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From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slip-

ping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in

which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated

Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We

give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier

boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrody-

namic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations

at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading

to the breakup of the fluid-fluid interface, is accurately predicted.
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I. INTRODUCTION

Immiscible two-phase flow in the vicinity of the contact

line ~CL!, where the fluid-fluid interface intersects the solid

wall, is a classical problem that falls beyond the framework

of conventional hydrodynamics @1–12#. In particular, mo-

lecular dynamics ~MD! studies have shown relative slipping
between the fluids and the wall, in violation of the no-slip
boundary condition @6,7#. There have been numerous ad-hoc

models @1,8,10–12# to address this phenomenon, but none
was able to give a quantitative account of the MD slip ve-
locity profile in the molecular-scale vicinity of the CL. While
away from the moving CL the small amount of relative slip-
ping was found to follow the Navier boundary condition
~NBC! @13#, i.e., relative slipping proportional to the tangen-
tial viscous stress, in the molecular-scale vicinity of the CL
the NBC failed totally to account for the near-complete slip.
This failure casts doubts on the general applicability of the
NBC to immiscible flows and hinders a continuum formula-
tion of the hydrodynamics in the CL region. In particular, a
~possible! breakdown in the hydrodynamic description for
the molecular-scale CL region has been suggested @7#. In
another approach @14#, it was shown that the MD results can
be reproduced by continuum finite element simulations, pro-
vided the slip profile extracted from MD is used as input.
This work demonstrated the feasibility of the hybrid algo-
rithm, but left unresolved the problem concerning the bound-
ary condition governing the CL motion. Without a continuum
hydrodynamic formulation, it becomes difficult or impos-

sible to have realistic simulations of micro- or nanofluidics,

or of immiscible flows in porous media where the relative

wetting characteristics, the moving CL dissipation, and be-

havior over undulating solid surfaces may have macroscopic

implications.

From MD simulations on immiscible two-phase flows, we

report the finding that the generalized Navier boundary con-

dition ~GNBC! applies for all boundary regions, whereby the
relative slipping is proportional to the sum of tangential vis-
cous stress and the uncompensated Young stress. The latter
arises from the deviation of the fluid-fluid interface from its
static configuration @10#. By combining GNBC with the
Cahn-Hilliard ~CH! hydrodynamic formulation of two-phase
flow @11,12#, we obtained a consistent, continuum descrip-
tion of immiscible flow with material parameters ~such as
viscosity, interfacial tension, etc! directly obtainable from
MD simulations. The convective-diffusive dynamics in the
vicinity of the interface and the moving CL also means the
introduction of two phenomenological dynamic parameters
whose values can be fixed by comparison with one MD flow
profile. Once the parameter values are determined from MD
simulations, our continuum hydrodynamics can yield predic-
tions matching those from MD simulations ~for different
Couette and Poiseuille flows!. Our findings suggest the no-
slip boundary condition to be an approximation to the
GNBC, accurate for most macroscopic flows but failing in
immiscible flows. These results open the door to efficient
simulations of nano- or microfluidics involving immiscible
components, as well as to macroscopic immiscible flow cal-
culations, e.g., in porous media, that are physically meaning-
ful at the molecular level @15#. The latter is possible, for
example, by employing the adaptive method based on the
iterative grid redistribution introduced in Ref. @15#. This
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method has demonstrated the capability of resolving, at the
same time, both the global behavior of a partial differential
equation solution with coarse mesh and a strong singularity
in a localized region with a refined local mesh of over 105

ratio to the coarse mesh.

II. MOLECULAR DYNAMICS SIMULATIONS

The MD simulations were performed for both static and
dynamic configurations in the Couette and Poiseuille flows.
The two immiscible fluids were confined between two paral-
lel walls separated along the z direction, with the fluid-solid
boundaries defined by z50,H ~see Fig. 1 for the Couette
geometry!. Interaction between the fluid molecules was mod-
eled by a modified Lennard-Jones ~LJ! potential U f f

54e@(s/r)12
2d f f(s/r)6# , where r is the distance between

the molecules, e and s are the energy scale and the range of
interaction, respectively, and d f f51 for like molecules and
d f f521 for molecules of different species. Each of the two
walls was constructed by two ~or more! @001# planes of an
fcc lattice ~see Appendix A!, with each wall molecule at-
tached to the lattice site by a harmonic spring. The mean-
squared displacement of wall molecules was controlled to
obey the Lindemann criterion. The wall-fluid interaction was
also modeled by a LJ potential Uw f , with energy and range
parameters ew f51.16e and sw f51.04s , and a dw f for speci-
fying the wetting property of the fluid. Both U f f and Uw f

were cut off at rc52.5s . The mass of the wall molecule was
set equal to that of the fluid molecule m, and the average
number densities for the fluids and wall were set at r
50.81/s3 and rw51.86/s3, respectively. The temperature

was controlled at 2.8e/kB , where kB is Boltzmann’s con-

stant. Moving the top and bottom walls at a constant speed V

in the 6x directions, respectively, induced the Couette flow

@7#. Applying a body force mgext to each fluid molecule in

the x direction induced the Poiseuille flow @6#. Periodic

boundary conditions were imposed on the x and y boundaries

of the sample. Most of our MD simulations were carried out

on samples consisting 6144 atoms for each fluid and 2880

atoms for each wall. The sample is 163.5s by 6.8s along the

x and y, respectively, and H513.6s . Our MD results repre-

sent time averages over 20–40 million time steps. For tech-

nical details of our MD simulations, we followed those de-

scribed in Ref. @16#.
Two different cases were considered in our simulations.

The symmetric case refers to identical wall-fluid interactions
for the two fluids ~both dw f51), which leads to a flat static
interface in the yz plane with a 90° contact angle. The asym-
metric case refers to different wall-fluid interactions, with
dw f51 for one and dw f50.7 for the other. The resulting
static interface is a circular arc with a 64° contact angle. We
measured six quantities in the Couette-flow steady states of
V50.25(e/m)1/2, H513.6s for the symmetric case and V

50.2(e/m)1/2, H513.6s for the asymmetric case: vx
slip , the

slip velocity relative to the moving wall; Gx
w , the tangential

force per unit area exerted by the wall; the sxx , snx compo-
nents of the fluid stress tensor (n denotes the outward surface
normal!, and vx , vz .

We denote the region within 0.85s5z0 of the wall the
boundary layer ~BL!. It must be thin enough to render suffi-

cient precision for measuring vx
slip , while thick enough to

fully account for the tangential wall-fluid interaction force,
due to the finite range of the LJ interaction. Thus, it is not
possible to do MD measurements strictly at the fluid-solid
boundary, not only because of poor statistics, but also be-
cause of this intrinsic limitation. The wall force can be iden-
tified by separating the force on each fluid molecule into
wall-fluid and fluid-fluid components. For 0,z<z0 the fluid
molecules can detect the atomic structure of the wall. When
coupled with kinetic collisions with the wall molecules, there
arises a nonzero tangential wall force that varies along the z

direction and saturates at z.z0 . Gx
w is the saturated total

tangential wall force per unit wall area ~Fig. 2!. In Appendix
A we give account of our MD results on both the tangential
and normal components of the wall force, plus the effect~s!
of increasing the wall thickness in our simulations from two
layers of wall molecules to four layers and to infinite layers
~by using the continuum approximation beyond the four lay-
ers!.

Spatial resolution along the x and z directions was
achieved by evenly dividing the sampling region into bins,

each Dx50.425s by Dz50.85s in size. vx
slip was obtained

as the time average of fluid molecules’ velocities inside the

BL, measured with respect to the moving wall; Gx
w was ob-

tained from the time average of the total tangential wall force
experienced by the fluid molecules in the BL, divided by the
bin area in the xy plane; sxx(nx) was obtained from the time
averages of the kinetic momentum transfer plus the fluid-
fluid interaction forces across the constant-x(z) bin surfaces,

FIG. 1. ~Color! Segments of the MD simulation sample for the

immiscible Couette flows. The colored dots indicate the instanta-

neous molecular positions of the two fluids projected onto the xz

plane. The black ~gray! circles denote the wall molecules. The up-

per panel illustrates the symmetric case; the lower panel illustrates

the asymmetric case. The red circles and the blue squares represent

the time-averaged interface profiles, defined by r15r2 (f50), for

the two cases. The black solid lines are the interface profiles calcu-

lated from the continuum hydrodynamic model with the GNBC.
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and vx(z) was measured as the time-averaged velocity com-
ponent~s! within each bin. For the contribution of intermo-
lecular forces to the stress, we have directly measured the
fluid-fluid interaction forces across bin surfaces instead of
using the Irving-Kirkwood expression @17#, whose validity
was noted to be not justified at the fluid-fluid or the wall-
fluid interface @see the paragraph following Eq. ~5.15! in the
above reference#. In Appendix B we give some details on our
MD stress measurements. As reference quantities, we also

measured Gx
w0 , sxx

0 , snx
0 in the static (V50) configuration.

In addition, we measured in both the static and dynamic
configurations the average molecular densities r1 and r2 for
the two fluid species in each bin to determine the interface

profile. The shear viscosity h51.95Aem/s2 and the interfa-
cial tension g55.5e/s2 were also determined.

We have also measured the interface and velocity profiles
for the Poiseuille flow in the asymmetric case, as well as for
the Couette flows with different V and H in the symmetric
case.

III. GENERALIZED NAVIER BOUNDARY CONDITION

In the presence of a fluid-fluid interface, the static fluid
stress tensor s

0 reflects the static Young stress ~surface ten-
sion! as well as those stresses arising from wall-fluid inter-
action. This is the case in spite of the fact that in all the MD
fluid stress measurements only the fluid-fluid interaction was
counted ~see Appendix B 2!. The reason is that because the
MD measurements were carried out either in the static equi-
librium state or in the dynamic steady state, local force bal-
ance necessarily requires the fluid stress components to fully

reflect the influence of the wall-fluid interaction. For the con-
sideration of moving CL, we will be concerned with the part
of the fluid stress tensor, which is purely dynamic in origin,
i.e., arising purely from the hydrodynamic motion of the
fluid ~and the CL!. In the notations below, the over tilde
denotes the difference between that quantity and its static
part. Thus, if s is the total stress, we will be concerned only

with the hydrodynamic part, denoted by s̃5s2s
0. We note

that in the absence of body forces, the momentum equation

in bulk fluid is given by rm@]v/]t1(v•“)v#5“•s̃. In the
BL, the wall-fluid interaction means the existence of a dy-

namic, tangential wall force density g̃x
w such that the force

balance equation is given by (“•s̃)• x̂1 g̃x
w

50 inside the

BL. The tangential wall force density g̃x
w , shown explicitly

in the inset to Fig. 2, is a function sharply peaked at z

'z0/2. Here we note that the boundary layer thickness is
extremely small (z050.85s), hence the inertial effect may
be neglected (mrVz0 /h,0.1). MD evidence for an inte-
grated form of the steady-state force balance is shown in Fig.
3. The total tangential force exerted by the wall on the fluid

is given by G̃x
w

5*
0

z0dzg̃x
w per unit wall area. In steady state,

this wall force is necessarily balanced by the tangential fluid

force G̃x
f
5*

0

z0dz(]xs̃xx1]zs̃zx) ~inset to Fig. 3! @18#. Here

]x ,z ,n means taking partial derivative with respect to x, z, or
surface normal.

We now present evidences to show that everywhere on the

boundaries, relative slipping is proportional to G̃x
f @the

GNBC, see also Eq. ~3! below#:

G̃x
f
5bvx

slip , ~1!

where b is the slip coefficient and G̃x
f can be written as

G̃x
f
5]xE

0

z0

dzs̃xx~z !2s̃nx~z0!, ~2!

where we have used the fact that s̃zx(0)50. @More strictly,

s̃zx(02)50 because there is no fluid below z50 and hence
no momentum transport across z50] Here the z coordinate
is for the lower fluid-solid boundary ~same below!, with the
understanding that the same physics holds at the upper
boundary, and ]n52]z for the lower boundary.

Force balance means that at steady state, the frictional
force exerted by the solid wall on the moving ~slipping! fluid

is fully accounted for in G̃x
f . Thus, the GNBC ~or NBC! can

be expressed in either G̃x
f or G̃x

w , but not both. In Fig. 3 we

show the measured MD data for the symmetric and asym-
metric cases in the Couette geometry. The symbols represent

the values of G̃x
f measured in the BL. The solid lines repre-

sent the values of G̃x
f calculated from bvx

slip by using b
5b15b251.2Aem/s3 for the symmetric case and b1

51.2Aem/s3, b250.532Aem/s3 for the asymmetric case
away from the CL region ~straight line segments in Fig. 3!,
and b5(b1r11b2r2)/(r11r2) in the CL region @19#, with

vx
slip and r1,2 obtained from MD simulations. It is seen that

FIG. 2. By subdividing the boundary layer into thin sections, we

plot the accumulated wall force per unit wall area as a function of

distance z away from the boundary. Here G̃x
w(z) is defined by

G̃x
w(z)5*0

z dz8g̃x
w(z8), where g̃x

w is the density of tangential wall

force. For different x positions, the absolute value of the saturating

total wall force is different. However, when normalized by the cor-

responding saturated total wall force per unit area at each x, all

points fall on a universal curve, nearly independent of x. It is seen

that at z5z0 the wall force has reached its saturation value. Inset:

Tangential wall force density plotted as a function of distance z

away from the boundary. The solid lines are averaged g̃x
w in thin

sections at different x, normalized by the corresponding saturated

total wall force per unit area. The dashed line is a smooth Gaussian

fit. It is seen that g̃x
w is a function sharply peaked at z'z0/2. In the

sharp boundary limit this peaked wall force density is approximated

by G̃x
wd(z).
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for the lower boundary ~upper right panel!, the MD data
agree well with the predictions of Eq. ~1!. For the upper
boundary ~lower left panel! the straight line segments also
agree well with Eq. ~1!. However, there is some discrepancy
in the interfacial region of the upper boundary that seems to
arise from a ‘‘shear thinning’’ effect of decreasing b at very
large tangential stresses @13#.

The fact that the wall force density is distributed inside a
thin BL and vanishes beyond the BL necessitates the form of

G̃x
f as defined by Eq. ~2!. However, it is intuitively obvious

that the fluids would experience almost the identical physical

effect~s! from a wall force density G̃x
wd(z), concentrated

strictly at the fluid-solid boundary with the same total wall
force per unit area. In the inset to Fig. 2, it is shown that the
MD-measured wall force density is a sharply peaked func-
tion. The sharp boundary limit involves the approximation of
replacing this peaked function by d(z). The replacement of a
diffuse boundary by a sharp boundary can considerably sim-
plify the form of the GNBC, because local force balance

along x then requires ]xs̃xx1]zs̃zx50 away from the
boundary z50. Integration of this relation from 01 to z0

yields

]xE
0

z0

dzs̃xx~z !1s̃zx~z0!2s̃zx~01!50

FIG. 3. ~Color! b1V/G̃x
f plotted as a function of V/vx

slip . Sym-

bols are MD data measured in the BL at different x locations, where

the red circles denote the symmetric case and the blue squares de-

note the asymmetric case. The solid lines were calculated from Eq.

~1! with values of b1,2 and the expression of b given in the text.

The statistical errors of the MD data are about the size of the sym-

bols. The upper-right data segment corresponds to the lower bound-

ary, whereas the lower-left segment corresponds to the upper

boundary. The slopes of the two dashed lines are given by b1,2
21 .

Inset: G̃x
w plotted as a function of G̃x

f , measured in the two BL’s at

different values of x. The symbols have the same correspondence as

in the main figure. The data are seen to lie on a straight line with a

slope of 21, indicating G̃x
w

1G̃x
f
50.

FIG. 4. ~Color! Two components of the dynamic tangential

stress at z5z0, plotted as a function of x. The dashed lines denote

s̃zx
Y ; solid lines represent the viscous component. Here red indicates

the symmetric case and blue indicates the asymmetric case. In the

CL region the nonviscous component is one order of magnitude

larger than the viscous component. The difference between the two

components, however, diminishes towards the boundary, z50, due

to the large interfacial pressure drop ~implying a large curvature! in

the BL, thereby pulling ud closer to us . Inset: Sd ,s plotted as a

function of g cos ud,s at different values of z. Here Sd

52*dx(snx2snx
v ), Ss52*dxsnx

0 , and ud ,s was measured from

the time-averaged interfacial profiles ~Fig. 1!. The red circles denote

the symmetric case, the blue squares denote the asymmetric case,

the solid blue squares denote the asymmetric static case, and the

single solid red circle at the origin denotes the symmetric static

case. The data are seen to follow a straight ~dashed! line with slope

1, indicating Sd ,s5g cos ud,s .

FIG. 5. ~Color! S5*
0

z0s̃xx(z)dz5*
0

z0@sxx(z)2sxx
0 (z)#dz plot-

ted as a function of x. Here red circles denote the symmetric case

and blue squares denote the asymmetric case. For clarity, sxx
0 was

vertically displaced such that sxx
0

50 far from the interface in the

symmetric case, and for the asymmetric case, sxx
0

50 at the center

of the interface.
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and as a consequence @by comparing with Eq. ~2!# G̃x
f

52s̃nx(01). Therefore, s̃zx changes from s̃zx(02)50 to

s̃zx(01)5G̃x
f at z50, leading to

~“•s̃!• x̂5G̃x
f d~z !.

Comparing with the diffuse boundary, where (“•s̃)• x̂1 g̃x
w

50, we see that the form of the equation remains the same,
but the BL is now from 02 to 01, instead of from 01 to z0

as in the diffuse case. Thus, GNBC ~1! becomes

2s̃nx~0 !5bvx
slip

in the sharp boundary limit.

The tangential stress s̃nx can be decomposed into a vis-
cous component and a non-viscous component:

s̃nx~z !5snx
v ~z !1s̃nx

Y ~z !.

In Fig. 4 we show that away from the interfacial region the

tangential viscous stress snx
v (z)5h(]nvx1]xvn)(z) is the

only nonzero component, but in the interfacial region s̃nx
Y

5snx2snx
v

2snx
0

5snx
Y

2snx
0 is dominant, thereby account-

ing for the failure of NBC to describe the CL motion. There-
fore, away from the CL region the NBC is valid, but in the
interfacial region the NBC clearly fails to describe the CL

motion. We wish to clarify the origin of snx
Y and snx

0 as the

dynamic and static Young stresses, respectively, so that s̃nx
Y

5snx
Y

2snx
0 is the uncompensated Young stress. As shown in

the inset to Fig. 4, the integrals ~across the interface! of snx
Y

(5snx2snx
v , calculated by subtracting the viscous compo-

nent h(]nvx1]xvn) from the total tangential stress snx) and

snx
0 are equal to g cos ud and g cos us , respectively, at differ-

ent values of z, i.e.,

2E
int

dx snx
Y ~z !5g cos ud~z !

and

2E
int

dx snx
0 ~z !5g cos us~z !,

where ud(z) and us(z) are, respectively, the dynamic and the
static interfacial angles at z @20#. Here * intdx denotes the
integration across the fluid-fluid interface along x. These re-
sults clearly show the origin of the extra tangential stress in
the interfacial region to be the interfacial ~uncompensated!
Young stress. Thus, the GNBC is given by

bvx
slip

52s̃nx~0 !52@h]nvx#~0 !2s̃nx
Y ~0 !. ~3!

Here only one component of the viscous stress is nonzero,

due to vn50 at the boundary, and 2s̃nx
Y (0) is the uncom-

pensated Young stress, satisfying

2E
int

s̃nx
Y ~0 !dx5g~cos ud

sur f
2cos us

sur f !,

with ud(s)
sur f being a microscopic dynamic ~static! contact angle

at the fluid-solid boundary. The fact that s̃nx
Y (0)'0 away

from the CL shows that the GNBC implies NBC for single
phase flows.

Due to the diffuse nature of the BL in the MD simula-
tions, the contact angle ud(s)

sur f cannot be directly measured.
Nevertheless, they are obtainable through extrapolation by
using the integrated interfacial curvature within the BL. That
is, in the sharp boundary limit the force balance in the fluids

is expressed by ]xs̃xx1]ns̃nx50. Integration in z across the
BL gives

]xE
0

z0

dzs̃xx~z !2snx
v ~z0!1snx

v ~0 !2s̃nx
Y ~z0!1s̃nx

Y ~0 !50.

~4!

Integration @of Eq. ~4! along x] across the fluid-fluid inter-
face then yields

DF E
0

z0

dzs̃xx~z !G2E
int

dxsnx
v ~z0!1E

int
dxsnx

v ~0 !1gKd

2gKs50, ~5!

where D@*
0

z0dzs̃xx(z)# is the change of the z-integrated s̃xx

across the interface, Kd and Ks denote the dynamic and the
static z-integrated interfacial curvatures:

Kd5cos ud~z0!2cos ud
sur f ,

and

Ks5cos us~z0!2cos us
sur f .

Here D@*
0

z0dzs̃xx(z)# , snx
v (z0), ud(z0), and us(z0) are ob-

tainable from MD simulations, Ks.62z0cos us
surf/H for the

circular static interfaces, while snx
v (0)5h@]nvx#(0) may be

obtained by extrapolating from the values of tangential vis-
cous stress at z5z0 , 2z0, and 3z0. Therefore, the micro-
scopic dynamic contact angle ud

sur f can be obtained from Eq.
~5!. In Appendix B 3 we give a more detailed account of the
relationship between the MD measured stresses and the
stress components in the continuum hydrodynamics. The
above extrapolation is based on this correspondence.

We have measured the z-integrated s̃xx5sxx2sxx
0 in the

BL. The dominant behavior is a sharp drop across the inter-
face, as shown in Fig. 5 for both the symmetric and asym-

metric cases. The value of ud
sur f obtained is 88°60.5° for the

symmetric case and 63°60.5° for the asymmetric case at the
lower boundary, and 64.5°60.5° at the upper boundary.

These values are noted to be very close to us
sur f . Yet the

small difference between the dynamic and static ~micro-
scopic! contact angles is essential in accounting for the near-
complete slip in the CL region.

In essence, our results show that in the vicinity of the CL,

the tangential viscous stress 2snx
v as postulated by the NBC

cannot give rise to the near-complete CL slip without taking

into account the tangential Young stress 2snx
Y in combina-
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tion with the gradient of the ~BL-integrated! normal stress
sxx . For the static configuration, the normal stress gradient
is balanced by the Young stress, leading to Young’s equation.
It is only for a moving CL that there is a component of the
Young stress, which is no longer balanced by the normal
stress gradient, and this uncompensated Young stress is pre-
cisely the additional component captured by the GNBC but
missed by the NBC.

IV. CONTINUUM HYDRODYNAMIC FORMULATION

For Eq. ~3! to serve as a boundary condition in hydrody-
namic calculations, we need to derive the local value of the

uncompensated Young stress s̃nx
Y (0) from a continuum for-

mulation of the immiscible flow hydrodynamics. Such a for-
mulation is important for studying the macroscopic implica-
tions of moving CL’s under scenarios beyond the capability
of MD simulations. As a first-order approximation, we for-
mulate a hydrodynamic model based on the GNBC and the
CH free energy functional @21# that has been successful in
the calculations of fluid-fluid interfacial phenomena:

F@f#5E drF1

2
K~¹f !2

1 f ~f !G , ~6!

where f5(r22r1)/(r21r1), f (f)52
1
2 rf2

1
1
4 uf4, and

K, r, u are the parameters that can be directly obtained from
MD simulations through the interface profile thickness j
5AK/r @22#, the interfacial tension g52A2r2j/3u , and the
two homogeneous equilibrium phases given by the condition

of ] f /]f50, yielding f656Ar/u (561 in our case!.
To derive the effects of the CH free energy F on immis-

cible flow hydrodynamics, let us consider a composition field
f(r). A displacement of the molecules from r to r85r

1u(r) induces a local change of f , df52u•“f , to the
first order in u. The associated change in F is given by the
sum of a body term and a surface term:

dF52E dr@g•u#1E ds@sni
Y u i# , ~7!

where g5m“f is the capillary force density, with m
5dF/df52K¹2f2rf1uf3 being the chemical poten-
tial, and

sni
Y

52K]nf] if ~8!

is the tangential Young stress due to the spatial variation of f
at the fluid-solid boundary (i'n). Hence, the two coupled
equations of motion are the Navier-Stokes equation ~with the
addition of the capillary force density! and the convection-
diffusion equation for f(r):

rmF]v

]t
1~v•“ !vG52“p1“•s

v
1m“f1rmgext , ~9!

]f

]t
1v•“f5M¹2m , ~10!

together with the incompressibility condition “•v50. Here
rm is the fluid mass density, p is the pressure, s

v denotes the
viscous part of the stress tensor, rmgext is the external body
force density ~for the Poiseuille flows!, and M is the phenom-
enological mobility coefficient.

Four boundary conditions are required to solve Eqs. ~9!
and ~10!. Two are given by the impermeability condition,
i.e., the normal components of the fluid velocity and diffu-
sive flux are zero: vn50 and ]nm50. The form of the other
two differential boundary conditions may be obtained from
the total free energy

F tot@f#5F@f#1E dsgw f~f !, ~11!

plus our knowledge of the GNBC. Here gw f(f) is the inter-
facial free energy per unit area at the fluid-solid boundary.
We use gw f(f)5(Dgw f /2)sin(pf/2) to denote a smooth in-
terpolation between 6Dgw f /2, with Dgw f5gw f(f1)

2gw f(f2) given by 2g cos us
surf ~Young’s equation!. It

should be noted that the form of the smooth interpolation has
very little effect on the final results. Hence we have chosen a
simple interpolation function. Similar to Eq. ~7!, the change
in F tot due to the displacement of the molecules from r to
r85r1u(r) is given by

dF tot52E dr@g•u#1E ds@ s̃ni
Y u i# , ~12!

where

s̃ni
Y

52FK]nf1

]gw f~f !

]f G] if , ~13!

is the uncompensated Young stress @12# ~see below!. The
continuum ~differential! form of GNBC ~3! is, therefore,
given by

bvx
slip

52s̃nx~0 !52h@]nvx#~0 !1@L~f !]xf#~0 !,
~14!

where @L(f)]xf#(0), with L(f)5K]nf1]gw f(f)/]f , is

the differential expression for 2s̃nx
Y (0)52snx

Y (0)

1snx
0 (0) in Eq. ~3!. Here K]nf]xf is 2snx

Y (0) as seen in

Eq. ~8!, and @]gw f(f)/]f#]xf5]xgw f(f) @23# equals to

snx
0 (0), in accordance with the static force balance relation

]xgw f(f)2snx
0 (0)50. From * intdx@K]nf]xf#(0)

5g cos ud
surf @24# and * intdx]xgw f52g cos us

surf , we see that

E
int

dx@L~f !]xf#~0 !5g~cos ud
sur f

2cos us
sur f !,

in agreement with @L(f)]xf#(0) being the uncompensated
Young stress.

Another boundary condition may be inferred from the fact
that L(f)50 is the Euler-Lagrange equation at the fluid-
solid boundary for minimizing the total free energy F tot@f# .
That is, L(f)50 corresponds with the equilibrium ~static!
condition where ]f/]t1v•“f50. The boundary relaxation
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dynamics of f is plausibly assumed to be the first-order
extension of that correspondence for a nonzero L(f):

]f

]t
1v•“f52G@L~f !# , ~15!

where G is a ~positive! phenomenological parameter.

V. COMPARISON OF MD AND CONTINUUM

HYDRODYNAMICS RESULTS

Motivated by the methods presented in Refs. @25,26#, a
second order scheme is designed to solve the CH hydrody-
namic model, comprising the dynamic equations and the four
boundary conditions. Details of the numerical algorithm are
presented in Appendix C. Besides those parameters, which
can be directly obtained from MD simulations, M and G are
treated as fitting parameters, determined by comparison with
MD results ~values given in the caption to Fig. 6!. In Figs. 1
and 6 we show that the continuum model can, indeed, quan-

titatively reproduce the interface and velocity profiles from

MD simulations, including the near-complete slip (vx'0 in

Fig. 6 for the black curve! of the CL, the fine features in the

molecular-scale vicinity of the CL, and the fast pressure

variation in the BL ~inset to Fig. 6!, with its implied large

interfacial curvature. We wish to emphasize that for the com-

parison with the symmetric case, the parameters in the con-

tinuum model, including those in the GNBC, are directly

obtained from the MD simulations, whose velocity profiles
are then fitted by those from the hydrodynamic calculations
with optimized M and G values. Thus, the comparison with
the asymmetric ~Couette! case, with b2 directly evaluated
from MD simulation data, is without adjustable parameters.
Here it is noted that the black curve, which denotes the ve-
locity profile in the BL, exhibits near-complete slipping of

the CL just as in the MD data. We have also obtained ud
sur f

588.1° and 62.8° for the symmetric and asymmetric ~the
lower boundary! cases shown in Figs. 1~a! and 1~b!, respec-
tively. Both are in excellent agreement with their extrapo-
lated values in MD simulations. For the upper boundary in

the asymmetric case, our calculated ud
sur f

565.2°, which dif-

fers somewhat from the MD extrapolation value of 64.5
60.5°. This difference is a reflection of the discrepancy seen
in Fig. 3. However, it is noteworthy that the difference in the
dynamic contact angles does not show up in the velocity
profiles, which agree well.

To further verify that the boundary conditions and the
parameter values are local properties and hence applicable to
flows with different macroscopic conditions, we have varied
the wall speed V, the system size H, and the flow geometry
to check that the same set of parameters plus the GNBC are
valid for reproducing ~a! the velocity profiles from a differ-
ent set of Couette-flow simulations in the symmetric con-
figurations, shown in Fig. 7, as well as ~b! the velocity pro-
files of the Poiseuille flow simulations in the asymmetric
case, shown in Fig. 8. The remarkable overall agreement in
all cases ~especially the slip profiles as given by the black
curves! affirms the validity of the GNBC and the hydrody-
namic model @27#, as well as justifies the replacement of the
diffuse fluid-solid boundary ~force density! by a sharp
boundary.

Another comparison is the dissipation incurred by the
moving CL in the Couette-flow geometry. To calculate this
dissipation, we note that the tangential force exerted by the

moving wall on the fluid is G̃x
w , and the direction of this

force is the same as that of the wall motion. In order to
maintain the constant speed of the moving wall, external
work must be supplied. The rate of that work is positive,
given by the integrated local force times the wall velocity,

i.e., *dxuG̃x
wuV5*dxbuvx

slipuV per unit length. Here uG̃x
wu

5buvx
slipu is the magnitude of the local force per unit wall

area and V is the wall speed. In the steady state, the external
work done to the system is fully dissipated in the system
through convection-diffusion of the composition, slipping at
surface, and shear viscosity in the bulk. To isolate the dissi-

pation due to the CL alone, we have to subtract from uvx
slipu

a small but constant relative slipping away from the inter-

face, v0
slip

52Vls /(H12ls), where ls5h/b is a slip length

FIG. 6. ~Color! Comparisons between the MD ~symbols! and

the continuum hydrodynamics ~solid lines! results for the Couette

flow, the latter calculated with the GNBC and values of M

50.023s4/Ame and G50.66s/Ame . ~a! The vx profiles for the

symmetric case @V50.25(e/m)1/2 and H513.6s] at different z

planes. The profiles are symmetric about the center plane, hence

only the lower half is shown for z50.425s ~black circles!, 2.125s
~red squares!, 3.825s ~green diamonds!, and 5.525s ~blue tri-

angles!. ~b! The vx profiles for the asymmetric case @V

50.2(e/m)1/2 and H513.6s] at z50.425s ~black circles!, 2.975s
~red squares!, 5.525s ~green diamonds!, 8.075s ~blue triangles!,
10.625s ~yellow triangles!, and 13.175s ~maroon triangles!. For

the boundary layers, vx50 means complete slip. Inset: Pressure

variation in the BL for the symmetric case. The solid line represents

the BL-averaged hydrodynamic pressure z0
21*

0

z0p(z)dz from the

continuum model, and red circles denote 2z0
21*

0

z0s̃xx(z)dz mea-

sured in MD simulations ~see Fig. 5!. Note the fast variation across

the interface. The interfacial pressure drop in the BL is a factor

5–10 larger than that in the middle of the sample, implying large

interfacial curvature.
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for fluid 1 if f,0 and for fluid 2 if f.0. The reason for

this subtraction is that *dxbv0
slipV is the rate of work for the

single-phase Couette flow ~with constant slip in both the f
,0 and f.0 regions! and, therefore, *dxb(uvx

slipu
2v0

slip)V is the rate of extra dissipation due to the presence

of the moving CL. ~Note that in the vicinity of the moving
CL, large slip exists, changing from the near-complete slip at

the CL to the constant slip v0
slip far away from the CL.! For

the symmetric case, the resulting heat generation rate due to
the CL is thus bV2WsL ~for one wall!, where L is the length
of the CL and Ws defines the width of the CL region:

Ws5

1

V
E ~ uvx

slipu2v0
slip!dx . ~16!

Thus, CL dissipation is equivalent to a segment,
;H(Ws /ls), of dissipation by single phase flow. Figure 9
shows the variation of Ws as a function of capillary number
Ca5hV/g for the symmetric case of Couette flow. Close to
Ca.0.1 the value of Ws increases rapidly, in good agree-
ment with the MD results, and beyond which the continuum
model failed to converge. This corresponds to the breakup of
the interface observed in MD simulations @28#.

VI. CONCLUDING REMARKS

In summary, we have found for the first time the boundary
condition that yields near-complete slipping of the CL, in

FIG. 7. ~Color! Comparisons between the MD ~symbols! and

the continuum hydrodynamics ~solid lines! results for two symmet-

ric cases in the Couette flow geometry. Compared with Fig. 6~a!, V

and H have been varied, respectively, but the continuum results are

calculated with the same set of parameters and the GNBC. The

profiles are symmetric about the center plane, hence only the lower

half is shown. ~a! The vx profiles for V50.25(e/m)1/2 and H

510.2s , shown at z50.425s ~black circles!, 2.125s ~red squares!,
and 3.825s ~green diamonds!. ~b! The vx profiles for V

50.275(e/m)1/2 and H513.6s , shown at z50.425s ~black

circles!, 2.125s ~red squares!, 3.825s ~green diamonds!, and

5.525s ~blue triangles!.

FIG. 8. ~Color! Comparisons between the MD ~symbols! and

the continuum hydrodynamics ~solid lines! results for an asymmet-

ric case in the Poiseuille flow geometry. Compared with Fig. 6~b!,
the type of flow has been changed, but the continuum results are

calculated with the same set of parameters. ~a! A segment of the

instantaneous configuration in the MD simulation. The two walls,

separated by H513.6s , move at a constant speed V

50.51(e/m)1/2 in the 2x direction in order to maintain a time-

independent steady-state interface, with mgext50.05e/s applied in

the x direction. The symbols have the same correspondence as those

in Fig. 1~b!. The black solid line is the interface profiles calculated

from the continuum hydrodynamic model. The colored dashed lines

indicate the z coordinates of the vx profiles shown in ~b!. ~b! The vx

profiles at z50.425s ~black circles!, 2.125s ~red squares!, 3.825s
~green diamonds!, and 5.525s ~blue triangles!. The profiles are

symmetric about the center plane, hence only the lower half is

shown.

FIG. 9. ~Color! Width for the moving CL region, Ws , plotted as

a function of the capillary number Ca5hV/g for the symmetric

case by varying V and keeping H513.6s . We note that for most of

the MD data measured in the symmetric case, Ca.0.088. The solid

line was calculated from the immiscible hydrodynamic model em-

ploying the GNBC; red circles denote the MD results.
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good agreement with MD results on the molecular scale. It
should also be noted, however, that the present continuum
formulation cannot calculate fluctuation effects that are im-
portant in MD simulations. Long range interactions, e.g., that
due to van der Waals interaction, have also been ignored. The
latter is potentially important in the calculations involving
wetting layers.
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APPENDIX A: WALL-FLUID INTERACTIONS

We have measured both the tangential and normal com-
ponents of the wall force exerted on the fluids. Both compo-
nents vary along the z direction and saturate somewhere
away from the fluid-solid boundary. The tangential compo-
nent saturates ~by 99.8%) at z5z0, which is well inside the
wall-fluid interaction range (z050.85s , smaller than the cut-
off distance rc52.5s for the wall-fluid interaction potential
Uw f). On the other hand, the normal component is 87% of
the saturation value at z5z0 and 99.8% at z52z0. The dif-
ferent saturation ranges of the tangential and normal compo-
nents may be understood as follows.

For a fluid molecule close to the solid wall, the interaction
with one particular ~the closest! wall molecule can be much
stronger than all the others. As this fluid molecule moves
laterally but remaining close to the wall, it would thus expe-
rience a strong periodic modulation in its interaction with the
wall. This lateral inhomogeneity is an important source for
the tangential component of the wall force. Away from the
fluid-solid boundary, each fluid molecule can interact with
many wall molecules on a nearly equal basis. Thus, the
modulation amplitude of the wall potential would clearly de-
crease with increasing distance from the wall. Hence, the
tangential wall force tends to saturate at the relatively short
range of z.z0. On the contrary, the normal wall force di-
rectly arises from the wall-fluid interaction, independent of
whether the wall potential is ‘‘rough’’ or not. Consequently,
the normal wall force saturates much slower than the tangen-
tial component.

The MD results presented in this paper were obtained
from simulations using solid walls constructed by two @001#
planes of an fcc lattice. We have also carried out MD simu-
lations using thicker confining walls. First we changed the
number of molecular layers ~@001# planes of fcc lattice! from
two to four in constructing each of the two walls. The wall-
fluid interaction potential Uw f were still cut off at rc

52.5s . It turned out that neither component of the wall
force shows any noticeable change. The reason is that for the
tangential component, the two outer planes are too distant to
contribute to the roughness of the wall potential, while for
the normal component, the fluid molecules closest to the wall
are separated from the two outer planes by a distance >rc .
Consequently, both the interface and velocity profiles do not
show any noticeable change.

Additional wall layers do not contribute to the perceived
modulation of the wall potential by the fluid molecules. Nev-
ertheless, they can still affect the tangential wall force by
modifying the organization of the fluid molecules near the
wall. Such organization is governed by the wall-fluid inter-
action and can be greatly influenced by the normal wall
force. To see the effects of normal wall force due to addi-
tional wall layers, we used four @001# planes of an fcc lattice
plus a half-space continuum in constructing a wall. The first
four solid layers show the atomic structure detectable by the
fluid molecules, while the half-space continuum models the
deeper solid layers. The wall-fluid interaction was modelled
as follows. For an in-range pair of fluid and wall molecules
separated by a distance r,rc , the interaction potential is
still Uw f . Here the wall molecule must be from one of the
four solid layers. In addition to this short-range interaction,
the fluid molecules can also experience the long-range inter-
action potential due to ~1! the distant wall molecules in the
four solid layers and ~2! the continuum. For ~1! we integrated
the 1/r6 term in Uw f over the out-of-range (r.rc) area of
the solid layers, while for ~2! we integrated the same term
over the half-space continuum. According to this model, only
the in-range (r,rc) part of the solid wall shows atomic
structure to a fluid molecule, while the out-of-range (r

.rc) part is effectively a half-space continuum.
We found that the effect of the long-range normal wall

force ~for dw f.0) is to attract the fluid molecules to the
wall. In fact, the average number density in the BL can in-
crease by 3–4 % once the long-range force is included. As a
result, the slip coefficient b1(2) increases by ;5 –15 %. This
results in small but visible changes in the interface and ve-
locity profiles.

These tests have convinced us that by using two @001#
planes of an fcc lattice to model the solid wall, we have
captured the dominant wall-fluid interaction. In fact, using
two molecular layers to model the solid wall has been exten-
sively practiced in the past MD simulations @6,7,13,27,29#,
although in some instances more molecular layers have also
been used @30#, where the accurate modeling of the normal
component of the wall-fluid interaction force is important.

APPENDIX B: STRESS MEASUREMENTS

IN MD SIMULATIONS

1. Microscopic formula of Irving and Kirkwood

Irving and Kirkwood @17# have shown that in the hydro-
dynamic equation of motion ~momentum transport!, the
stress tensor ~flux of momentum! may be expressed in terms
of molecular variables as

s~r,t !5sK~r,t !1sU~r,t !, ~B1!

where sK is the kinetic contribution to the stress tensor,
given by

sK~r,t !52K (
i

m iF pi

m i

2V~r,t !GF pi

m i

2V~r,t !G
3d~xi2r!, f L , ~B2!
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and sU is the contribution of intermolecular forces to the
stress tensor, given by

sU~r,t !52

1

2 K (
i

(
jÞi

~xi2xj!Fi jd~xi2r!, f L . ~B3!

Here m i , pi , and xi are, respectively, the mass, momentum,
and position of molecule i, V(r,t) is the local average veloc-
ity, Fi j is the force on molecule i due to molecule j, f is the
probability distribution function

f ~x1 , . . . ,xN ,p1 , . . . ,pN ,t !,

which satisfies the normalization condition

E dx1•••dxNdp1•••dpN f 51,

and the Liouville equation

] f

]t
52(

i
F pi

m i

•
] f

]xi

2“xi
U•

] f

]pi
G ,

with U being the potential energy of the system, and

^••• , f & means taking the average for a probability distribu-
tion function f.

Although widely employed in the stress measurements in
MD simulations, the above expression for sU @Eq. ~B3!#
represents only the leading term in an asymptotic expansion,
accurate when the interaction range is small compared to the
range of hydrodynamic variation @17#. This can be seen as
follows.

Consider that all the molecules interact via a pair potential
Upair(R) such that the intermolecular force Fi j

5(R/R)Upair8 (R) for xj5xi1R. Accordingly, Eq. ~B3! can

be rewritten as

sU~r,t !5

1

2
E dR

RR

R
Upair8 ~R !r (2)~r,r1R,t !, ~B4!

where r (2) is the pair density defined by

r (2)~r1 ,r2 ,t !5(
iÞ j

^d~ri2r1!d~rj2r2!, f &.

It has been shown ~see the appendix in Ref. @17#! that ac-
cording to the definition that dS•sU is the force acting
across dS , the full expression for sU is given by

sU~r,t !5

1

2
E dR

RR

R
Upair8 ~R !

3F E
0

1

dar (2)~r2aR,r2aR1R,t !G . ~B5!

It is readily seen that Eq. ~B4! may be obtained from Eq.
~B5! by keeping only the lowest order term in a Taylor’s
series in a , i.e.,

r (2)~r2aR,r2aR1R,t !'r (2)~r,r1R,t !.

That means R•“rr
(2)(r,r1R,t) must be negligible com-

pared with r (2)(r,r1R,t). Here R is of the order of the
range of intermolecular force. This approximation, however,
can not be justified at the fluid-fluid or the wall-fluid inter-
face, where R•“rr

(2)(r,r1R,t) can be comparable in mag-
nitude to r (2).

2. Stress measurement in the boundary layer

In the study of moving CL, it is of great importance to
obtain the correct information about stress distributions at
both the fluid-fluid and the wall-fluid interfaces. Therefore,
we have directly measured the x component of fluid-fluid
interaction forces acting across the x(z) bin surfaces, in or-
der to obtain the xx(zx) component of sU . For example, in
measuring sUzx at a given z-direction bin surface, we re-
corded all the pairs of molecules interacting across that sur-
face. Here ‘‘interacting across’’ means that the line connect-
ing a pair of molecules intersects the bin surface. For those
pairs, we then computed sUzx at the given bin surface using

sUzx5

1

dsz
(
(i , j)

F i jx ,

where dsz is the area of the z-direction bin surface, (i , j)
indicates all possible pairs of molecules interacting across

the bin surface, with molecule i being ‘‘inside of ẑdsz’’ and

molecule j being ‘‘outside of ẑdsz’’ ~molecule i is below
molecule j), and F i jx is the x component of the force on
molecule i due to molecule j. A schematic illustration is
shown in Fig. 10.

FIG. 10. Schematic illustration of measuring the zx component

of sU . The horizontal solid lines ~separated by short vertical lines!
represent bin surfaces with surface normals along the z direction.

Circles denote fluid molecules. The dashed lines connect pairs of

interacting molecules. Here the bin surfaces and the molecules are

projected onto the xz plane. Molecules that appear to be close to

each other may not be in the interaction range if their distance along

y is too large. A pair of interacting molecules may act across more

than one bin surface. Here the ~1,3! pair acts across surfaces A and

C, while the ~1,5! pair acts across surfaces B and D. At each bin

surface the stress measurement must run over all the pairs that act

across that surface. For surface D, there are three pairs of interact-

ing molecules ~1,5!, ~2,4!, and ~2,5! that contribute to the zx com-

ponent of sU .
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For comparison, we have measured the xx and zx com-
ponents of sU , using the discrete version of Irving-
Kirkwood expression ~B3!:

sU52

1

2dv
K (

i
(
jÞi

~xi2xj!Fi jL ,

where dv is the volume of sampling bin, i runs over fluid
molecules in the sampling bin, j runs over fluid molecules in
interaction with molecule i, and ^•••& means taking the time
average. We found that far from the the fluid-fluid and the
wall-fluid interfaces, the results based on the Irving-
Kirkwood expression agree well with those from direct force
measurement, whereas near the fluid-fluid or the wall-fluid
interface, the two results show appreciable differences ~up to
50%), especially for the zx component at the fluid-fluid in-
terface.

3. Relation of MD-measured stresses to the continuum

hydrodynamic stress components

We want to note the correspondence between the MD-
measured stresses and the continuum hydrodynamic stress
components. This correspondence is essential to obtain the

microscopic contact angle ud
sur f , defined in the continuum

hydrodynamic model but not directly measurable in MD
simulations.

The GNBC for the diffuse BL is given by

G̃x
f
5bvx

slip
5

]

]x
E

0

z0

dz@sxx~z !2sxx
0 ~z !#

1@szx~z0!2szx
0 ~z0!# , ~B6!

which involves only MD measurable quantities. To obtain

the contact angle ud
sur f from MD results, we need to interpret

the MD-measured quantities in terms of the various con-
tinuum variables in the hydrodynamic model. In doing so it
is essential to note the following.

~1! sxx can be decomposed into a molecular component

and a hydrodynamic component: sxx5Txx1sxx
HD . Mean-

while, sxx
0 can be decomposed into the same molecular com-

ponent and a hydrostatic component: sxx
0

5Txx1sxx
HS . The

molecular component Txx exists even if there is no hydrody-
namic fluid motion or fluid-fluid interfacial curvature. In par-
ticular, Txx in the BL depends on the wall-fluid interactions.
The change of the BL-integrated Txx across the fluid-fluid
interface equals the change in the wall-fluid interfacial free
energy, i.e.,

E
int

dx
]

]x F E
0

z0

dzTxx~z !G5Dgw f5gw f~f1!2gw f~f2!.

On the other hand, the hydrodynamic component sxx
HD in sxx

results from the hydrodynamic fluid motion and fluid-fluid
interfacial curvature. In the static (V50 or gext50) configu-

ration, sxx
HD becomes the hydrostatic component sxx

HS in sxx
0 .

~2! szx(z0) can be decomposed into a viscous component

plus a Young’s component: szx(z0)5szx
v (z0)1szx

Y (z0) with

szx
v

5h(]zvx1]xvz) and * intdxszx
Y (z0)5g cos ud(z0).

~3! szx
0 (z0) is the static Young stress, i.e., * intdxszx

0 (z0)

5g cos us(z0).
With the help of the above relations, integration of Eq.

~B6! across the fluid-fluid interface yields

E
int

dxbvx
slip

5DF E
0

z0

dzsxx
HDG1E

int
dxszx

v ~z0!1g cos ud~z0!

2DF E
0

z0

dzsxx
HSG2g cos us~z0!, ~B7!

where D@*
0

z0dzsxx
HD(HS)# is the change of the z-integrated

sxx
HD(HS) across the interface. According to Laplace’s equa-

tion, the change of the hydrostatic z-integrated normal stress
is directly related to the static z-integrated curvature Ks :

2DE
0

z0

dzsxx
HS

5gKs5g@cos us~z0!2cos us
sur f # . ~B8!

Note that Ks vanishes in the symmetric case. Substituting
Eq. ~B8! into Eq. ~B7! then yields

E
int

dxbvx
slip

5DE
0

z0

dzsxx
HD

1E
int

dxszx
v ~z0!1g cos ud~z0!

2g cos us
sur f . ~B9!

If interpreted in the continuum hydrodynamic formulation
with a sharp fluid-solid boundary, the last term in the right-

hand side of Eq. ~B9!, 2g cos us
surf , is the net wall force

along x arising from the wall-fluid interfacial free energy
jump across the fluid-fluid interface, in accordance with

Young’s equation 2g cos us
surf

5Dgwf . On the other hand, the

sum of the first three terms on the right-hand side of Eq. ~B9!
is the net fluid force along x exerted on the three fluid sides
of a BL fluid element in the interfacial region, due to the
hydrodynamic motion of the fluids.

To obtain an extrapolated value for the contact angle ud
sur f

from Eq. ~B9!, we turn to the Stokes equation in the BL:

2]xp1]xsxx
v

1]zszx
v

1m]xf50, ~B10!

obtained from the x component of Eq. ~9! by dropping the
inertial and external forces. Integration in z of Eq. ~B10!
across the BL, together with the integration along x across
the fluid-fluid interface, yields

DF E
0

z0

dz~2p1sxx
v !G1E

int
dxszx

v ~z0!1g cos ud~z0!

2E
int

dxszx
v ~0 !2g cos ud

sur f
50. ~B11!

Here we have made use of two relations: ~1! m]xf
.gkd(x2x int) in the sharp interface limit @31#, with k be-
ing the interfacial curvature and x int the location of the inter-
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face along x; ~2! *
0

z0dzk is the dynamic z-integrated curva-

ture Kd5cos ud(z0)2cos ud
surf . The local force balance along

x is expressed by Eq. ~B10!. Accordingly, the force balance
along x for the BL fluids in the integration region is ex-

pressed by Eq. ~B11!, where D@*
0

z0dz(2p1sxx
v )# is the net

force on the left and the right ~constant-x) surfaces,

* intdxszx
v (z0)1g cos ud(z0) is the tangential force on the z

5z0 surface, and 2* intdxszx
v (0)2g cos ud

surf is the tangen-

tial force on the z50 surface. Substituting Eq. ~B11! into Eq.

~B9! and identifying the normal stress 2p1sxx
v with sxx

HD ,

we obtain

E
int

dxbvx
slip

5E
int

dxszx
v ~0 !1g cos ud

sur f
2g cos us

sur f ,

~B12!

which is identical to the integration of the continuum GNBC
@Eq. ~14!# along x across the fluid-fluid interface.

In summary, to obtain Eq. ~B12! from Eq. ~B7!, we have

used both ]xsxx
HS

1]zszx
0

50 and ]xsxx
HD

1]zszx50, whose

integrated expressions are given by Eq. ~B8! and Eq. ~B11!,
respectively. We note that ]x(sxx

HD
2sxx

HS)1]z(szx2szx
0 )

50 is equivalent to the relation ]xs̃xx1]ns̃nx50 @integrated
expressions given by Eqs. ~4! and ~5!#, which has been used

to obtain ud
sur f through extrapolation in Sec. III.

APPENDIX C: NUMERICAL ALGORITHM

We present our numerical algorithm for solving the con-
tinuum hydrodynamic model, comprising dynamics equa-
tions ~9! and ~10! and the four boundary conditions vn50,
]nm50, plus Eqs. ~14! and ~15!. We pay special attention to
the application of boundary conditions, and restrict our
analysis to the Couette flow because the generalization to
Poiseuille flow is straightforward.

1. Dimensionless hydrodynamic equations

To obtain a set of dimensionless equations suitable for

numerical computations, we scale f by uf6u5Ar/u , length

by j5AK/r , velocity by the wall speed V, time by j/V , and
pressure/stress by hV/j . In dimensionless forms, the
convection-diffusion equation reads

]f

]t
1v•“f5L d¹2~2¹2f2f1f3!, ~C1!

the Navier-Stokes equation reads

RF]v

]t
1~v•“ !vG52“p1¹2v1B~2¹2f2f1f3!“f ,

~C2!

the relaxation of f at the fluid-solid boundary is governed by

]f

]t
1vx]xf52VsF]nf2

A2

3
cos us

sur fsg~f !G , ~C3!

and the GNBC becomes

@Ls~f !#21
vx

slip
5BF]nf2

A2

3
cos us

sur fsg~f !G]xf2]nvx .

~C4!

Here sg(f)5(p/2)cos(pf/2). Five dimensionless param-
eters appear in the above equations. They are ~1! Ld

5Mr/Vj , which is the ratio of a diffusion length Mr/V to

j , ~2! R5rVj/h , ~3! B5r2j/uhV53g/2A2hV , which is
inversely proportional to the capillary number Ca5hV/g ,
~4! Vs5KG/V , which is the ratio of KG ~of velocity dimen-
sion! to V, and ~5! Ls(f)5h/b(f)j , which is the ratio of
the slip length ls(f)5h/b(f) to j . Here b(f)5(1
2f)b1/21(11f)b2/2.

2. Finite-difference scheme

For immiscible Couette flows, there are four variables f ,

vx , vz , and p to be solved in a two-dimensional ~2D! system
~in the xz plane!. We want to solve the convection-diffusion
equation and the Navier-Stokes equation in a 2D system of
length Lx ~along x) and height Lz ~along z). Here Lx must be
large enough to allow the single phase flows ~far from the
fluid-fluid interface! to approach uniform shear flows. A
finite-difference scheme is employed as follows.

~1! Nx and Nz equally spaced levels are introduced in the
x and z directions, respectively. Grid size is given by Dx

5Lx /(Nx21) and Dz5Lz /(Nz21) along x and z, respec-
tively.

~2! Each variable ~q! is defined at Nx3Nz sites distributed
from x52Lx/2 to Lx/2 and from z52Lz/2 to Lz/2, repre-
sented by the array q i , j , with i51, . . . ,Nx and j

51, . . . ,Nz . Here q i , j[q(x i ,z j), with x i5(i21)Lx /(Nx

21)2Lx/2 and z j5( j21)Lz /(Nz21)2Lz/2.
~3! In applying the various boundary conditions, ‘‘ghost’’

sites outside the system, i.e., i50, i5Nx11, j50, or j

5Nz11, may appear in the discretization scheme. The val-
ues of the variables at the ghost sites are determined sepa-
rately from the various boundary conditions, detailed below.

~4! First and second spatial derivatives along z
(5x or z) are represented by ]zq(zk)5@q(zk11)

2q(zk21)#/2Dz and ]z
2q(zk)5@q(zk11)1q(zk21)

22q(zk)#/Dz
2 .

3. Convection-diffusion equation

With the chemical potential m i , j given by

m i , j52Ff i11,j22f i , j1f i21,j

Dx
2

1

f i , j1122f i , j1f i , j21

Dz
2 G

2f i , j1f i , j
3 , ~C5!

the discretized convection-diffusion equation is

]

]t
f i , j1@v•“f# i , j5LdFm i11,j22m i , j1m i21,j

Dx
2

1

m i , j1122m i , j1m i , j21

Dz
2 G , ~C6!
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with

@v•“f# i , j5vxi , j

f i11,j2f i21,j

2Dx

1vzi , j

f i , j112f i , j21

2Dz

.

~C7!

The boundary conditions at x56Lx/2 can be easily applied,
using f561 and

v~z !5

Lz

Lz12Ls

2z

Lz

x̂, ~C8!

for single-phase uniform shear flows. Here we focus on the
boundary conditions at z56Lz/2: ]nm50 and Eq. ~C3!. We
spell out the numerics for the lower boundary j51, with the
understanding that the same can be applied to the upper
boundary.

To solve the discretized convection-diffusion equation
~C6! at the lower boundary j51, we need the values of m i , j

at j51 and j50. We also need the values of m i , j at j51 to
solve the same equation at j52. According to Eq. ~C5!, m i , j

at j51 and j50 cannot be directly evaluated from f i , j with
i51, . . . ,Nx and j51, . . . ,Nz . But they can still be deter-
mined from the boundary conditions at z52Lz/2. m i , j at j

50 is obtained from ]nm50 at j51 as

m i , j21505m i , j1152 . ~C9!

To obtain m i , j at j51, we need to determine f i , j at j50.
This can be done by requiring that Eqs. ~C1! and ~C3! yield
the same ]f/]t at z52Lz/2. The discretized convection-
diffusion equation is given by Eq. ~C6! while the discretized
relaxation equation for f at the boundary j51 is given by

]

]t
f i , j1@v•“f# i , j52VsFf i , j212f i , j11

2Dz

2

A2

3
cos us

sur fsg~f i , j!G . ~C10!

Equating the right-hand side of Eq. ~C6! at j51 @with m i ,0

fixed by Eq. ~C9! and other m’s given by Eq. ~C5!# with that
of Eq. ~C10! leads to a tridiagonal system of linear equations
for f i , j (f i , j coupled with f i21,j and f i11,j) at j50. Solv-
ing this tridiagonal system determines f i , j at j50, from
which we obtain m i , j at j51 by using Eq. ~C5!.

4. Navier-Stokes equation

We now turn to the Navier-Stokes equation ~C2! with the
incompressibility condition “•v50. The difficulty in solv-
ing the Navier-Stokes equation is the lack of a time evolution
equation for the pressure p. In the following, we will intro-
duce a numerical method based on the pressure Poisson
equation @25#.

a. Pressure Poisson equation

Taking the divergence of momentum equation ~C2! and
applying the incompressibility condition, we obtain the pres-
sure Poisson equation

¹2p52R“•@~v•“ !v#1B“•@~2¹2f2f1f3!“f# .
~C11!

Dotting the momentum equation ~C2! with the surface nor-
mal at the fluid-solid boundary and using vn50, we obtain
for Eq. ~C11! the boundary condition

]np5¹2
vn1B~2¹2f2f1f3!]nf , ~C12!

at z56Lz/2. In addition, we use ¹2p50 and ]xp50 for the
values of ¹2p and ]np at the boundaries x56Lx/2. This
reflects the single-phase flow given by Eq. ~C8!.

From the momentum equation ~C2! and the pressure Pois-
son equation ~C11!, we derive a diffusion equation

R
]~“•v!

]t
5¹2~“•v!,

for “•v. With “•v50 given at time t50, and in order to
ensure that v remains divergence free at t.0, we must im-
pose the additional boundary condition “•v50 at all times
t>0. We will show that this boundary condition is needed in
solving for p in a finite-difference scheme.

In order to solve the pressure Poisson equation, we need
to evaluate @¹2p# i , j for i51, . . . ,Nx and j51, . . . ,Nz ,

@]xp# i , j for i51,Nx and j51, . . . ,Nz , and @]zp# i , j for i

51, . . . ,Nx and j51,Nz . For ¹2p , we have

@¹2p# i , j50,

for i51,Nx and j51, . . . ,Nz ;

@¹2p# i , j52RFvxi11,j2vxi21,j

2Dx

vzi , j112vzi , j21

2Dz

2

vzi11,j2vzi21,j

2Dx

vxi , j112vxi , j21

2Dz
G

1Bm i , jS f i11,j22f i , j1f i21,j

Dx
2

1

f i , j1122f i , j1f i , j21

Dz
2 D

1BS m i11,j2m i21,j

2Dx

f i11,j2f i21,j

2Dx

1

m i , j112m i , j21

2Dz

f i , j112f i , j21

2Dz
D ,

for i52, . . . ,Nx21 and j52, . . . ,Nz21; and
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@¹2p# i , j52R
vxi11,j2vxi21,j

2Dx

vzi , j112vzi , j21

2Dz

1Bm i , jS f i11,j22f i , j1f i21,j

Dx
2

1

f i , j1122f i , j1f i , j21

Dz
2 D

1B
m i11,j2m i21,j

2Dx

f i11,j2f i21,j

2Dx

,

for i52, . . . ,Nx21 and j51,Nz ~where vz50 and ]zm
50). We see that f and vz at ghost sites of j50,Nz11
appear in the last expression. The ghost f’s have already
been determined in solving the convection-diffusion equa-
tion, while the ghost vz’s are determined through the addi-
tional boundary condition “•v50:

vxi11,j2vxi21,j

2Dx

1

vzi , j112vzi , j21

2Dz

50,

for i52, . . . ,Nx21, and j51,Nz . For ]np , we have

@]xp# i , j50

for i51,Nx and j51, . . . ,Nz ;

@]zp# i , j50

for i51,Nx and j51,Nz ; and

@]zp# i , j5

vzi , j111vzi , j21

Dz
2

1Bm i , j

f i , j112f i , j21

2Dz

for i52, . . . ,Nx21 and j51,Nz ~where vz50). The last
expression involves the ghost f’s and vz’s at j50,Nz11.
Given the above values of @¹2p# i , j and @]np# i , j , we apply a
2D fast Fourier transformation to solve p i , j(0) ~up to a con-
stant! for i51, . . . ,Nx and j51, . . . ,Nz .

b. Slip boundary condition

The discretized Navier-Stokes equation is given by

]vxi , j

]t
52vxi , j

vxi11,j2vxi21,j

2Dx

2vzi , j

vxi , j112vxi , j21

2Dz

2

1

R

p i11,j2p i21,j

2Dx

1

1

R
S vxi11,j22vxi , j1vxi21,j

Dx
2

1

vxi , j1122vxi , j1vxi , j21

Dz
2 D

1

B

R
m i , j

f i11,j2f i21,j

2Dx

, ~C13!

for i52, . . . ,Nx21 and j51, . . . ,Nz , and

]vzi , j

]t
52vxi , j

vzi11,j2vzi21,j

2Dx

2vzi , j

vzi , j112vzi , j21

2Dz

2

1

R

p i , j112p i , j21

2Dz

1

1

R
S vzi11,j22vzi , j1vzi21,j

Dx
2

1

vzi , j1122vzi , j1vzi , j21

Dz
2 D

1

B

R
m i , j

f i , j112f i , j21

2Dz

. ~C14!

for i52, . . . ,Nx21 and j52, . . . ,Nz21, together with the
boundary conditions that vzi , j50 at j51,Nz and v is given
by Eq. ~C8! at i51,Nx . Equation ~C13! at j51,Nz involves
f and vx at ghost sites of j50,Nz11. The ghost f’s come
from m i , j at j51,Nz , and have already been determined. The
ghost vx’s are determined from the discretized GNBC

@Ls~f i , j!#
21

vxi , j
slip

5BFf i , j212f i , j11

2Dz

2

A2

3
cos us

sur fsg~f i , j!Gf i11,j2f i21,j

2Dx

2

vxi , j212vxi , j11

2Dz

, ~C15!

at the lower boundary j51 with vxi , j
slip

5vxi , j2V , and

@Ls~f i , j!#
21

vxi , j
slip

5BFf i , j112f i , j21

2Dz

2

A2

3
cos us

sur fsg~f i , j!Gf i11,j2f i21,j

2Dx

2

vxi , j112vxi , j21

2Dz

, ~C16!

at the upper boundary j5Nz with vxi , j
slip

5vxi , j1V .

In summary, to solve the dynamic equations ~9! and ~10!,
we need to use f561 and Eq. ~C8! at x56Lx/2, with vn

50, ]nm50, plus Eqs. ~14! and ~15! at z56Lz/2. In par-
ticular, in applying the boundary conditions at z56Lz/2,
values of f , vx , and vz at ghost sites have to be introduced
and solved for.

5. Time integration

We outline the scheme for time discretization and integra-
tion. For simplicity, we only describe the forward Euler time
stepping. In the following a superscript n denotes consecu-
tive time instants and Dt is the time interval.

Time stepping: Given $f i , j
n % and $vi , j

n % at all the sites (i

51, . . . ,Nx and j51, . . . ,Nz) in the system.

Step 1: Determine $m i , j
n %, $f i , j

n %, and $vi , j
n % at the ghost

sites from the various boundary conditions, as described in
Secs., C 3, C 4 a, and C 4 b.
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Step 2: Solve $p i , j
n % at all the interior sites (i51, . . . ,Nx

and j51, . . . ,Nz) from Eq. ~C11! with appropriate boundary
conditions for ]np , as described in Sec. C 4 a.

Step 3: Compute $f i , j
n11% and $vi , j

n11% at all the interior

sites ~except those fixed by the boundary conditions at all
times! using

fn11
2fn

Dt
52vn

•“fn
1L d¹2mn,

and

R
vn11

2vn

Dt
52R~vn

•“ !vn
2¹pn

1¹2vn
1Bmn¹fn,

according to Eqs. ~C6!, ~C13!, and ~C14! in discretized time.

Here, the ghost $m i , j
n %, $f i , j

n %, and $vi , j
n % determined in Step 1

and $p i , j
n % solved in Step 2 are needed.
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