
(183) remain to be determined.

Potential Link to mTORC1 Activation via Tuberous Sclerosis
Complex 2

It is intriguing that the MAPK/ERK pathway has also been
implicated in the activation of mTORC1 itself. In the presence
of an ERK-specific inhibitor, the normal elevations of tuberous
sclerosis complex (TSC) 2 (TSC2) phosphorylation at Ser664

(TSC2Ser664) following epidermal growth factor treatment in
HEK-293 cells were significantly reduced (108). Moreover,
these attenuations in ERK-mediated TSC2 phosphorylation
caused a reduction in mTORC1 activity, suggesting an impact
of the ERK pathway on mTORC1 activation following ana-
bolic stimuli (108, 109). As phosphorylation of TSC2Ser664

disrupts the TSC1-TSC2 heterodimer, it is thought that these
phosphorylation events elicit removal of TSC2 from Rheb, a
direct mTORC1 activator (190). At this point, Rheb is able to
become GTP-loaded and bind with the catalytic domain of
mTOR, enhancing its kinase activity (106), a cellular event we
have observed on several occasions in young, healthy human
skeletal muscle (2, 3, 162). These observations further suggest
an overlap and/or synergism between these two pathways in
the activation of translation machinery. Although this particu-
lar phosphorylation event is yet to be investigated in human
skeletal muscle, data from rodent skeletal muscle suggest that
TSC2Ser664 phosphorylation is elevated following forced ec-
centric contractions (92), implying that this may be a promis-
ing avenue for future research in humans.
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Eukaryotic Elongation Factor 2

As previously mentioned, the phosphorylation state of
eEF2Thr56 is governed by the activity of eEF2K, which is
phosphorylated and inhibited by S6K1 at Ser366. This phos-
phorylation of eEF2K renders its kinase ability inactive and,
therefore, reduces eEF2Thr56 phosphorylation and allows rates
of translation elongation to be accelerated. These phosphory-
lation events were initially believed to be mTORC1-dependent
through S6K1; however, there is recent evidence that reduc-
tions in eEF2Thr56 phosphorylation in rodent skeletal muscle in
response to muscle contraction still occur in the presence of
rapamycin (181). Therefore, it seems that there are mTORC1-
independent mechanisms that either inhibit eEF2K or catalyze
the dephosphorylation of eEF2 itself. Similar to its effects on
other substrates of S6K1, p90RSK can also phosphorylate
eEF2KSer366, thereby inhibiting this kinase (177, 178). This
finding was reinforced by the notion that this phosphorylation
event can still occur in response to insulin-like growth factor-1,
despite the presence of rapamycin, although to a lesser extent
than in “normal” conditions (178). This suggests that S6K1 and
p90RSK “merge” to inhibit eEF2K and activate eEF2 and,
therefore, may explain, in part, the rapamycin-insensitive in-
duction of eEF2 in skeletal muscle after eccentric exercise
(181) (see above for insights from healthy human skeletal
muscle for this mechanism).

RIBOSOMAL BIOGENESIS-RELATED SIGNALING

Ribosomal biogenesis appears to be regulated by both
mTORC1-dependent and -independent mechanisms. mTORC1-
mediated activation of S6K1 regulates ribosomal biogenesis by
increasing rates of rRNA transcription (77). Rapamycin ablates
the serum-refeeding-induced increase in rRNA transcription
(90), and the knockdown of S6K1 has a similar effect (77), a
finding that has been recently demonstrated in rodent skeletal
muscle in vivo (111). Reduced levels of rRNA reduce the
translational capacity of the cell (129). These serum-refeeding
experiments (77, 90) demonstrated that S6K1 is necessary and
sufficient for ribosomal DNA transcription and that these
effects are mediated by phosphorylated upstream binding fac-
tor (UBF). In turn, phosphorylated UBF cooperates with RNA
polymerase transcription factor I (SL1) to mediate human
rRNA synthesis (11). More recent research has suggested that
phosphorylation of UBF at Ser388 is required to enhance the
transcription of ribosomal-related genes (175); however, early
exercise-induced phosphorylation at this site appears to be
independent of mTORC1 in rodent skeletal muscle (181).
Conversely, phosphorylation of UBF at Ser637 was rapamycin-
sensitive in early (�3 h), but not late (6–18 h), stages of
recovery from muscular contractions, and rapamycin was also
able to attenuate the postcontraction elevations of precursor
rRNA (181). Future research should therefore aim to determine
if the effects of UBF on rRNA transcription are exclusively
mTORC1-dependent and, if so, to identify the underpinning
levels of regulation in human skeletal muscle.

c-Myc upregulates the transcription of rRNA and genes
encoding ribosomal proteins (72, 80, 154). Phosphorylation at
Ser62 is thought to stabilize c-myc, allowing it to bind with
certain promoter regions and enhance transcription (155). In-
hibition of ERK1/2 expression with siRNA or a chemical
inhibitor reduced phosphorylation at Ser62 and c-myc binding

to promoter regions (12). Therefore, ERK-mediated c-myc
phosphorylation and stabilization may be a further mechanism
of enhanced mRNA translation through elevated translation
capacity.

Insights from Healthy Human Skeletal Muscle

In young, healthy human skeletal muscle, UBFSer484 phos-
phorylation, an event that primes UBF for phosphorylation at
Ser388 and Ser637, remained unchanged 1.5 h after resistance
exercise in one study (22) but was elevated at 24 h postexercise
in another (56). UBFSer388 phosphorylation was also increased
at 24 h postexercise and remained elevated at 48 h postexer-
cise, when UBFSer484 phosphorylation had returned to basal
levels (56). This sustained elevation may provide a mechanism
whereby myoMPS remains elevated for this time period, fol-
lowing unaccustomed resistance exercise, in an untrained pop-
ulation (28).

Elevations of UBFSer388 phosphorylation have been reported
at 1 and 3 h after resistance exercise (in the trained state) and
are ablated if any form of endurance exercise is also completed
(65). Despite this apparent concurrent exercise interference
effect at the level of UBFSer388 phosphorylation, rRNA content
was greater following 8 wk of concurrent exercise than only
resistance exercise training (65). This could suggest a potential
negative-feedback mechanism whereby signaling related to
rRNA transcription is reduced as rRNA content increases, the
latter being a response that is positively associated to hyper-
trophy (55, 164). Conversely, in a separate study involving 8
wk of resistance training, significantly elevated basal levels of
UBFSer388 phosphorylation were reported after training (55).
Therefore, as data regarding these phosphorylation events are
equivocal, more research is needed to fully understand such
mechanisms and how they impact basal and postexercise MPS.
In addition, as research regarding the impact of c-mycSer62

phosphorylation in human skeletal muscle is lacking, future
work should focus on understanding the impact of anabolic
stimuli on this posttranslational modification and its ramifica-
tions for MPS.

ARE THESE MECHANISMS IMPLICATED IN AGE-RELATED

SKELETAL MUSCLE ANABOLIC RESISTANCE?

Skeletal muscle “anabolic resistance” is defined as an atten-
uated MPS response to anabolic stimuli such as resistance
exercise and/or AA ingestion (34, 128). As rates of MPS are
underpinned by molecular mechanisms described above, it is
likely that some of these signaling events would be compro-
mised in populations exhibiting anabolic resistance, the most
characterized of which is older populations. Data regarding
these signaling pathways in this population and whether a
relationship exists between them and MPS are summarized
below.

Aging populations are one of the most commonly studied
populations that experience anabolic resistance, which is be-
lieved to be a primary driver of sarcopenia, the age-related loss
of muscle mass and function (15). Indeed, the dose of dietary
protein required to maximize MPS in older individuals is
approximately double that required by younger individuals
(125). Moreover, MPS rates in response to a novel bout of
acute resistance exercise are attenuated up to 24 h postexercise
in older individuals compared with a younger cohort (59, 103),
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which may contribute to some reports of an attenuated hyper-
trophic response to chronic resistance training (74, 102). How-
ever, the hypertrophic response to training is variable in older
populations and may not be related to changes in strength (32,
180). Therefore, we argue that it is more important to consider
the evidence of anabolic resistance to both nutrition and exer-
cise as part of a larger metabolic dysregulation that could
attenuate both hypertrophic and nonhypertrophic remodeling
and contribute to suboptimal muscle quantity and/or quality
over time.

Several studies directly compared the effect of resistance
exercise and/or protein ingestion on anabolic signaling in both
young and old skeletal muscle. Interestingly, higher basal
levels of S6K1Thr389 phosphorylation have been reported in
older than younger individuals (113). Ostensibly, this would
suggest elevated mTORC1 activity and higher rates of protein
translation; however, this was not apparent, as both older and
young individuals displayed similar rates of MPS (113). It has
been hypothesized that this elevated mTORC1 activity at
baseline is required to maintain “normal” basal rates of MPS in
older individuals (113), although this hypothesis requires fur-
ther evidence, as other studies have failed to report elevations
of basal mTORC1 activity (105).

There are numerous reports of reduced age-related anabolic
signaling. Fry et al. (59) reported higher S6K1Thr389 and
4EBP1Thr37/46 phosphorylation at 6 and 24 h of recovery from
resistance exercise in young than older adults, suggesting
elevated mTORC1 activation. Furthermore, elevations of
ERK1/2Thr202/Tyr204 phosphorylation at these time points oc-
curred only in young individuals, suggesting that mTORC1-
dependent and -independent pathways may be attenuated in
older individuals. Importantly, these signaling deficits were
congruent with lower rates of mixed MPS in older individuals
(59). Others have reported similar findings in response to acute
resistance exercise (22, 103). In addition, S6K1Thr389 phos-
phorylation has been shown to correlate to rates of MPS only
in young individuals (103), implying that a mechanism other
than reduced mTORC1 activity may be involved in age-related
anabolic resistance.

mTORC1 signaling is also resistant to AA ingestion in older
populations. Ingestion of 10 g of EAAs elicited a greater
elevation of S6K1Thr389 and 4EBP1Thr37/46 phosphorylation in
young participants (34), and this response was mirrored by
higher rates of MPS. A hyper-amino-acidemic/hyperinsuline-
mic infusion also induced divergent signaling responses
(S6K1Thr389 phosphorylation) in young and older cohorts that
were matched by reduced MPS rates in the myofibrillar and
mitochondrial, but not sarcoplasmic, fractions (75). This notion
is intriguing, as it suggests a fraction-specific anabolic resis-
tance that may, in part, explain declines in muscle function and
oxidative capacity that accompany aging (70, 94).

Age-related anabolic resistance is also evident after com-
bined feeding and exercise. Francaux et al. (57) reported that
resistance exercise combined with protein ingestion elicited a
blunted S6K1Thr389 phosphorylation response in older subjects
at 30 min postexercise/ingestion. Conversely, another report
(53) showed no anabolic signaling attenuation in older indi-
viduals following a combination of these stimuli. Drummond
et al. (47) found a delayed response, where MPS was elevated
at 6 h postexercise/feeding in older individuals compared with
the elevations at 3 h in the younger cohort. Anabolic signaling

responses did not entirely align with MPS, as S6K1Thr389 and
4EBP1Thr37/46 were elevated to a similar level in both cohorts
at 3 and 6 h postexercise/feeding, and eEF2Thr56 was reduced
similarly (47). MAPK/ERK1/2 signaling did, however, show a
divergent response in the two cohorts, with ERK1/2Thr202/Tyr204

and MNK1Thr197/202 phosphorylation elevated only in the
young cohort. This suggests that alterations in mTORC1-
independent, rather than mTORC1-dependent, signaling may
better explain the age-related divergence in MPS in this study
(47) A further study reported an elevation of phosphorylation
of many components of the MAPK/ERK1/2 pathway in basal
conditions in older compared with young individuals (184).
Moreover, immediately after resistance exercise, all these
phosphorylation events declined in older individuals, whereas
they were elevated in young skeletal muscle (184). These
findings add further credence to the notion that mTORC1-
independent signaling pathways are abnormally regulated in
older individuals.

Although blunted signaling to feeding stimuli has been
reported in older individuals (34), this is not always the case.
Smeuninx et al. (160) reported no differences in S6K1Thr389,
4EBP1Thr37/46, or eEF2Thr56 phosphorylation between young
and older individuals in response to ingestion of 15 g of milk
protein, despite a greater change in myoMPS in the young
cohort. Although this suggests discordance between signaling
and protein turnover, phosphorylation and MPS were measured
at the same time (4 h postfeeding), so preceding divergent
signaling responses may have been missed. Nevertheless,
similar results were reported by Mayhew et al., who found
a discordance of signaling and MPS responses whereby
some readouts of mTORC1 activity (i.e., rpS6Ser240/244 and
eIF4GSer1108) were elevated in older individuals, whereas
MPS was elevated only in the young cohort (115). On the
whole, however, older individuals often display divergent
signaling responses to anabolic stimuli that are qualitatively
related to an attenuated MPS response.

In comparison to the anabolic signaling pathways related to
translation initiation, those associated with ribosomal biogen-
esis have been relatively understudied. Brook et al. (22), in
their study of the effects of acute exercise, at varying stages of
a training program, on UBFSer484 phosphorylation in young
and older individuals, reported no changes from baseline levels
or differences between age groups. As UBFSer484 was mea-
sured at only one time point (1.5 h) following each bout, it is
possible that alterations in this signaling event were missed.
Nevertheless, these data suggest that neither training nor age
regulates this phosphorylation site. This study also reported
that c-myc protein levels were elevated only postexercise in
young, untrained muscle (22). In addition, basal rRNA content
seems to be elevated in older skeletal muscle but is less
responsive to an acute bout of resistance exercise than in
younger muscle (165), suggesting possible resistance in this
population. Collectively, these acute data suggest a potential
divergence in ribosome-related gene transcription between
young and older populations. However, chronic data in older
humans demonstrated that the highest responders to a resis-
tance-training program exhibit the greatest increases in rRNA
content (164), suggesting that acute changes may not neces-
sarily reflect chronic adaptations in magnitude and/or time
course of change. Although data could suggest a role for
ribosomal biogenesis in age-related anabolic resistance, human

C1071MECHANISMS OF MPS IN HUMAN SKELETAL MUSCLE

AJP-Cell Physiol • doi:10.1152/ajpcell.00209.2019 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell (106.051.226.007) on August 4, 2022.



data regarding related molecular signaling are limited. Future
research should aim to elucidate whether these mechanisms
impact skeletal muscle anabolic resistance.

FUTURE DIRECTIONS

mTORC1-dependent and -independent signaling pathways
integrate to elevate rates of MPS after anabolic stimuli, pre-
dominantly regulating translation initiation and elongation, but
also intersecting with ribosomal biogenesis-related signaling.
In young, healthy individuals, the majority of these signaling
events are well characterized; however, several mechanisms,
such as S6K1 Aly/REF-like substrate (SKAR), a substrate of
S6K1 (144), and protein phosphatase 2A (PP2A), an enzyme
that dephosphorylates substrates of mTORC1 (134), are yet to
be investigated in human skeletal muscle. eIF4G phosphory-
lation is also relatively understudied in human skeletal muscle,
and more research should focus on this initiation factor. Fur-
thermore, increasing amounts of evidence from in vitro and
rodent models have begun to implicate other signaling path-
ways [e.g., activating transcription factor 4, Hippo, and TGF-�
(50, 112, 176)] in the regulation of protein synthesis. As
current evidence of these mechanisms in human skeletal mus-
cle, in any population, is lacking, future research should also
focus on the elucidation of their role in MPS regulation and
anabolic resistance. In addition, recent evidence in young
human skeletal muscle has suggested that the content of pro-
teins involved in the signaling pathways described in this
review differs between fiber types (52). As this suggests a
potential for a differential regulation of anabolic signaling and
MPS between fiber types, future research should also focus on
understanding whether this is apparent in response to anabolic
stimuli.

The cellular process of ribosomal biogenesis is attracting
significant attention by virtue of its role in regulation of MPS
and chronic alterations in muscle mass (65, 164, 165). Acutely,
changes in phosphorylation of UBF and c-myc are important
signaling nodes in the upregulation of ribosomal DNA tran-
scription rates after anabolic stimuli (155, 175). Most of the
research informing our knowledge, however, has been pro-
duced in vitro or in rodent skeletal muscle (181, 182); only a
few investigations measured these posttranslational modifica-
tions in human skeletal muscle (22, 56, 65). As such, it is
important that further investigations are conducted to study
these anabolic mechanisms (e.g., UBFSer637 phosphorylation)
in human skeletal muscle and, specifically, to study whether
age impacts such signaling events.

The contribution of the signaling pathways described here to
aging-associated anabolic resistance is well characterized, with
many studies displaying an inability to fully activate such
signaling cascades in the skeletal muscle of older individuals
(57, 59, 113). However, several investigations have failed to
find congruence between these signaling events and MPS
responses (115, 160, 189) or report that only select posttrans-
lational modifications are affected (47). As a result, further
investigation encompassing a wider array of signaling events,
across a variety of postexercise/postfeeding time points, is
most likely needed, so that the full extent of aging-associated
signaling defects can be understood. Importantly, we recom-
mend that muscle sampling time points should be chosen based
on consideration for signaling, as well as protein turnover, as

the time courses of these processes may differ. For example, a
4- to 6-h postprandial/exercise period for measurement MPS
may not represent an optimal time frame for measurement of
associated molecular signaling pathways that are commonly
upregulated with 2 h of anabolic stimuli (7). Furthermore,
additional investigations regarding the contribution of the sig-
naling pathways described here to anabolic resistance associ-
ated with other factors, e.g., obesity and inactivity, are re-
quired, as our current knowledge is equivocal (10, 46, 68, 89).
Importantly, the most well-researched signaling events contrib-
uting to MPS in populations exhibiting anabolic resistance are
those associated with the mTORC1 pathway. As described in
this review, many other signaling events (e.g., ERK1/2 and
ribosomal biogenesis-related signaling) may regulate MPS,
and these could garner greater attention in future studies aimed
at advancing our understanding of anabolic resistance. It is also
important to use an integrative research team that includes an
expertise in exercise physiology and nutrition, as well as
molecular biology, to address these research questions. While
it is impressive to collect human biopsy samples and probe
cutting-edge molecular signaling events, it is equally important
to ensure that background dietary patterns and physical activity
of research participants are well documented, given the poten-
tial for these factors (especially activity) to modulate the
response to nutrient ingestion in traditionally “resistant” pop-
ulations (160). Finally, the anabolic stimuli (e.g., exercise and
nutrition) used within an acute experiment should be properly
controlled, but also relevant to current physical activity and
dietary guidelines, to facilitate more translational research.
Finally, investigations regarding whether the posttranslational
modifications described herein are associated with more
chronic muscle adaptations (e.g., muscle hypertrophy) in both
healthy and anabolic-resistant populations are lacking. Future
research should also focus on these potential associations to
help confirm the clinical significance of utilizing these molec-
ular readouts as markers of skeletal muscle protein turnover/
adaptations.

As a final note, recent developments in the field of “omics”
(i.e., phosphoproteomics, transcriptomics, and metabolomics)
analysis have begun to shed light on the intricate regulation of
a multitude of signaling pathways in a variety of tissues and
disease states (84, 92, 133). As MPS is most likely regulated by
a combination of many signaling pathways/events, the integra-
tion of a variety of these analysis techniques may provide the
most comprehensive assessment of the mechanisms underpin-
ning MPS after anabolic stimuli. Insights from each of these
analysis techniques could then be integrated to better under-
stand whether particular signaling events are associated with
alterations to the muscle transcriptome or metabolome (e.g.,
via weighted analyte correlation network analysis) (133). Not
only would this aid in understanding the underlying mecha-
nisms of MPS, it may also lead to identification of novel
metabolites, posttranslational modifications, or transcriptional
events that can be targeted by therapeutic interventions aimed
at improving muscle mass/health. Importantly, these “cutting-
edge” techniques should be accompanied by whole muscle/
body measures, i.e., tracer-derived MPS rates, such that the
true association of each signaling event to these processes can
be established. Therefore, we recommend that future research
should aim to utilize analysis of a variety of “omics,” com-
bined with stable isotopic tracer techniques, in an attempt to
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more comprehensively answer the questions that remain in this
field.

SUMMARY

A variety of molecular mechanisms that can be broadly
divided into mTORC1-dependent and -independent categories
regulate translation initiation, translation elongation, and ribo-
somal biogenesis. In young, healthy human skeletal muscle,
many of these mechanisms have been investigated, are acutely
regulated by anabolic stimuli, and broadly associate with
elevated rates of MPS. Importantly, it is likely that some/all of
these signaling events occur in combination to stimulate full
alterations in MPS following anabolic stimuli. In older popu-
lations, many of these mechanisms are shown to be impaired
after resistance exercise, nutritional intake, or a combination of
these stimuli. More work is required to resolve equivocal
signaling findings in this population and to fully understand if
these signaling pathways are compromised in other populations
that exhibit anabolic resistance of MPS (e.g., obese or inactive
individuals).
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