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Abstract 
 
Tyrosine kinase inhibitor therapy revolutionized chronic myeloid leukemia treatment and showed how targeted therapy 
and molecular monitoring could be used to substantially improve survival outcomes. We used chronic myeloid leukemia 
as a model to understand a critical question: why do some patients have an excellent response to therapy, while others 
have a poor response? We studied gene expression in whole blood samples from 112 patients from a large phase III ran-
domized trial (clinicaltrials gov. Identifier: NCT00471497), dichotomizing cases into good responders (BCR::ABL1 ≤10% on 
the International Scale by 3 and 6 months and ≤0.1% by 12 months) and poor responders (failure to meet these criteria). 
Predictive models based on gene expression demonstrated the best performance (area under the curve =0.76, standard 
deviation =0.07). All of the top 20 pathways overexpressed in good responders involved immune regulation, a finding vali-
dated in an independent data set. This study emphasizes the importance of pretreatment adaptive immune response in 
treatment efficacy and suggests biological pathways that can be targeted to improve response. 
 

Introduction 
Tyrosine kinase inhibitor (TKI) therapy has revolutionized 
the treatment of chronic myeloid leukemia (CML), giving 
patients with chronic phase (CML-CP) a near-normal age-
adjusted life span.1,2 In the ENESTnd (Evaluating Nilotinib 
Efficacy and Safety in Clinical Trials-Newly Diagnosed Pa-
tients, clinicaltrials gov. Identifier: NCT00471497) study, 
rates of complete cytogenetic response and major mol-
ecular response (MMR) for patients receiving either 300 
mg nilotinib twice daily (BID), 400 mg nilotinib BID, or 
imatinib 400 mg once daily were 80% and 44%, 78% and 

43%, and 65% and 22%, respectively, at 12 months.3 The 
second-generation TKI (bosutinib, dasatinib, and nilotinib) 
are more potent than imatinib, a first-generation TKI, and 
thus result in deeper molecular responses and lower rates 
of progression to advanced-phase disease, although over-
all survival rates are comparable to those of imatinib.3-8 
The depth and kinetics of molecular response have clini-
cal implications. Chronologically, the first milestone of 
molecular response is a BCR::ABL1 on the International 
Scale (IS) level of ≤10% after 3 to 6 months of therapy, de-
noted as early molecular response (EMR).9-13 EMR is as-
sociated with lower rates of progression to 
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advanced-phase disease and superior long-term re-
sponses with all TKI.6,7,9,10,12,14-16 Lack of EMR (BCR::ABL1IS >10% 
after 3-6 months of therapy) occurs in approximately 30% 
of patients with CML-CP treated with imatinib and roughly 
5% to 15% of patients treated with dasatinib or nilotinib 
and is associated with worse outcomes.6,7,10,12-17 For 
example, in an analysis of 282 patients with CML-CP 
treated with imatinib, the 8-year overall survival, progres-
sion-free survival, and event-free survival rates were 93%, 
93%, and 65%, respectively, for patients with BCR::ABL1IS 
of ≤10% at 3 months compared with 57%, 57%, and 7%, 
respectively, for those with BCR::ABL1IS of >10% at 3 
months.9 
MMR is another important milestone because it is associ-
ated with a very low rate of progression and resistance 
(thus, MMR is referred to as a “safe haven”).12,13 Many pa-
tients who achieve MMR have a continued molecular re-
sponse, reaching a BCR::ABL1IS level of ≤0.01%, referred to 
as a deep molecular response (DMR).12,13 DMR is clinically 
relevant because many studies have shown that, of pa-
tients who maintain DMR for several years, roughly 40% 
to 50% can successfully discontinue TKI therapy and 
achieve treatment-free remission (TFR).18-20 
Thus, the two main clinical questions in CML therapy are 
when to change and when to stop therapy. The biological 
corollary of these clinical questions is: why does TKI ther-
apy produce good responses in some patients and poor 
responses in others? If we understood the biology of good 
and poor responses, could we predict response before 
treatment, add new therapies for patients bound for a 
poor response, and change patients’ fate to that of a good 
responder? 
A prior report by Branford et al. studied the transcriptome 
profiles of 46 patients with CML-CP who mostly received 
imatinib as their initial therapy. The study determined 
genetic alterations at baseline and blast crisis to deter-
mine which genetic alterations underlie disease trans-
formation.21 We used pretreatment diagnostic samples 
from the ENESTnd study, which compared imatinib with 
nilotinib in patients with newly diagnosed CML-CP, to 
study the difference in RNA expression in the subsets of 
patients with good and poor responses, to define genetic 
predictors of response, and to infer the biological path-
ways and processes that drive response. We then vali-
dated these predictions and inferences using the 
previously established baseline transcriptome profiling 
data set from Branford et al. 

Methods 
Patients and samples 
The randomized trial ENESTnd compared imatinib 400 mg 
once daily (n=283), nilotinib 300 mg twice daily (BID) 

(n=282), and nilotinib 400 mg BID (n=281) (Online Supple-
mentary Figure S1). This study was approved by an Ethics 
Committee or Review Board at Novartis and participating 
institutions. All patients provided informed consent. Study 
procedures were conducted in accordance with the eth-
ical standards of the Declaration of Helsinki and local laws 
and regulations. 

Sample processing, quality control, and genomic 
analysis 
Detailed methods are available in the Online Supplemen-
tary Appendix. In brief, RNA was extracted from baseline, 
pretreatment whole blood samples and used for RNA se-
quencing (RNA-seq) library construction. RNA libraries 
were sequenced using HiSeq 2500 (Illumina) in six arm- 
and response group–matched batches to a depth of 50 
million reads per sample. Reads were mapped to the ref-
erence human genome (build hg19), assembled into tran-
scripts, normalized for abundance, and counted.   

Bioinformatic analysis 
All statistical analyses were performed in the R program-
ming language. Statistical comparisons between re-
sponder groups were performed using the Wilcoxon 
rank-sum test unless otherwise stated. 

Gene expression profile analyses 
The edgeR package was used to normalize the RNA-seq 
counts via the trimmed mean of M values method and per-
form a log2(counts per million [cpm] +1) transformation. 
Genes with insufficient expression (i.e., log2[cpm +1] <1.1 in 
at least 50% of samples) were removed. The log2(cpm +1) 
data were standardized by a z-score transformation such 
that the mean expression of each gene across all samples 
was 0 and the standard deviation was 1. 

Deconvolution of cell types 
Inference of relative abundance of ten cell types in each 
sample was performed using the MCP-counter algorithm 
applied to the log2(cpm +1) gene expression data.22 

Bootstrapped prediction of responder status 
Detailed methods can be found in the Online Supplemen-
tary Appendix. In short, penalized logistic regression 
models were constructed from gene expression, clinical 
variables, normalized enrichment scores of biological 
pathways, and inferred cell type compositions. Each input 
data set was subject to 250 iterations in which boot- 
strapping (i.e., random sampling with replacement) of the 
input samples was performed to create random subsets 
of data on which the model was trained and evaluated via 
area under the curve (AUC). A final predictive model was 
trained on all the ENESTnd samples using logistic ridge re-
gression. 
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Prediction of responder status in validation cohort 
A final logistic ridge regression model was trained on the 
gene expression data of all 112 ENESTnd samples and vali-
dated using the Branford et al. validation data by AUC as 
described on page 5 of the Online Supplementary Appen-
dix (Online Supplementary Table S1). 

Interpretation of predictive models 
Gene set enrichment analysis using the fGSEA package 
was used to interpret the gene expression–based predic-
tor by using the model coefficients assigned to each 
gene.23 The databases for canonical pathways and gene 
ontology biological processes were downloaded from 
MSigDb and used as references for these tests. For 
models not based on gene expression, interpretation cen-
tered on the relative importance of individual features as 
ranked by their model coefficients.  

Results 
Differences in patient response observed by 12 months 
persisted up to 10 years 
Patients were dichotomized into good and poor responder 
groups. Good responders were defined as those who 
achieved BCR::ABL1IS ≤10% by 3 and 6 months and MMR 
by 12 months. Patients who did not meet both criteria 
were labeled as poor responders. One patient could not 
be labeled by these definitions after exhibiting BCR::ABL1IS 
<10% by 3 and 6 months but was lost to follow-up after 
9 months without achieving BCR::ABL1IS ≤0.1%. As this pa-
tient exhibited a trajectory consistent with good re-
sponders, including early molecular response and 
BCR::ABL1IS=0.12% by 9 months, we labeled this patient as 
a good responder. In total, there were 40 good responders 
and 72 poor responders (Table 1). The BCR::ABL1IS levels 
of good and poor responders remained significantly dif-
ferent at 10 years (Figure 1; P<0.001). In our cohort, 95% 
of good responders achieved a DMR by 5 years, compared 
to 17% of poor responders (Online Supplementary Figure 
S1), consistent with published literature.12,13  

Baseline gene expression predicted tyrosine kinase 
inhibitor response 
We next studied how clinical features and gene expression 
signatures related to responder status. For clinical fea-
tures, only female sex was associated with response in a 
multivariate analysis of clinical variables (P<0.001), al-
though duration of treatment (P=0.05), age between 45 
and 55 years (P=0.06), and treatment with either 300 mg 
(P=0.06) or 400 mg (P=0.06) of nilotinib trended with re-
sponse (Figure 2).  
We next examined the differential gene expression across 
the two responder groups. We developed a logistic ridge 

regression model to predict responder status based on 
baseline gene expression (13,575 genes; see Methods). The 
principal component analysis (PCA) plots based on re-
sponse criteria, which demonstrate the distribution of 
good and poor responders predicted in the logistic ridge 
model across the two variables most influencing their dis-
tribution, are shown in the Online Supplementary Figure 
S2A. The performance of the model (AUC=0.76; standard 
deviation [SD] =0.07) was significantly better than that of 
a null model (P=7.7×10-5) at a 95% confidence interval (CI) 

(Table 2; Online Supplementary Figure S3). Incorporating 
clinical variables into the model did not significantly im-
prove prediction performance (AUC=0.75; SD=0.07; 
P=1.5×10-4).  
We validated the model on an independent data set of 46 
patients with CP-CML reported by Branford and col-
leagues.21 These 46 patients underwent transcriptome se-
quencing at diagnosis and mostly received imatinib as 
their initial therapy. In the study, 19 good responders 
achieved durable MMR, whereas the remaining 25 poor re-
sponders progressed to blast phase (n=24) or did not re-
spond to four TKI (n=1). A total of 41 patients received 

Table 1. Distribution of responders versus poor responders 
split by treatment type.

Treatment type Good responders, N Poor responders, N

Imatinib 12 35

Nilotinib 28 37

Figure 1. Early differences in patient tyrosine kinase inhibitor 
response persisted up to 10 years. BCR::ABL1IS (log10 scale) over 
time for good (blue) and poor (red) responders. IS: International 
Scale. Calculations of BCR::ABL1IS levels >10% are less accurate 
than those ≤10%.45
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imatinib, including all the good responders, and three pa-
tients received nilotinib. The model developed on the 
ENESTnd data set predicted the responder status of the 
Branford validation data significantly better than a random 
model (AUC=0.67; P=0.02). Taken together, these results 
demonstrated that baseline gene expression was strongly 
associated with response to TKI therapy and that it pro-
vided more predictive power than clinical variables alone. 

Tyrosine kinase inhibitor response was associated with 
increased immune response and cytotoxic lymphocyte 
activity at baseline 
We next interrogated the differential gene expression set 
for genes and pathways associated with the two response 
groups. In order to identify correlates of response, we per-
formed gene- and pathway-level analysis. A total of 458 
genes were differentially expressed (false discovery rate 

[FDR] <5%) between good and poor responders (Online 
Supplementary Figure S3; Online Supplementary Table S2). 
The top differentially upregulated genes in the good re-
sponder group were enriched for genes associated with 
the immune system, whereas genes upregulated in poor 
responders were enriched for genes associated with cell 
cycle and metabolism (Figure 3). Among the genes up-
regulated in good responders were programmed death-li-
gand 1 (PD-L1) programmed cell death protein 1 (PD-1) 
death 1 ligand 1 (PD-L1) (Online Supplementary Figure S4). 
In the Branford data set, PD-L1 was also upregulated in 
the good clinical response group. We then performed gene 
enrichment analyses to infer functional differences be-
tween good and poor responders. Good responders ex-
hibited strong positive enrichment for expression of 
immune-related genes. Indeed, all 20 of the most signifi-
cantly enriched gene sets were related to immunity (Fig-

Figure 2. Multivariate analysis of 
clinical variables vs responder status. 
The most influential variable was sex, 
with women responding best. An odds 
ratio >1 indicated an association with 
good responders whereas those <1 
indicated association with poor 
responders. BID: twice daily; CI: 
confidence interval. aIn the ENESTnd 
trial, prior tyrosine kinase inhibitor 
treatment was not allowed except for 
≤2 weeks’ duration of imatinib.
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ure 4; Online Supplementary Table S3). Immune-related 
pathways were likewise positively associated with good 
response in the Branford data set (Table 3). Additionally, 
drug catabolism was associated with poor response in 
both data sets. As an alternative approach for a pathway-
based predictor, we next used the normalized enrichment 
scores of biological pathways instead of gene expression, 
and this different approach was also successful in pre-
dicting response (AUC=0.73; SD=0.09; P=3.9×10-3) and 
showed results that were consistent with the expression-
based predictor. 
We next examined which specific immune-cell types were 
participating in the response, using the MCP-counter al-
gorithm to infer cell types from the gene expression data. 
We deconvolved the bulk expression data into ten im-
mune compartments. We found that a good response was 
associated with increased activity of natural killer (NK) 
(P=0.01) and CD8+ T cells (P=0.02) (Figure 5; Online Sup-
plementary Table S4). Consistently, response was also as-
sociated with populations of cytotoxic lymphocytes (i.e., 
NK cells and CD8+ T cells; P=0.0037) and T cells (P=0.02). 
These associations also held true in the Branford data set 

(NK cells, P=0.04; CD8+ T cells, P=0.04; cytotoxic lympho-
cytes, P=0.08; T cells, P=0.06) (Figure 5; Online Supple-
mentary Table S4). The immune concordance across data 
sets was especially striking given that only 17 genes were 
differentially expressed (FDR <5%) between optimal and 
poor responders in the Branford data set, and only one of 
these (USP6) was differentially expressed in both the 
ENESTnd and Branford data sets (Online Supplementary 
Table S2). 
We also explored if peripheral blood lymphocyte counts 
at baseline could influence the gene expression signature. 
Overall, there was no difference in the total white blood 
cell count between response groups. There were no sig-
nificant differences between absolute and percentage 
lymphocytes across response groups (Online Supplemen-
tary Table S5). Taken together, the data suggest that good 
response, compared to poor response, is strongly in-
fluenced by immune processes governed largely through 
cytotoxic lymphocytes. 

Chronic myeloid leukemia regulatory network analysis 
We then asked how gene expression programs were being 

Table 2. Expression-based models predicted tyrosine kinase inhibitor response.

Data type
Number of model 

variables
Model AUC (SD), mean Empirical P Significant at 95% CI

Gene expression 13,201 0.76 (0.07) 7.7×10-5 Yes

Clinical 24 0.59 (0.07) 0.12 No

Gene expression and clinical 13,225 0.75 (0.07) 1.5×10-4 Yes

AUC: area under the curve; SD: standard deviation; CI: confidence interval.

Figure 3. Genes upregulated in good and poor responders. Genes listed are those that were found in over 10% of the gene ex-
pression models (see Methods). The top upregulated genes in the good responder group were enriched in genes associated with 
immunity, in agreement with the immune pathway enrichment in good-responders (below, Figure 4).
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controlled at the transcription factor level. We inferred a 
CML gene regulatory network (GRN) from the ENESTnd ex-
pression data using MINER.24 The CML GRN comprises 304 
transcription factors regulating 8,827 genes partitioned 
into 2,479 regulons (Online Supplementary Table S6). 
Eighty-eight genetic programs were identified and their 
activity status in each sample was determined using 
MINER. 
We evaluated the CML responder status with respect to 
the activity of the GRN programs using the Fisher exact 
test. There were several programs whose activity was sig-
nificantly different (P<0.05) between good and poor re-
sponders (Online Supplementary Table S7). The program 
whose activity was most significantly associated with 
good response was program Pr-9 (P=9.2x10-4). The genes 

of this program were regulated by interferon regulatory 
factors (IRF1-IRF5, IRF7 and IRF8), and were enriched for 
the hallmark pathways of interferon α response (adjusted 
P=4.9x10-34), interferon γ response (adjusted P=2.0x10-33), 
and immune system (Reactome; adjusted P=5.3x10-15). 
Moreover, these genes were significantly enriched for the 
experimental targets of IRF1 overexpression, consistent 
with the inferred regulation mechanism.  
Several genetic programs were overactive in the poor re-
sponders of ENESTnd. A decision tree predictor trained on 
the genetic program activities of ENESTnd was predictive 
of poor response in both ENESTnd (AUC=0.75±0.06) and 
the Branford validation data set (AUC=0.70). The decision 
tree predictor could be further pruned to require only 
three genetic programs to achieve optimal performance 

A

B

Figure 4. Immune-related pathways were enriched in good responders. (A) Normalized enrichment score (NES) and associated 
P value of 3,478 gene ontology gene sets. Immune-related gene sets are indicated in blue. Other gene ontology gene sets are in 
red. Positive NES indicates positive association with good response. (B) P values of the 20 most significantly dysregulated gene 
sets; all are immune-related.
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(Online Supplementary Figure S5). These three genetic 
programs tended to be active in distinct subsets of pa-
tients. Thus, they may represent three alternative tran-
scriptional pathways to therapy resistance.24 

Tyrosine kinase inhibitor response remained associated 
with cytotoxic lymphocyte activity when deep 
molecular response was used as a clinical endpoint 
In order to determine whether our results were sensitive 
to a later clinical endpoint, we repeated our analysis after 
redefining good responders as those patients who 

reached DMR by 5 years and poor responders as those 
who did not. Not surprisingly, this definition partitioned 
patients somewhat differently than the original response 
definitions applied above (Online Supplementary Table 
S8). Nonetheless, immune-related genes (Online Supple-
mentary Table S9; AUC=0.76; SD=0.07; P=9.5×10-5) and 
pathways (Online Supplementary Table S10; AUC=0.73; 
SD=0.07; P=4.6×10-4) remained the strongest predictors of 
good response (Online Supplementary Table S11), and drug 
catabolism (FDR <5%) was still significantly correlated 
with poor response. Increased activity of B cells (P=0.04), 

Table 3. Gene ontology terms that were enriched (false discovery rate <10%) in both the ENESTnd and Branford data sets.

Positive normalized enrichment score (NES) values indicated correlation to good response, whereas negative values were correlated with 
poor response. ATP: adenosine triphosphate; FDR: false discovery rate.

Gene ontology NES ENESTnd FDR ENESTnd NES Branford FDR Branford

Adaptive immune response 3.00 1.49x10-71 1.47 5.67x10-2

Cell recognition 2.51 8.12x10-16 1.75 3.87x10-2

DNA replication -2.18 6.88x10-12 -1.50 6.99x10-2

T-cell activation 1.83 1.33x10-7 1.39 7.67x10-2

DNA conformation change -1.96 3.29x10-7 -1.62 2.04x10-2

Lymphocyte costimulation 2.28 8.71x10-7 2.14 6.09x10-3

T-cell differentiation 1.94 2.13x10-6 1.53 5.62x10-2

α-b T-cell activation 1.99 2.86x10-5 1.59 9.68x10-2

DNA packaging -1.92 6.03x10-5 -1.73 1.58x10-2

ATP synthesis-coupled electron transport -2.02 1.25x10-4 -1.71 5.63x10-2

α-b T-cell differentiation 1.98 1.83x10-4 1.69 7.62x10-2

Cellular response to toxic substance -1.68 1.24x10-3 -1.61 4.61x10-2

Drug catabolic process -1.91 1.88x10-3 -1.78 5.10x10-2

Protein-DNA complex subunit organization -1.60 2.35x10-3 -1.63 2.30x10-2

Antibiotic metabolic process -1.98 2.91x10-3 -1.95 1.58x10-2

T-cell selection 1.90 3.55x10-3 1.94 3.28x10-2

Detoxification -1.79 4.46x10-3 -1.76 3.87x10-2

Antibiotic catabolic process -1.94 5.41x10-3 -2.11 1.12x10-2

Response to toxic substance -1.46 5.71x10-3 -1.45 5.87x10-2

Cofactor catabolic process -1.93 7.55x10-3 -1.95 3.24x10-2

Positive regulation of cell cycle arrest -1.82 9.19x10-3 -1.74 9.68x10-2

Response to oxidative stress -1.42 1.04x10-2 -1.59 8.55x10-3

G protein–coupled receptor signaling pathway 1.42 1.05x10-2 1.47 1.51x10-2

Regulation of cytosolic calcium ion concentration 1.56 1.15x10-2 1.64 2.86x10-2

Nucleosome organization -1.62 1.90x10-2 -1.79 7.59x10-3

Erythrocyte homeostasis -1.56 2.15x10-2 -1.74 4.00x10-2

Hydrogen peroxide catabolic process -1.86 2.43x10-2 -2.13 7.59x10-3

Chromatin assembly or disassembly -1.58 2.54x10-2 -1.93 1.24x10-3

Chromatin assembly -1.57 3.56x10-2 -1.95 1.24x10-3

T-helper 17–type immune response 1.74 4.47x10-2 1.95 5.89x10-2
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NK cells (P=0.03), and aggregate cytotoxic lymphocytes 
(P=0.01) were also still significantly associated with 
achieving DMR (Online Supplementary Table S12). Thus, the 
finding of a strong immune influence on responder status 
is robust across at least two different definitions of clini-
cal response.  

Discussion 
We found that pretreatment immunologic features, in-
cluding upregulation of genes related to the immune sys-
tem, pathways, and immune regulatory cells such as NK 
cells and cytotoxic lymphocytes, were associated with 
good response after initiation of TKI therapy. The adap-
tive immune response was the most influential biological 
process in predicting response of the ENESTnd patients, 

as determined by gene-set enrichment analysis of the 
expression-based predictor. Further evaluation of gene 
networks controlled by the expression of transcription 
factors differentially expressed in good and poor re-
sponders also pointed to activation of interferon and im-
mune regulatory networks in good responders. The 
predictive importance of immunologic features was vali-
dated in an independent data set, a remarkable finding 
given the small size of the validation study and the fact 
that patient features, treatments, and sample handling 
were undoubtedly not uniform across both studies.  
The pathway-based predictor offered valuable comple-
mentary information to the gene expression-based pre-
dictor. Specifically, if a pathway was predictive of 
response but the specific genes that are overexpressed 
in that pathway varied between patients, a pathway-
based predictor would capture the pathway’s impor-

Figure 5. Cytotoxic lymphocytes were enriched in responders. Comparison of immune cell infiltration (inferred by MCP-counter) 
in the ENESTnd and Branford data sets. NK: natural killer.
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tance, but an expression-based predictor might not. 
While upregulated pathways in good responders were 
predominantly involved in immunity, an important path-
way in predicting good response by this approach was 
downregulation of transforming growth factor b (TGF-b) 
receptor signaling. TGF-b signaling has been shown to 
promote leukemic stem cell survival in CML.25 Consistent 
with this finding, we observed that lower TGF-b activity 
correlated with better response (Online Supplementary 
Table S2). Thus, it is intuitive that downregulation of TGF-
b receptor signaling correlates with good response. 
Among the pathways most predictive of poor response 
in the pathway-based predictor was disassembly of the 
b-catenin destruction complex and recruitment of axin 
to the membrane. This pathway is activated in response 
to Wnt signaling and results in b-catenin accumula-
tion.26,27 This finding agrees with the observation that 
WNT6 was among the genes most predictive of poor re-
sponse in the gene expression models (Online Supple-
mentary Table S2). Of note, Wnt and b-catenin 
upregulation has been shown to be associated with pro-
gression from CP to blast-phase CML and cell-intrinsic 
TKI resistance, strengthening the association of poor re-
sponse in CP with future progression.28,29 
CML is among the most immunogenic malignancies. Prior 
to the advent of TKI, the clinical evidence of the impor-
tance of the immune system in CML was as apparent by 
responses to interferon, allogeneic transplantation, and 
donor lymphocyte infusions. The use of TKI has further 
illuminated the importance of the immune system during 
disease pathogenesis and after the initiation of TKI ther-
apy. A series of murine clinical and in vitro studies, largely 
based on sophisticated isolation of immune cells and ac-
cessing immune factor levels in blood, have demon-
strated the role of immune exhaustion in CML 
pathogenesis, with an activation of the immune system 
after the initiation of TKI therapy30-33 and (reviewed34,35). 
Several lines of in vitro data suggest a fluid immunologic 
state in CML, whereby during disease progression, an ex-
pansion of myeloid-derived suppressor cells occurs that 
downmodulates NK and other T-cell activities, allowing 
the CML clone to expand.32,36-38 Additionally, it has pre-
viously been shown that PD-1 and PD-L1 are upregulated 
in CML at the time of diagnosis.39 Under therapy, TKI 
stimulate immune function, certainly by direct killing of 
CML cells but also perhaps indirectly by other TKI effects 
on the immune system.32,40 Our gene expression data 
support and complement these findings of the impor-
tance of the immune system in CML response (including 
the aforementioned PD-1 and PD-L1) and show that 
these differences in immune pathway use (and, by infer-
ence, biology in the actual patient) strongly segregate 
with good or poor response status. Moreover, using gene 
expression data has the added advantage of being unbi-

ased in discerning gene and pathway involvement, and 
may uncover targetable pathways that can potentially 
move a patient from poor to good response.  
NK cell biology has been of particular interest in studying 
TKI response in CML.36 Some studies have reported that 
prior to therapy, patients with CML had decreased 
numbers of NK cells compared with healthy controls,41 
and increased numbers of NK cells during DMR seemed 
to correlate with improved odds of remaining in TFR after 
TKI discontinuation.42-44 Our data, derived by inferring cell 
type by gene expression, support and complement these 
findings, as well as show the potential importance of 
other types of immune cells (e.g., cytotoxic T cells). The 
interpretation of patterns in bulk gene expression data 
from unfractionated blood samples is complicated by 
the possibility of significant differences in cell type dis-
tribution between samples. However, pretreatment cell 
counts showed little differences in cell type proportions 
as a function of responder status (i.e., no significant dif-
ferences at FDR <10%; Online Supplementary Table S5). 
Although we do not have data on the cell counts of cyto-
toxic lymphocytes, we applied a deconvolution algorithm 
(MCP-counter) to the gene expression data that was de-
signed to estimate the abundance of different cell types, 
including cytotoxic lymphocytes, from complex mixtures. 
Thus, we expect that the significant differences in the 
inferred abundance of cytotoxic lymphocytes such as T 
cells and NK cells versus response status reflects a true 
difference in these populations, rather than an artifact 
of the varying composition of other cell types in the un-
fractionated samples. 
Thus, predictive models based on multiple lines of analy-
sis appear to converge on signatures of T-cell, NK-cell, 
and B-cell activation as predictive of good response, 
whereas Wnt signaling, TGF-b signaling, and cell-cycle 
progression predict poor response. The observation that 
patients with signatures of cytotoxic lymphocytes at 
baseline tend to respond best to TKI therapy suggests 
that the state of the immune system prior to therapy is 
predictive of response. These observations have two im-
portant implications. First, a panel of genes and quan-
tification of cell types at diagnosis could be used to 
predict the likelihood of poor and good responses, and 
this prediction could be used to shape expectations, in-
form monitoring, and direct patients to clinical trials to 
improve response or to TFR strategies. Secondly, further 
understanding the role of the immune pathways involved 
in response might allow the pharmacological altera- 
tion of these pathways, potentially turning poor re-
sponders into good responders. The results of this work 
lead to several interesting and testable questions for the 
biology and treatment of CML, and we encourage our 
readers to explore the data sets provided and pursue 
these issues. 
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