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Abstract 

The technological advances of the past century, marked by the computer revolution and the advent of high-through-
put screening technologies in drug discovery, opened the path to the computational analysis and visualization of 
bioactive molecules. For this purpose, it became necessary to represent molecules in a syntax that would be readable 
by computers and understandable by scientists of various fields. A large number of chemical representations have 
been developed over the years, their numerosity being due to the fast development of computers and the complex-
ity of producing a representation that encompasses all structural and chemical characteristics. We present here some 
of the most popular electronic molecular and macromolecular representations used in drug discovery, many of which 
are based on graph representations. Furthermore, we describe applications of these representations in AI-driven drug 
discovery. Our aim is to provide a brief guide on structural representations that are essential to the practice of AI in 
drug discovery. This review serves as a guide for researchers who have little experience with the handling of chemical 
representations and plan to work on applications at the interface of these fields.
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Introduction
�e representation of molecules has been of interest to 

scientists since the nineteenth century [1, 2]. Tradition-

ally, molecules are represented as structure diagrams 

with bonds and atoms, and this is likely the representa-

tion most people think of when they think of molecules. 

However, other representations are required for the com-

putational processing of chemical structures in chemin-

formatics. Here, we define a chemical representation as 

any encoding of a chemical compound; linear representa-

tions are referred to as notations.

Over the years, scientists have developed many nota-

tions depicting various properties of a compound. A 

classic notation is the empirical formula, a non-standard 

form of Hill notation. Seemingly simple at first glance, 

the empirical formula of alanine,  C3H7NO2, exempli-

fies the complexity of building a notation. Indeed, while 

information about the atoms is available, it is not possi-

ble to know how the atoms are linked from the molecular 

formula which, moreover, does not encode information 

related to the molecular geometry. As such, the molecu-

lar formula above can be associated to alanine as well as 

to sarcosine and lactamide. Variants of empirical formu-

las emphasizing any functional groups also exist but are 

loosely defined. In these group-centric representations, 

elements are grouped in the formula as they would be in 

the molecule so as to highlight any functional groups pre-

sent e.g.  CH3CH(NH2)COOH to represent alanine.

�e advent of computers led to the development of a 

wide variety of machine-readable chemical representa-

tions. Computers allowed for the rapid digital storage 

and querying of compounds and their structures, swift 

modifications of digital information, and greater physi-

cal storage efficiency. Algorithms were implemented 

to visualize compounds as 2D depictions [3, 4] and the 
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computational visualization of compounds in 3D space 

was popularized with the development of specialized 

programs [5–7].

Many precursors to computer-readable notations were 

introduced between 1947 and 1964 and were dedicated 

to small organic molecules [2, 8]. At the time, memory 

efficiency was an important factor impacting the devel-

opment of chemical notations. Popular representations 

used nowadays, however, were largely developed in and 

since the 70′s to represent small molecules [9–11], mac-

romolecules [12–17] and chemical reactions [18–21].

In this review, we focus on chemical representations 

in cheminformatics and drug discovery. We first intro-

duce the concept of a molecular graph, which is the 

most common machine-readable representation, and we 

give a brief overview of the main notations which paved 

the way for the current cheminformatics notations. We 

then focus on the representations that are used nowa-

days in the field of applying artificial intelligence (AI) to 

cheminformatics and drug discovery. Finally, we provide 

examples of AI-related applications using the chemical 

representations discussed in this review. �is review is 

intended to provide an overview of basic cheminformat-

ics knowledge to practising cheminformaticians, students 

in chemistry, cheminformatics, bioinformatics, and com-

puter science, and anyone interested to learn more about 

molecular representations in drug discovery. While the 

coverage of representations introduced herein is not 

intended to be exhaustive, we emphasise that the repre-

sentation used to solve a problem is always dependent 

on the task. �us, the coverage is limited to areas where 

there is active research in applying machine learning 

(ML) and AI to cheminformatics and drug discovery. For 

readers interested in further reading on these topics we 

recommend references [22–29], in addition to the refer-

ences cited in each section.

Graph representations for small molecules
Introduction to the molecular graph representation

In order to understand the chemical representations pre-

sented in this review, it is important that the reader first 

has a solid understanding of molecular graphs, as most 

molecular representations discussed in this work are 

built on the molecular graph representation. However, 

there is a distinction between the notations and file for-

mats built using molecular graphs (e.g. SMILES strings, 

Molfiles), and the abstract mathematical structure/data 

structure of a graph itself. �e latter is introduced here.

�e idea behind the molecular graph representa-

tion lies in mapping the atoms and bonds that make up 

a molecule into sets of nodes and edges. Intuitively, one 

could imagine treating the atoms in a molecule as nodes 

and the bonds as edges, although there is no reason one 

could not consider other mappings. In typical graph rep-

resentations, the nodes are represented using circles or 

spheres, and the edges using lines. In the case of molecu-

lar graphs, the nodes are instead often represented using 

letters indicating the atom type (as on the periodic table), 

or simply using points where the bonds meet (for carbon 

atoms).

A molecular graph representation is formally a 2D 

object that can be used to represent 3D information (e.g. 

atomic coordinates, bond angles, chirality). However, any 

spatial relationships between the nodes must be encoded 

as node and/or edge attributes, as nodes in a graph (the 

mathematical object) do not formally have spatial posi-

tions, only pairwise relationships. �ere are of course 

limitations to this representation, which are discussed in 

a later section. �e 2D and 3D representations of graphs 

can easily be visualized by many software packages, 

including ChemDraw [30], Mercury [31], Avogadro [32], 

VESTA [33], PyMOL [34], and VMD [35] (the latter 5 are 

suitable for small- and macro-molecules, and either free 

or open-source).

Mathematical de�nition of a graph

A graph1 is formally defined as a tuple G = (V, E) of a set 

of nodes V and a set of edges E, where each edge e ∊ E 

connects pairs of nodes in V. In a molecular graph, V is 

intuitively the set of all atoms in a molecule, and E is the 

set of all bonds linking the atoms, although this does not 

have to be the case. Molecular graphs are generally undi-

rected, meaning that the pairs in E are unordered. [36].

To map a graph from an abstract mathematical con-

cept to a concrete representation that can be handled 

on a computer, one needs to map the sets of nodes and 

edges to linear data structures; a common way to do this 

is using data structures such as matrices or arrays. Lin-

ear data structures are necessary in order to specify the 

connectivity of the nodes. To do so, an artificial node-

ordering must first be calculated for encoding a molecule 

using arrays, even though V and E are formally sets and 

the order of elements in sets is irrelevant. �e informa-

tion to be mapped can include (1) how the atoms in the 

molecule are connected, (2) the identity of the atoms, and 

(3) the identity of the bonds.

How the atoms are connected is commonly repre-

sented in the form of an adjacency matrix A; given that 

1 Note that throughout this section, using the typical convention, bold itali-

cized symbols are used to represent matrices and vectors, where an uppercase 

symbol specifically denotes a matrix (e.g. X) and a lowercase symbol specifi-

cally denotes a vector (e.g. xi). Furthermore, uppercase symbols that are ital-

icized but not bolded are used to represent sets (e.g. V), whereas lowercase 

symbols that are italicized but not bolded are used to represent either a) items 

from a set (e.g. vi) or b) elements of a matrix (e.g. aij), depending on context.
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aij is an element of A, aij = 1 means that there exists a 

bond between nodes vi and vj in molecular graph G, 

whereas aij = 0 means that there exists no bond between 

them (Fig.  1b). �e adjacency matrix is also sometimes 

referred to as the connectivity matrix. Note that the adja-

cency matrix does not necessarily specify what type of 

bond is connecting each pair of nodes.

�e identity of the atoms can be represented in the 

form of a node features matrix X (Fig.  1c). Each row of 

X corresponds to a node vi (i.e. an atom in the molecule) 

in G; this row is also referred to as the node feature vec-

tor xi for that atom. �e length of xi corresponds to the 

number of atom features one has chosen to encode (e.g. a 

one-hot2 encoding of atom type and formal charge).

�e identity of the bonds can be represented in the 

form of an edge features matrix E (Fig. 1d). Each row of E 

corresponds to an edge eij = (vi, vj) in G, and is referred to 

as the edge feature vector eij for that edge. �e length of eij 

corresponds to the number of edge features one has cho-

sen to encode (e.g. a one-hot encoding of possible bond 

types {single, double, triple, aromatic}).

Although common in AI applications, we would like to 

point out that it is not necessary to one-hot encode the 

various node and edge features. For example, the node 

features matrix shown in Fig. 1c could instead have only 3 

columns using integers to represent the same three prop-

erties (atom type, formal charge, and number of implicit 

Hs).

Graph traversal algorithms

Although, formally, graphs are non-linear data structures 

made up of sets of nodes and edges, in practice, matrix 

representations of graphs are node order dependent. �e 

node order used in a matrix representation is determined 

by a graph traversal algorithm (Fig.  2). Depending on 

the application, it can be desirable to consistently gen-

erate the exact same representation for the same mol-

ecule. Reliably generating the same representation for a 

molecule is dependent on getting the same node order 

every time. To this end, one can use methods such as 

Fig. 1 Example graph representation for acetic acid. a Graph representation of acetic acid with nodes numbered from one to four. b Example 
adjacency matrix, A, for an acetic acid graph with the corresponding node ordering on the left. c Example node features matrix, X, which one-hot 
encodes a few selected properties. d Example edge features matrix, E, where each edge feature vector is a one-hot encoding of single, double, or 
triple bonds. “Implicit Hs” stands for the number of implicit hydrogens on a given node

Fig. 2 Graph traversal algorithms. Three widespread graph traversal algorithms are illustrated above for an example branched graph. The numbers 
correspond to the order in which the nodes are explored, starting at node 1. a A depth-first search first explores each “branch” of a graph to the 
fullest extent, then goes back and explores branches at the last branched node, until all branches have been explored. b A breadth-first search first 
explores all nearest neighbours of a node, and then the nearest neighbours of the nearest neighbours, and so on, until the whole graph has been 
explored. c A random search explores nodes in the graph in an arbitrary order, regardless of how they are connected

2 One-hot encoding is a widely used technique in AI to convert categorical 

data into numerical data using binary vectors, where a 1 indicates the pres-

ence of a quality and a 0 indicates the absence. See Fig.  1c; the rows of the 

node features matrix are examples of one-hot encodings.
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a depth-first or breadth-first search to generate graph 

matrix representations. �e graph traversal algorithm 

needs to include a consistent way to break ties when a 

node branches off and must therefore consistently select 

the same branch traversal order. In fact, the way in which 

different software packages break ties in traversing a 

graph is often what sets them apart. However, if consist-

ency is not important (and, indeed, for some deep learn-

ing applications, one might want noisier data), a random 

search can be used.

There are many ways to represent a graph

�e matrix representations discussed above are not the 

only way to represent graphs, as there are multiple ways 

to represent the same information. For example, as has 

been already mentioned, depending on what graph tra-

versal algorithm is used, the order of the rows in the adja-

cency matrix (or atom/bond block) will be different.

Furthermore, when working with molecular graphs, there 

is not one correct way to represent any molecule, and the 

representation chosen must be appropriate for the task.

Advantages of molecular graph representations

Graphs are formally 2D data structures with no spatial 

relationships between elements; nonetheless, 3D infor-

mation (and information that is the “result” of a 3D struc-

ture e.g. stereochemistry) can be encoded into a graph 

representation. One natural place to put this data is in the 

node features matrix, X, for node information (such as if 

a chiral node is R or S), or in the edge features matrix, E, 

for edge information (such as the length of a bond).

�e fact that one can naturally encode 3D information in 

a graph representation gives graphs many advantages over 

various linear notations, although some linear notations 

(such as SYBYL Line Notation) can also encode atomic 

3D information. Additionally, the fact that all molecular 

subgraphs (i.e. subsets of G) are interpretable can confer a 

particular advantage to graph notations over certain string 

notations, where, for example, substrings of a SMILES string 

(which we describe in the next section), do not necessarily 

correspond to a valid graph. In other words, all subgraphs 

are interpretable whereas all substrings are not. Nonethe-

less, there are also disadvantages to working directly with 

the molecular graph representation for many applications.

Limitations of molecular graph representations

Breakdown of graph model

�ere are many types of molecules which cannot be 

described by the graph model. �is is any structure con-

taining any form of delocalized bonds, such as coordi-

nation compounds, as well as any molecule containing 

any of the following: polycentric bonds, ionic bonds, 

or metal–metal bonds. For example, organometallic 

compounds such as metallocenes or metal carbonyl com-

plexes are difficult to describe using molecular graphs 

because their bonding scheme cannot be explained by 

valence bond theory. In other words, it would be difficult 

to describe the bonds using only pairwise relationships 

between atoms.

Solutions to the handling of multi-valent bonds have 

been introduced via the use of hypergraphs; in a hyper-

graph, edges are sets of at least two atoms (hyperedges) 

instead of tuples of atoms [37]. However, the use of 

hypergraphs is not further discussed here as they are not 

currently widespread in the field.

For molecules where the arrangement of atoms is con-

stantly changing in 3D space, the graph representation 

might not be meaningful, especially if pairwise bonds 

are breaking and forming or if the structure is frequently 

rearranging. �at is, for applications where one is limited 

to using a single static representation for a molecule that 

is in fact rearranging on the timescale of the problem (e.g. 

tautomers), then a single molecular graph representation 

would not be appropriate and could even be detrimental 

to solving the problem.

Challenges of working directly with the graph representation

Another difficulty of working directly with graph repre-

sentations is that they are not compact (both memory-

wise and literally). To represent a molecular graph one 

would need, for example: an image, a tuple of matrices, 

lists, or tables; all these representations are generally 

more difficult to search through than a more compact 

linear representation (compare this to a string encoding 

a structure ID). �ey also become more and more cum-

bersome the bigger the graphs get, and their memory 

requirement would increase with the square of the num-

ber of nodes, at least.

�is is not a problem with linear notations, which build 

upon the graph framework to create more compact and 

memory-efficient representations for molecules [38]. 

Linear notations have the advantage that they can be, 

for example, entries in a table, as well as easily search-

able (for identity search, not substructure search), when a 

matrix representation is not convenient.

Connection tables and the MDL �le formats

Below we discuss two formats closely related to the 

molecular graph representation: connection tables and 

the MDL (now BIOVIA) file format.

Connection tables

Whilst graphs underlie the representation of mole-

cules, the matrices by which they are described are not 

a compact representation, and scale as the square of the 

number of atoms. �e connection table (Ctab) [39] is 
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composed of six parts: (1) Counts line, (2) Atom block, 

(3) Bond block, (4) Atom list block, (5) Stext block, and (6) 

Properties block. Readers are referred to the referenced 

material for a detailed description of each component. 

�e counts line is always the first line, and as such gives 

an overview of the structure by specifying the number of 

atoms, bonds, and atom lists, as well as the presence or 

absence of chirality. �e version (V2000 or V3000) is also 

specified on this line. �e atom block describes the iden-

tities of the atoms as a list with arbitrary index values, 

as well as the atomic symbols, mass differences, charge, 

stereochemistry, and associated hydrogens. Note that it 

is often practical to treat any hydrogens in a molecule as 

implicit—that is, not storing hydrogens as atom objects 

and instead implicitly defining the hydrogen count using 

a valence model. Treating hydrogens as properties of the 

heavy atoms rather than as explicit nodes significantly 

reduces the size of the atom and bond block, making the 

format more compact. �ese can be recalculated based 

on valence rules if required; in such cases, valency infor-

mation must be given explicitly in the atom block. �e 

bond block describes the connectivity of the atoms as well 

as the identity of the bonds connecting them. �e atoms 

may be fully or partially connected by bonds, thereby 

supporting the description of fragments and uncon-

nected atoms. �e bond block is composed of the atom 

indices and bond types; the bond order is also provided 

as an additional column. �ere is no requirement for 

the bond block of the connection table to be ordered in 

a particular way. �e two blocks are combined to form 

the core of the Ctab. Similarly to a matrix representation, 

the Ctab is extensible, meaning that lists describing sup-

ported properties may be added to the properties block. 

Notably, any entries associated with charges, radicals, or 

isotopes supersede those in the atom block, if present. As 

a result of backwards compatibility to previous versions 

and the prevalence programs utilising them, connection 

tables have become one of the standard formats for han-

dling chemical structural information and underlie the 

widely used Molfile formats. It should be noted that con-

nection tables are in themselves not a file format but are 

the core building block around which CT files are built.

The Mol�le format

�e Molfile format family developed by MDL are collec-

tively known as CTfiles (chemical table files) as they use 

connection tables to describe molecular structures. In 

addition, CTfiles are highly extensible and as such have 

formed a series of file formats that have been widely used 

for chemical information transfer. �e series is shown in 

Fig. 3, which shows how the connection table is wrapped 

within the Molfile format, which can be subsequently 

wrapped into a structure/data (SD) file, containing both 

structural information and additional property data for 

any number of molecules.

Similarly, the RXNfile contains the description of sin-

gle reactions and the RDfile enables storage of reactions 

or molecules as well as their associated data. RGfiles on 

the other hand have been designed for handling queries 

and the XDfile is an XML based format for the transfer 

of structures or reactions along with their associated 

metadata. Further details about each of the files and their 

structure can be found in the MDL documentation and 

various textbooks introducing the field of cheminformat-

ics [40].

Linear notations for small molecules
Matrix representations require a large amount of disk 

space and are not well adapted for basic cheminformatic 

analysis (i.e. generation of list of compounds, online 

query of compounds). As a result, molecules nowadays 

are often represented as strings of characters encoding 

the Ctab and that can be interpreted by systematic sets 

of rules. For example, using implicit hydrogen, repre-

senting -alanine using a Molfile takes 612 bytes, while 

using linear notations such as SMILES or InChI, which 

are described in this section, takes 15 and 59 bytes, 

respectively. As mentioned above, linear notations have 

the advantage of being compact and easy to manipulate 

(e.g. to use as command-line option or copy in an Excel 

spreadsheet). �e main linear notations introduced in 

this section are exemplified in Table 1.

The IUPAC quest for a universal notation

Over time, the way scientists name molecules has varied 

following the capabilities and needs of the scientific com-

munity. In the ages of alchemy, compounds and elements 

were named based on their properties; for example, aqua 

fortis and sweet oil of vitriol referred to nitric acid and 

diethyl ether, respectively. In the nineteenth century, the 

need for a systematic nomenclature of organic chemis-

try grew stronger, and a terminology was developed by 

the International Union of Pure and Applied Chemistry 

(IUPAC) [41]. �is terminology is described at length 

in the IUPAC Color Books [42] and is universally used 

in the literature, patents, and government legislation. 

Nonetheless, this nomenclature is not ideal for chemin-

formatics applications and, in 1949, the IUPAC requested 

an international standard for electronic chemical nota-

tions requiring 11 desirable properties or “desiderata” 

[28]: simplicity of use, ease of printing and typewriting, 

conciseness, recognizability, ability to generate a unique 

chemical nomenclature, compatibility with the accepted 

practices of inorganic chemical nomenclature, unique-

ness, generation of an unambiguous and useful enumera-

tion pattern, ease of manipulation by machine methods, 
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exhibition of associations, and ability to deal with partial 

indeterminates.

According to the IUPAC formalism set in 1964 [28], 

notations can be classified as being unique (i.e. one nota-

tion for a given compound), non-unique (i.e. more than 

one notation for a given compound), ambiguous (i.e. 

the notation will regenerate more than one compound), 

or/and unambiguous (i.e. the notation will regenerate 

only the original compound). �is formalism is used to 

describe notations in this section.

Although seven notations3 were proposed to IUPAC as 

potential standards, only two retained the interest of the 

committee: the Dyson cyphering [43] and the Wiswesser 

Line Notation (WLN) [44]. Descriptions and related ref-

erences for the remaining five notations can be found in 

two notable publications [2, 45] which detail many chem-

ical notations introduced until 1984, and in a report by 

Fig. 3 The MDL family of file formats are collectively known as CTfiles (chemical table files) as they are built upon connection tables (Ctab), shown 
at the top of the figure. The connection table is split into an atom and bond block, describing the atoms and their corresponding connectivity. 
The Ctab is built upon to form the Molfile for the description of single molecules, RGfile for handling queries, SDfile for structure and associated 
data, RXNfile for the description of single reactions, RDfile for either a series of molecules/reactions and their associated data, and the XDfile for the 
transfer of structure or reaction data based on the XML format

3 List of scientists who proposed seven notation to IUPAC: M. Gordon, C. E. 

Kendall and W. H. T. Davson, W. Gruber, J. A. Silk, E. S. Cockburn, G. M. 

Dyson, G. K. Zipf and W. J. Wiswesser.
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Alan Gelberg [8]. After many revisions, Dyson’s notation, 

originally developed in 1947, was adopted in 1961 as an 

international notation by IUPAC. �e Dyson cypher-

ing was not very popular among the scientific commu-

nity as it could not be handled on standard typewriters 

or ordinary punched-card machines and contained many 

arbitrary rules. �e most used notation by the commu-

nity was WLN, which was created in 1949 and did not 

present the drawbacks of the Dyson cyphering. For a 

detailed comparison between WLN and Dyson cypher-

ing, we refer the readers to the Survey of Chemical Nota-

tions [28]. We do not provide further details on WLN 

and IUPAC-Dyson as the notations have fallen into desu-

etude; however, we feel that the competition between 

both notations illustrate the technological and technical 

aspects that were under consideration for the selection of 

a universal notation.

The advent of contemporary notations

Simpli�ed Molecular Input Line Entry System

WLN requires an extensive knowledge and under-

standing of the notation’s rule. A more intuitive nota-

tion, the Simplified Molecular Input Line Entry System 

(SMILES), was developed in 1988 by Weininger et  al. 

[9] and has been the most popular line notation ever 

since. SMILES notation system was then incorporated 

into the Daylight Chemical Information Systems [48] 

toolkit; the company is still currently maintaining it. 

�e SMILES representation, non-unique and unam-

biguous, is obtained by assigning a number to each 

atom in the molecule and then traversing the molecular 

graph using that order; in the case of RDKit [49], the 

graph traversal algorithm used is depth-first search.

�ere can be multiple atom numberings for a given 

molecule, leading to different SMILES. SMILES can 

thus be enumerated for data augmentation [50]. �e 

ensemble of SMILES representing one molecule can be 

referred to as enumerated or randomized SMILES and 

are obtained by, for each molecule, randomly select-

ing an initial node for graph traversal while keeping 

the same graph traversal algorithm, thus leading to dif-

ferent atom orderings [51]. For clarity, we emphasize 

that randomized SMILES do not use a random search 

to generate representations, they rely on a depth-first 

search. To avoid conflicting SMILES representations 

for the same molecule, a unique SMILES can be des-

ignated, and several canonicalization methods exist 

to this end [38, 52, 53]. A schematic illustrating the 

Table 1 Examples of chemical representations of alanine

Colour coding on the alanine 2D depiction matches the one of SMILES representations

a Q = OH, V = carbonyl, Y = branching, Z = NH2, < digits > = unbranched alkyl chain(s)

Notation system Handles stereochemistry? Representation

2D depiction Yes

Generic name Yes D-Alanine

IUPAC name Yes (2R)-2-aminopropanoic acid (English)
acide (2R)-2-aminopropanoïque (French)
(2R)-2-aминoпpoпaнoвaя (Russian)

WLNa No QVYZ [46]

SMILES No
Yes

CC(C(=O)O)N
C[C@H](C(=O)O)N

InChI No
Yes

InChI = 1S/C3H7NO2/c1-2(4)3(5)6/
h2H,4H2,1H3,(H,5,6)

InChI = 1S/C3H7NO2/c1-2(4)3(5)6/
h2H,4H2,1H3,(H,5,6)/t2-/m1/s1

InChI Key Yes QNAYBMKLOCPYGJ-UWTATZPHSA-N

HELM Yes PEPTIDE1{[dA]}$$$$

Three-letter symbol Yes D-Ala

Protein Line Notation (PLN) Yes H-{d}A-OH
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difference between two SMILES variants is shown in 

Fig. 4.

Initially, SMILES did not encode for stereochemistry. A 

specification, referred to as isomeric SMILES, was intro-

duced later on and is now the default SMILES in many 

software. SMILES can thus encode isomeric specifica-

tions, configurations around double bonds (Z or E), and 

configurations around tetrahedral centres as well as many 

other types of chiral centres which are rarely supported 

(e.g. allene-like, octahedral). Nonetheless, a problematic 

set of structures to describe using SMILES notation is 

those which cannot be easily described using molecular 

graphs (see “Limitations of molecular graph representa-

tions” section), such as organometallic compounds and 

ionic salts.

Generally, if the total sum of bond orders is not equal 

to one of the standard valences for a given atom in a mol-

ecule, this is addressed in the corresponding SMILES nota-

tion using square brackets. When the molecules involved 

in bonding are also aromatic, lowercase tokens may be 

used, though this becomes problematic with some chem-

informatics software which do not allow “extra” bonds 

for aromatic atoms [54]. ChemAxon Extended SMILES 

(CXSMILES) can overcome some of these issues by stor-

ing special features [55]. �ese are stored after the SMILES 

string separated by a space or tab and can be ignored when 

parsing SMILES if necessary. In addition, several fields can 

be stored for any given SMILES string. One such feature is 

fragment grouping, which specifies which components are 

grouped together using a list of fragment indexes; this aids 

in the grouping of ions and salts. Additional specifications 

of ligand order and coordinate bonds aid in the descrip-

tion of organometallic compounds and are supported by 

CXSMILES. �e atom-to-atom coordinate bonds are rep-

resented by single bonds in the SMILES but corrected by 

the additional information CXSMILES provides in the 

extension.

�e OpenSMILES [56] specification was developed in 

2007 to provide a SMILES standard form and to clarify 

some interpretations of corner cases present in the Day-

light’s SMILES system. A major issue with Daylight’s 

SMILES is that its canonicalization algorithm is propri-

etary, and as such implementations vary between com-

panies and research teams. A novel open source method 

to generate canonical SMILES was developed in 2012 

[38]. Such SMILES are generated using the canonical 

label provided by the InChI representation [10], which 

is described later in this section. Using such “univer-

sal” SMILES seeks to facilitate the comparison between 

chemical models used by different toolkits.

SMILES Arbitrary Target Speci�cation (SMARTS)

�ere exists an extension of SMILES developed for sub-

structure searching, named SMILES Arbitrary Target 

Specification (SMARTS) [57]. In SMILES there exist 

two types of symbols to signify atoms and bonds which 

describe the underlying connectivity of a given molecular 

graph. However, in SMARTS, the available symbols allow 

Fig. 4 Canonical (a) and randomized (b) SMILES representations of aspirin. Randomized SMILES correspond to the various representations of 
a molecule obtained by randomly selecting the starting node in the graph traversal algorithm, thus changing the order of the nodes traversed 
in the molecular graph (still using depth-first search). Numbers represent the order of graph traversal, where 1 is the initial node (user defined). 
Considering a as being the canonical representation of aspirin, b shows a different ordering of the atoms of the molecule. The final SMILES is one 
possible SMILES among all the randomized SMILES which can be generated. Green arrows indicate how the molecular graph is traversed. Both 
SMILES strings shown represent the same molecule but, as the atom numberings are different, the generated SMILES strings are, too. The original 
figure can be found in [47]
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for a more general specification of the molecular graph. 

�is can be likened to the use of regular expressions in 

computer science. Classical SMARTS can describe an 

ensemble of molecules that differ at one atom or bond 

position. It is also possible to include logical operators 

such as “OR” and “NOT”. Contrary to SMILES, SMARTS 

can specify different isotopes or bonds types (aromatic 

or aliphatic). Detailed information about an atom envi-

ronment can be given using Recursive SMARTS (e.g. 

ortho, meta, or para substitution patterns in arenes). All 

SMILES can be valid SMARTS, however the reverse is 

not true, and decoding a SMILES as a SMARTS will gen-

erally not yield the same decoded pattern.

International chemistry identi�er

�e best example of open-source canonical notation is 

the InChI (International Chemistry Identifier) represen-

tation [10], which was introduced in 2006 by NIST, under 

the auspices of the IUPAC, as a standard and freely avail-

able formula representation. InChI are composed of mul-

tiple layers, such as the Main, Charge, Stereochemical, 

and Isotopic layers, to name a few, which are themselves 

constituted of sublayers. For example, the Main layer is 

composed of the Chemical formula, Atom connections, 

and Hydrogen atoms sublayers (Fig. 5).

A hashed version of the InChI, the InChIKey, is used 

for open-web searching and library searching [58]. �e 

first block of an InChIKey represents the molecular 

skeleton, and the second block encodes for isomerism. 

InChIKeys are designed to be unique representations of 

their corresponding parent InChI representations. How-

ever, an InChIKey can sometimes map to more than one 

InChI, the situation being referred to as an InChIKey col-

lision [59]. Unlike SMILES, InChIs are not guaranteed to 

be decodable back to the molecular graphs from which 

they originate, and SMILES have the advantage of being 

more human-readable. For a detailed overview of the 

applications of InChIs and the underlying algorithm, 

readers are referred to the works of Heller [10] and Warr 

[60].

Using chemical descriptors to represent molecules

�e representations presented above are atom-based, 

meaning it is possible to rebuild the molecule based on 

the representation. �ere exist, however, other types of 

notations which, rather than encoding the exact struc-

ture of a compound, instead encode the physicochemical, 

structural, topological, and/or electronic properties of a 

compound. �ese are referred to as molecular descriptors 

[11] among which two main classes are structural keys 

and the hashed fingerprints. Descriptors are unique and 

ambiguous notations widely used in cheminformatics, 

and their complete descriptions would require a review 

of their own. A non-exhaustive list can be found in asso-

ciation with the Dragon software [61], which can calcu-

late 4885 descriptors.

Structural keys

Structural keys are bit strings, encoding for the absence 

(using a 0) and the presence (using a 1) of a specific 

chemical group. To provide a general understanding of 

the structural keys concept, we present here a few widely 

used keys.

MACCS Keys �e first set of keys is referred to as 

MACCS (Molecular ACCess System) keys or MDL keyset 

[62, 63] and is frequently used for similarity searching. In 

MACCS keys, each bit indicates the presence or absence 

of a particular structural fragment. Many variants of the 

Fig. 5 InChI notation of aspirin. Red letters are the standard beginning of the notation. The following 1 corresponds to the InChI version number, 
and S states that the notation is a standard InChI. Slashes (blue) are delimiters
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MACCS keys exist [64], with the most commonly used 

being 166 and 960-bits long. thus encoding for the pres-

ence or absence of 166 and 960 structural fragments. It 

should be noted that there are many software implemen-

tations of the 166-bit MACCS keys, thus one should be 

cautious as one substructure will not be assigned to the 

same bit from one software to the other.

CATS For application in scaffold hopping, a topological 

pharmacophore descriptor, Chemically Advanced Tem-

plate Search (CATS) [65], was developed. It can encode 

for six potential pharmacophore points: H-bond donor/

acceptor, positively/negatively charged, aromaticity, and 

lipophilicity.

Hashed �ngerprints

Chemical fingerprints are vectors which contain indexed 

(ordered) elements encoding for physicochemical or 

structural properties. Hashed fingerprints differ from 

other descriptors by the fact that each feature is gener-

ated from the molecule itself, while in keys, patterns are 

pre-defined. �eir lengths can be set prior to their gen-

eration and a hash function assigns molecular patterns to 

(non-unique) bits, hence the name. Topological or path-

based fingerprints are represented by Daylight finger-

prints, which usually consist of 512, 1024, or 2048 bits. 

�e Daylight fingerprint encodes for every connectivity 

pathway within a molecule up to a given length. Circular 

fingerprints are representations of chemical structures 

by atom neighbourhoods and have been widely applied 

in Quantitative Structure–Activity Relationship (QSAR) 

analysis. A widely used class of circular fingerprints is 

ECFP (Extended Connectivity Fingerprints) [66], based 

on the Morgan algorithm. In ECFPs, heavy (i.e. non-

hydrogen) atoms are encoded into multiple circular lay-

ers up to a given diameter.

Whether fingerprints can be called a chemical notation 

per say is debatable and comes down to a matter of opin-

ion between experts. Regardless, chemical fingerprints 

are widely used in cheminformatics and drug discovery 

as they provide a quick and direct mapping from a graph 

to a vector representation that can be used as input to 

numerical models, such as QSAR models. It should be 

noted that fingerprints are flexible representations and 

can also encode physicochemical properties as inte-

gers (e.g. the hydrogen count) and floats (e.g. molecular 

weight).

Representations for chemical reactions
Harnessing reaction data for drug discovery

Chemical reactions represent the interconversion of one 

set of molecules into another related set, under a set of 

specified conditions. A vast body of reaction data has 

been amassed to date, with approximately 127 million 

reactions recorded from 1840 to the present day accord-

ing to the Chemical Abstracts Service (CAS) [67].

In recent years, there has been a resurgence of interest 

in the development of models for the prediction of out-

comes of chemical reactions, synthetic routes, and analy-

sis of reaction networks, to name a few application areas. 

For a more comprehensive coverage of the representa-

tions of chemical reactions in databases and computer-

aided synthesis design, we refer the reader to a review by 

Warr and the bibliography therein [68]. In addition, for 

a more comprehensive coverage of applications within 

autonomous discovery, we refer the reader to an exten-

sive review by Jensen et al. [69].

Many of the representations described in the previ-

ous sections natively allow for, can be extended, or have 

analogous representations for describing chemical reac-

tions. As the description of reactions is that of a set of 

molecules, limitations in each of the previously described 

representations are inherited in the description of chemi-

cal reactions. A reaction is often represented graphically 

with the reactants written to the left of a reaction arrow, 

and a set of resulting products written to the right of this 

arrow. �e conditions under which the transformation 

occurs are written above or below the arrow, including 

information such as reagents, catalysts, solvents, temper-

ature, and so forth. �e graphical illustrations of reaction 

schemes often found in publications are, however, not 

easily machine-readable. �erefore, there exist a series of 

reaction data exchange formats that enable reactions to 

be represented in a machine-readable format. �ere is no 

inherent requirement for one format or another, as this is 

dependent on the application, toolkit, or software pack-

age used. Commonly used formats include the RXN and 

RD files described in an earlier section.

Reaction SMILES and SMIRKS

�e SMILES format used for describing molecules has 

been extended to so-called Reaction SMILES by Day-

light Chemical Information Systems. Each molecule in 

the reactants, agents, and products is represented by a 

SMILES string, and disconnected structures are sepa-

rated by a period; this includes the individual molecules, 

ions and ligands, which are listed in an arbitrary manner. 

Reactants, agents, and products are separated by either 

the ‘>’ or ‘≫’ symbol (the latter used when agents are not 

given). Atom-mappings (i.e. mappings of atoms in the 

reactants to their equivalent atoms in the products) can 

be stored in Reaction SMILES as a non-negative integer 

following the character ‘:’ within an atom expression. 

Atom mappings do not apply to agents. Furthermore, the 

storage of additional textual information such as the reac-

tion centre (i.e. the atom and bonds that change during a 

transformation) or reaction conditions is not supported. 
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Nonetheless, formats such as the RXN and RD file for-

mats, especially the latter, can store this additional meta-

data, as can other file formats or databases.

SMIRKS belong to the same family as SMILES and 

SMARTS. Where SMARTS describe molecular patterns 

or substructures generically, SMIRKS patterns can be 

used to define generic reaction transformations. �ey 

can be used to describe the reaction centre, to enumer-

ate virtual libraries, and to form the knowledge base for 

reaction and retrosynthetic prediction systems. If one 

considers that a reaction is a set of atoms and bonds that 

change during a reaction and the reactant or substrate 

upon which that change occurs, then SMIRKS must 

encode the same set of atoms and bonds that change dur-

ing the reaction, and the site at which that change occurs 

in the substrate as specified by a SMARTS pattern. 

�e SMARTS pattern is used to specify both the site at 

which the atom and bond changes occur, and to capture 

any indirect effects that may influence the reaction. �e 

atomic expressions must be defined such that (a) for any 

part of a molecule that is to be considered in a generic 

transformation for which the bonding does not change, 

SMARTS are to be used, and (b) in cases where bonds 

change, SMILES are to be used. In this sense, SMIRKS is 

a hybrid approach between SMILES and SMARTS. �ere 

are some rules that must be followed in order to ensure 

that SMIRKS patterns can be applied. �e two sides of 

the transformation, the reactant(s) and product(s), must 

contain the same number of mapped atoms, and they 

must correspond on either side of the reaction. Addi-

tionally, any explicit hydrogens must appear explicitly on 

either side of the reaction and have corresponding atom 

mapping numbers. SMIRKS are converted into a reaction 

graph for their subsequent use. �e reaction SMILES and 

corresponding SMIRKS are shown in Fig. 6.

RInChI

An extension of the InChI, RInChI [18, 70], was devel-

oped between 2008 and 2018 and introduced a unique, 

order invariant identifier for reactions. It was developed 

in response to the growing size of reaction data to aid 

reproducibility, to consider more information than just 

the participating molecules, and to provide enough infor-

mation such that practically identical reactions would be 

represented the same way. RInChI grammar, however, is 

relatively more complicated than that of Reaction SMILES.

RInChIs use InChIs to describe each molecule. Where 

InChIs cannot be generated for a molecule, the RInChI 

tracks the number of “structureless” entities that are pre-

sent in each of the reactants, agents, and products. In 

addition to specifying each molecule and reaction role, 

the RInChI must include information about equilibrium, 

Fig. 6 A selection of representations for a simple esterification reaction. The atom mapped reaction is shown in the top left as a structural diagram. 
The atom maps are consistent between reactant and product as shown. The atom maps in the SMIRKS do not correspond to the atom maps in the 
full reaction. Rather, they are used to keep track of the atoms within the SMIRKS. The condensed reaction graph and corresponding signature was 
generated using CGRtools [73]
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unbalanced, or multi-step reactions. �e RInChI employs 

a layering system, whereby each layer can describe a dif-

ferent aspect of the chemical reaction. Solvents and 

catalysts may be accounted for in a similar manner as in 

Reaction SMILES; however, RInChIs additionally allow 

for the direction of the reaction to be described. �is is 

particularly useful, as different labs may conduct the 

same reaction under slightly different conditions, poten-

tially reaching different conclusions about the direction 

of the reaction. �e RInChI generated in this case would 

be the same, except for the direction flag. �is aids in 

the identification of reactions that are in practical terms 

identical.

A proposed further extension to RInChI, ProcAuxInfo, 

enables the storage of metadata relating to yields, tem-

perature, concentration, and other reaction conditions 

[71]. RInChI offers an alternative to Reaction SMILES 

that enables the identification of duplicate reactions, 

as the order in which molecules are listed in Reaction 

SMILES is arbitrary. Hashing the RInChI to yield the 

RInChI key provides a powerful tool for efficiently index-

ing and searching reaction data [18, 71]. However, there 

is no SMARTS or SMIRKS equivalent for RInChI, lim-

iting its use in substructure searching and in encoding 

generic chemical transformations. �e RInChI and cor-

responding keys are shown in Fig. 6.

Condensed graph of reaction (CGR)

Varnek and co-workers have developed the CGR 

approach [19], whereby molecular structures are encoded 

in a matrix containing the occurrence of fragments of a 

given type. �e CGR is a superposition of the reactant 

and product molecules, and additionally defines what 

atoms and bonds have changed as well as their proper-

ties. �is builds on the description of organic reactions 

using imaginary transition states as described by Fujita 

[72]. In analogy to SMIRKS, the CGR can be used to 

describe a reaction transformation. An example CGR is 

shown in Fig. 6.

With the renewed interest in chemical reactions within 

cheminformatics in recent years, Varnek and co-workers 

have developed an open source toolkit enabling the wider 

use of CGR [73].

Bond electron matrices (BE-matrix)

To exemplify the representation of reactions as matrices, 

the bond-electron matrix developed by Dugundji and Ugi 

was previously employed for reaction classification and 

has also been used as an inspiration for the representation 

used in programs such as the Elaboration of Reactions 

for Organic Synthesis (EROS) [74], and the Workbench 

for the Organisation of Data for Chemical Applications 

(WODCA). �e BE-matrix is an N by N matrix, where N 

is the number of atoms in a molecule, and the diagonal 

entries specify the number of free valence electrons. �e 

off-diagonals specify the bond orders between atoms as 

found in the bond matrix. �e reaction is represented 

by an “R-matrix” which corresponds to bond changes or 

changes of non-bonded valence electrons. Positive val-

ues indicate bond formation, whereas negative values 

indicate bond breakage. Adding the “R-matrix” to the 

BE-matrix of a reactant gives the BE-matrix of a prod-

uct. �e “R-matrix” is therefore an alternate method for 

representation of the reaction centre [20]. �e BE-matrix 

illustrates the concept of adding additional information 

into the matrix representation.

Hierarchical organization of reactions through attribute 

and education (HORACE)

HORACE [21] employs a machine learning algorithm for 

the classification of chemical reactions and is mentioned 

here because of the hierarchical description of chemical 

reactions that it uses. It was developed to describe spe-

cific reaction instances as well as abstractions of reaction 

types. �ree levels of abstraction are employed. �e low-

est level describes the partial order of atom types, which 

gives an explicit hierarchy at the atom level by specify-

ing the degree of similarity between atoms. Following the 

atom level description is the structural level description. 

�is uses a list of functional groups as structural fea-

tures by which to characterize individual molecules. �e 

structural characterization is then used to specify which 

molecules correspond to atoms in the reaction centre. 

�e highest level of abstraction specifies physiochemi-

cal properties, which describe the function of the cor-

responding structure. �e hierarchy therefore enables a 

richer description of a chemical reaction than a purely 

structural one (as with SMILES).

InfoChem CLASSIFY

�e approaches used by Saller and co-workers to repre-

sent reactions underlies [75] and has inspired many of 

the approaches used for rule-based synthesis planning 

[76, 77]. �e first step is to identify and extract the reac-

tion centre, defined as a set of atoms that have changed 

their number of implicit hydrogens, valency, number of 

π-electrons, atomic charges, or if at least one connecting 

bond belongs to the reaction centre. Bonds are defined as 

belonging to the reaction centre if they are made or bro-

ken. In order to identify such changing atoms and bonds, 

a mapping is used to identify equivalent atoms in the 

reactants and products.

Regardless of the representation used, a key problem in 

the representation of chemical reactions is the identifica-

tion of the reaction centre. One approach to reaction cen-

tre detection and atom mapping is finding the maximum 
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common substructure (MCS) between reactant and 

product molecules. �e determination of the MCS is an 

NP-complete problem, meaning that the solution is non-

deterministic in polynomial time. Several reviews discuss 

these approaches and have been referenced for the inter-

ested reader [78–80].

Having identified the reaction centre, atom hash codes 

are calculated for all atoms belonging to the reaction cen-

tre using a modified Morgan algorithm [53]. �e hash 

codes include the following atom properties: atom type, 

valence state, total number of bonded hydrogen atoms 

(implicit and explicit), number of π-electrons, aromatic-

ity, and formal charges as per the reaction centre defi-

nition. �e hash codes generated for each atom in the 

reaction centre are summed for all reactants and one 

product of a reaction to provide a unique representation 

of the reaction centre.

�e description of the reaction centre can be extended 

to include the neighbouring chemical environment 

depending on the level of specificity required (Fig. 7). �e 

reaction centre alone corresponds to a “broad” or more 

general description of the reaction, whereas inclusion 

of alpha atoms (atoms adjacent to those in the reaction 

centre) corresponds to a “medium” description of the 

reaction centre. Expanding the description to include the 

next set of adjacent atoms “narrows” the description of 

the reaction owing to increased specificity. �e generated 

hash codes have been used in reaction classification and 

the approaches for reaction centre extraction utilized in a 

variety of synthetic planning tools.

Reaction �ngerprints

Reaction fingerprints are vector representations of reac-

tions. �ey specifically represent the structural changes 

taking place in the reaction centre. �is information is 

captured by constructing fingerprints, such as the ECFP 

variant described previously, and taking the difference 

between the product and reactant vectors, optionally 

considering the agent. Schneider et  al. [81] have used 

the difference fingerprint with the atom-pair variant to 

build a machine learning system for a 50-class reaction 

classification model. A similar approach to the computa-

tion of reaction vectors was described by Patel et al. [82] 

and has been used in de novo design and classification 

approaches [83]. �e reaction fingerprint highlights an 

alternate approach to reaction centre detection and rep-

resentation; however, it cannot be easily converted to a 

reaction graph. Lastly, the handling of stereochemistry 

has not been mentioned but is an active area of research 

[84].

Representations for macromolecules
While there have been many advances in the representa-

tion of small molecules, in comparison very few studies 

[85] have addressed the representation of macromol-

ecules, which are polymeric structures. In this section, 

we present representations made for biopolymers and 

bio-oligomers, like proteins and oligosaccharides, and 

synthetic polymers. �e process of representing macro-

molecules can be hindered by the fact that, while many 

polymers are monodisperse (i.e. constituting monomers 

Fig. 7 Atomic environments included in the description of the reaction centre. The reaction centre is used in calculations of atom hash codes for 
varying degrees of specificity
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have the same chain length), others can be polydisperse, 

such that their stochastic nature results in an undefined 

chain length. Examples of macromolecules and their 

notations are shown on Fig. 8.

�is section places itself at the interface between bioin-

formatics and cheminformatics. While in cheminformat-

ics small molecules are described on the atomic-level, in 

bioinformatics, polymers, such as a proteins or polynu-

cleotide molecules, are more commonly defined using 

their nucleotide and amino acid sequences. Representa-

tions which combine atomic and sequence information 

are presented here.

Amino acid-based structures

�e building blocks of peptides and proteins are amino 

acids (AAs), which are each made up of an amine group, 

a carboxyl group, and a side chain specific to each AA. 

AAs are commonly represented by a one-letter symbol, 

which commonly imply the L configuration for chiral 

AAs, or a three-letter abbreviation [86]. A limitation of 

the one-letter symbol is that while the Latin alphabet 

is large enough to describe the 20 AAs which appear in 

known genetic code, there are far more naturally occur-

ring AAs.

Peptides

Peptides are chains of 2 to 50 AAs linked by peptide 

bonds. �ey can be antibiotics, immunosuppressants, or 

antitumor agents. �is broad range of biological activity 

sparked the interest of the community.

A method named CHUCKLES [12] was developed in 

1994 to infer SMILES of polymers from their sequences 

and vice versa. In cheminformatics, this method is par-

ticularly useful in inferring the SMILES from the peptide 

sequence, which is referred to as Forward Translation 

(FT). In FT, monomers sequences and SMILES are stored 

in a lookup table, with the SMILES excluding any atoms 

which would be involved in monomer bonding. For linear 

structures, SMILES corresponding to each residue are 

concatenated. In branched and cyclized structures, mon-

omer indices are mapped to the SMILES, thus encoding 

for structures such as disulfide bridges. CHUCKLES is 

applicable to oligomeric structures and is used in BIO-

PEP-UWM [87]. An extension of CHUCKLES, CHOR-

TLES, was designed to handle oligomeric mixtures. Two 

notations are well known for their ability to describe a 

broad range of macromolecules: the Hierarchical Edit-

ing Language for macromolecules (HELM) [14, 88] and 

the Self-Contained Sequence Representation (SCSR) 

[89]. Both representations were developed concurrently, 

Fig. 8 Example of linear notations for different types of macromolecules. Cyclosporin is an immunosuppressant medication and natural product. 
Lactose is a disaccharide used in the food industry. Insulin is a peptide hormone which regulates the metabolism of carbohydrates, fats, and protein. 
pHEMA or poly(2-hydroxyethyl methacrylate) is a polymer that forms hydrogel in water. Copolymers of pHEMA are used to make contact lenses
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the first one relying on SMILES and the second one on 

the v3000 Molfile format. SCSR was developed by BIO-

VIA which provides automated interconversion between 

HELM and SCSR.

In the following lines, we provide further details on 

HELM, which was developed by Pfizer under the aus-

pices of the Pistoia Alliance. �e objective of the pro-

ject was to design a system representing combinations 

of component structure types (e.g. peptides, antibod-

ies, chemical modifiers). An example of HELM notation 

is shown in Fig.  9. Initially, HELM was limited to well-

defined structures; however, HELM2 overcame this limi-

tation and can describe polymer mixtures and free-form 

annotations. HELM represents monomers in a SMILES-

like format, simple polymers using a simplified version 

of CHUCKLES and complex polymers using graphs. Its 

structure hierarchy follows the granularity of the struc-

tures: Complex Polymer, Simple Polymer, Monomer, and 

Atom. HELM is implemented in many pharmaceutical 

companies [90], in public databases (in 2016, ChEMBL21 

contained 20,000 peptides annotated with HELM [91]), 

as well as in various packages and software such as 

RDKit (limited to peptides), ChemDraw, the Biomolecule 

Toolkit, ChemAxon, and Sugar&Splice, which can all 

encode for peptides, DNA, and RNA.

In comparison with purely atomic-based notations 

such as SMILES, biocheminformatics representations 

can facilitate the development of modified drug pep-

tides. For example, the substitution of natural L-AA with 

D-AA can improve the oral bioavailability of a peptide 

[92]. Such modifications would be intuitive with HELM, 

which provides readability at the polymer level, whereas 

SMILES provides descriptions on the atomic level. While 

these methods constitute a step forward to a better 

understanding and unification of cheminformatics and 

bioinformatics, errors in the translation of peptide nota-

tion from biological into chemical language have been 

detected and practical solutions proposed [93].

Proteins

Proteins are polypeptides made up of 50 or more amino 

acids. �ey are generally biological targets; however, 

therapeutic protein drugs have been engineered [94]. 

�e largest repository of 3D structures of proteins and 

nucleic acids is the Protein Data Bank (PDB) [17], which 

contains more than 150,000 structures. PDB entries 

contain the atomic coordinates of every atom in a pro-

tein structure as well as solvent molecules (if applicable). 

Each atom is identified by a sequential number, a specific 

atom name, the name and number of its corresponding 

residue, a one-letter code specifying the chain, its spatial 

coordinates (x, y, and z), and an occupancy and tempera-

ture factor. Furthermore, any notations mentioned in the 

Peptide section can be used for protein representations. 

In 2008, the Protein Line Notation (PLN) [16] was cre-

ated by Biochemfusion and is implemented in PubChem. 

Pseudo-atoms were used to represent a simplified version 

of a residue structure, which enabled a lossless conver-

sion between chemistry and sequence formats.

Key macromolecules

Most drugs are small organic molecules. However, drugs 

can also be macromolecular in nature, such as glycans 

(also referred to as carbohydrates) [95] or synthetic poly-

mers [96].

Fig. 9 Graph and HELM representation of a biphalin analog. Amino acids are coloured coded as followed: blue, green, red, and pink for tyrosine (Y), 
alanine (A), glycine (G), and phenylalanine (F), respectively)



Page 16 of 22David et al. J Cheminform           (2020) 12:56 

Glycans

Oligosaccharides and polysaccharides are glycans con-

taining more than 3 and 20 monosaccharides (the small-

est sugar unit), respectively. In drug discovery, glycans 

are interesting as receptors, small molecule glycomi-

metics, therapeutic glycopeptides, and vaccines. Glycan 

databases are used by carbohydrate researchers and 

structures are generally recorded using monosaccharide-

based notations [97–100]. �ese representations do not 

allow for the analysis of the interactions between glycans 

and proteins using docking techniques, which require 

atom-based representations. Converter tools have been 

developed [101, 102] that translate these notations to 

atom-based representations. With the aim of creating a 

linear and unique notation for glycan data, compatible 

with the usage of the semantic web, the Web3 Unique 

Representation of Carbohydrate Structures (WURCS) 

[15] was developed and combined bioinformatics 

and cheminformatics features. �e newest version of 

WURCS [103], used by the International Glycan Struc-

ture Repository GlyTouCan [104], encodes the following 

features: the main carbon backbone of a monosaccharide 

residue, the backbone modifications (i.e. atoms belonging 

to a monosaccharide which are not part of the backbone), 

and the linkage information between the backbone and 

a modification. �e notation provides explicit anomeric 

information and can handle ambiguous monosaccharide 

structures (e.g. unknown ring closure or anomeric infor-

mation). Currently, WURCS is implemented in many 

databases but unsupported by most cheminformatics 

software.

Independent representations have been developed to 

address specific challenges. Pillong and Schneider [105] 

published a representation of monosaccharides based on 

pharmacophoric properties. Bojar et al. [106] developed 

a language model based on natural language processing 

(NLP) providing information on glycans connectivity and 

composition.

Polymeric drugs

In the context of drug discovery, polymers are primar-

ily used as drug deliverers. Nonetheless, some poly-

mers have been used as active ingredients. Recently, the 

BigSMILES [107] syntax was introduced to encode for 

homopolymers, random- and block co-polymers, and 

molecules with different degrees of complexity in con-

nectivity, such as linear polymers, ring polymers, and 

branched polymers. �e stochastic unit of these poly-

mers is identified by a pair of curly brackets. Repeated 

units are delimited by a comma and listed inside these 

brackets. Although BigSMILES are currently not canoni-

cal, a canonicalization scheme is under development. 

No application of this notation is available to this date; 

however, the development of polymeric drugs is expected 

to flourish [96], and ML models could be applied to aid in 

related studies.

Graphical representations for molecules 
and macromolecules
�e representations presented in the previous sections 

are designed for the storage and the cheminformatics 

analysis of compounds. In this section, representations 

which are made for direct visualization of compounds or/

and their physicochemical properties are introduced.

2D depictions

Molecules as raster or vector images are very often rep-

resented by their skeletal structures, which are referred 

to as 2D depictions (Fig.  10a). Many difficulties can be 

encountered when generating 2D depictions related to 

the layout (e.g. orientation, overlap) and rendering (e.g. 

font, abbreviations, atom labels alignment) of the image. 

In 2008, the IUPAC issued recommendations for the 

standard display (typography, orientation of structure, 

etc.) of 2D depictions [108]. Such obstacles are over-

come by a range of algorithms; however, as of now, none 

of them can perfectly display every chemical structure. 

�is was exemplified in 2008 in a comparative study of 

2 proprietary toolkits (Cactvs [109], used by PubChem, 

and Molinspiration [110]), and 3 open-source toolkits: 

RDKit, OASA [111], and CDK [112]. In 2017, improve-

ments were done in CDK to depict stereochemistry more 

accurately and to solve atomic overlap [112]; on the lat-

ter point, the algorithm went from a heuristic approach 

to a refinement process. For more up-to-date details and 

examples of 2D depiction algorithms and their limita-

tions, we refer the readers to a 2016 presentation by John 

Mayfield [113].

Apart from the 2D depictions of the structures them-

selves, molecules can be depicted in various ways for 

reactions and interaction studies (Fig. 10e). In the latter, 

the aim is to investigate the environment or the behav-

iour of a molecule rather than its structure. A specific 

2D depiction worth mentioning is the Markush struc-

ture, especially useful in patents, which depicts a specific 

series of compounds. A Markush structure possesses a 

fixed core with one or several variable parts which can 

be described by -R groups, bonds, atoms, etc. For mac-

romolecules, different types of depictions are needed as 

the visualization often focuses on the polymer or peptide 

structures rather than the atomic structure. Associated 

to HELM, the Pfizer Macromolecule Editor (PME) was 

developed to visualize polymer structures and calculate 

molecular properties. A notable nomenclature for the 

depiction of glycans is provided by the Consortium for 

Functional Glycomics [114].
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3D depictions

Before the advent of computers, various molecular mod-

els were developed to visualize and manipulate mole-

cules in 3D and were built by assembling balls and sticks 

made of materials such as plastics or metals. Nowadays, 

while physical molecular modelling kits are still used in 

educational environment to represent basic structures, 

visualization software has become a tool of choice for 

3D graphical displays of molecules (examples of visu-

alization software have been provided in the subsection 

Introduction to the molecular graph representation). �e 

software Avogadro, PyMOL, and VMD all offer the pop-

ular representations ball-and-stick, cartoon, and van der 

Waals (vdW), as well as many independent representa-

tions. Each representation is useful for the visualization 

of specific properties, be it the structure coloured by 

atom types (Fig. 10d), the secondary biological structure 

(Fig. 10b), or the space-filling vdW spheres (Fig. 10c). �e 

vdW spheres help visualize the surface on which the mol-

ecule can build interactions; using this depiction, inter-

actions between proteins and ligands can be visualized 

in 3D (Fig.  10f ). 3D depictions are especially useful in 

docking and mechanistic studies, while 2D depictions are 

standard in structure–activity investigations.

AI applications within drug discovery using 
molecular representations
Most of the representations we have discussed above 

have seen widespread use within the fields of drug dis-

covery and artificial intelligence. If there are any molec-

ular representations which the reader feels were not 

discussed, it is because we, the authors, were not aware 

of the widespread use of that representation within our 

specialized fields of research. �e omission of some rep-

resentations may have been intentional, or it may have 

been due to the fast rate of change and developments in 

this field as the availability of useful datasets for drug dis-

covery applications grows. Lastly, several concepts that 

were historically used may see a resurgence as they are 

adapted to suit current methods.

Graph representations for small molecules

Despite this being a review of molecular representations, 

many of these representations are themselves used in rep-

resentation learning applications within deep learning. 

Representation learning is the idea of learning an inter-

nal representation (e.g. a vector) for a given object (e.g. 

a molecule) and then using that internal representation 

for a predictive task. �ese internal representations are 

Fig. 10 Examples of various molecules drawn using different display types. b–d Generated with Avogadro [32]. a Skeletal structure of the 
Fe-porphyrin subunit of haem B. b Ribbon diagram of haemoglobin. c Space-filling model of the Fe-porphyrin subunit of haem B. d Ball-and-stick 
model of the Fe-porphyrin subunit of haem B. Note the different orientations. e 2D visualization of protein–ligand interactions (PDB code: 2HPS). 
Reprinted with permission from [115]. Copyright 2020 American Chemical Society. f 3D visualization of protein–ligand interactions (PDB code: 6KYA)
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learned, meaning models can be trained to create them 

using classic techniques such as backpropagation in neu-

ral networks. With representation learning tasks, it is key 

to first identify a suitable input representation of a mole-

cule that contains as much of the desired/necessary infor-

mation to solve a problem as possible. Of the applications 

described below, any using deep neural network (DNN) 

architectures are essentially carrying out representa-

tion learning tasks, whereas classical ML methods such 

as random forests (RFs) and support vector machines do 

not operate by learning internal representations.

With the development of graph neural networks, a 

wave of recent work in drug discovery has focused on 

using the molecular graph representation directly for 

both property prediction and de novo design. As such, 

the molecular graph representation can be used for vari-

ous applications within AI, and there is a large body of 

work discussing its use for molecular property prediction 

[26, 116–119], and, more recently, molecular graph gen-

eration [120–125] and synthesis prediction [126]. In most 

cases this is done through graph representation learning, 

by which a graph embedding is obtained from the full 

graph representation using a graph network [127, 128]; 

the learned graph embedding can be used as input to a 

property prediction model, such as a RF or DNN, in the 

same way a classic molecular fingerprint [66, 129, 130] is 

used. Until recently, more compact linear notations such 

as SMILES strings were favoured for many ML applica-

tions involving molecules, in part due to the larger mem-

ory requirement of molecular graph representations; this 

is, however, slowly changing. For two excellent reviews of 

deep learning applications in chemistry and drug discov-

ery, we recommend [26] and [131]. For a good review on 

molecular generative models using AI, we recommend 

[132].

Another popular use of molecular graphs both within 

and outside drug discovery lies in part outside AI, where 

graphs are used as input for atomistic simulations (e.g. 

molecular dynamics) where atomic coordinates and peri-

odic boundary conditions are used as the starting point 

for program-specific file formats which contain not only 

all atom coordinates, but also detailed bond informa-

tion (e.g. bond length, dihedral angles, torsional angles) 

necessary to calculate the energy of a given molecular 

configuration using force fields. As such, the molecular 

graph representation has widespread use in molecular 

dynamics applications within drug discovery, such as 

docking, protein folding, and free energy perturbation 

calculations. �ese applications have been assisted by 

recent developments in AI [133, 134].

Linear notations for small molecules

Popular applications of linear notations such as SMILES 

and molecular fingerprints are in molecular property 

prediction and QSAR. SMARTS patterns have been 

used to define substructures with the aim of selecting or 

eliminating associated compounds [135–137]. Addition-

ally, the use of string representations such as SMILES has 

seen a lot of unexpected success in the field of de novo 

molecular design using tools from NLP. Data augmenta-

tion can be done for many applications using randomized 

SMILES [51, 138]. String representations have also seen 

success in property prediction using the learned latent 

space representations obtained using autoencoder frame-

works [139]. As mentioned above, many of the afore-

mentioned neural network models work by learning a 

vector representation for molecules in the training set, 

and using that learned representation to predict proper-

ties [116, 118, 140]; this is analogous to the older use of 

hashed fingerprint representations for molecular prop-

erty prediction using traditional ML approaches, hence 

the term learned fingerprints.

Representations for chemical reactions

Common applications of the reaction representations 

are in retrosynthesis and reaction prediction. �is is an 

important field of research, as the synthesizability of pro-

posed compounds is key to computational drug design 

and having suitable retrosynthesis tools would allow sci-

entists to “close the loop” of AI-driven drug discovery. 

Many of these applications are also discussed in [26, 69].

Representations for macromolecules

Popular applications of the macromolecular represen-

tations introduced in this work are in protein structure 

prediction, as having an accurate picture of a protein and 

the role it plays in a given disease can help scientists to 

develop molecules for the right target. Pillong and Sch-

neider [141] successfully applied their pseudo-receptor 

model in a virtual screening study aiming to identify 

aminoglycoside scaffolds with antibacterial potential. 

�e interactions between glycans and proteins have been 

investigated [142, 143] using ML. An important field of 

investigation linked to glycans is the prediction of glyco-

sylation sites. Many tools were developed to infer such 

predictions and have been applied recently in the pipe-

line for the prediction of oncology drug targets [144] 

and the characterisation of the novel coronavirus (2019-

nCoV) [145].

Graphical representations for molecules 

and macromolecules

We previously showed how the process of visualizing 

molecules has become faster, more practical, and more 
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enjoyable thanks to better computational tools. �is 

process is still an important field of research for which 

virtual reality and 3D printing techniques have been 

developed. Moreover, as the need for harvesting the large 

amounts of published data grows, the demand for meth-

ods for easily mining structures from papers and pat-

ent data is also growing. Optical Character Recognition 

(OCR) systems, relying on a variety of ML and proba-

bilistic pattern recognition techniques, were created to 

translate 2D depictions of chemical structures to stand-

ard chemical representations [146–148]. Nonetheless, 

the development of OCR systems can be hindered by the 

images’ resolutions, the computational interpretations of 

chemical abbreviations, and the nature of the image rep-

resentation, which can be embedded in text, in figures 

containing multiple structures, or in reaction pathways, 

and can be represented as either a skeletal formula or a 

Markush structure.

Discussion

At this point, it might become clear to the reader that 

many applications within drug discovery require mul-

tiple representations to be used simultaneously to solve 

a problem. For example, in protein structure predic-

tion, one might start with the protein sequence, create 

a rudimentary 3D model of the structure, and then use 

advanced molecular dynamics methods to understand 

how the protein folds and what the final configuration/

structure for the protein might be. �e coordinates of the 

optimized protein structure (e.g. a PDB file) might then 

go on to be used in docking calculation, etc. Technical 

aspects may factor into the choice of representation(s) 

a researcher might make, such as the complexity of the 

method(s) for generating the representation(s), and if 

they are openly accessible.

It is interesting to note that some representations have 

held the test of time better than others. �is can be partly 

explained by the evolution of computer technologies, 

which have improved in terms of storage capabilities, 

processor qualities, and parallel programming capabili-

ties. Standard representations such as IUPAC-Dyson and 

WLN were sensible during their times and were made 

to be manipulated by humans, but difficult to work with 

on a computer. Computationally simpler representations 

are now frequently used. Furthermore, detailed repre-

sentations which require greater computational time to 

compute (compared to molecular string representations) 

can nowadays be used; this is the case for hashed finger-

prints. Another possible explanation for the endurance 

of certain molecular representation is that they are more 

human readable than others, and thus have been bet-

ter received by the cheminformatics community. Lastly, 

another reason why some notations persist and others 

do  not is that within different fields  and subfields (e.g. 

cheminformatics, bioinformatics, or AI), different nota-

tions are often preferred for either historical or continu-

ity reasons within groups.

Conclusions
Molecules are complex structures and their representa-

tions must account not only for a wide variety of prop-

erties, such as stereochemistry and valence, but also 

for the different nature of these small molecules and 

macromolecules. �e rise of cheminformatics and bio-

informatics has led to a faster and more efficient drug 

discovery process as well as to a better understanding 

of molecular behaviour. In this review, we presented 

various popular notations and representations for small 

molecules, polymers, and proteins and their most com-

mon uses related to AI within computational drug dis-

covery. We hope that this review will benefit practising 

cheminformaticians, students, and anyone else inter-

ested to learn more about the underlying molecular 

representations in cheminformatics that can be used in 

AI-driven drug discovery applications.
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