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Molecular signatures of in situ to invasive progression for
basal-like breast cancers: An integrated mouse model and
human DCIS study
Aatish Thennavan1,2, Susana Garcia-Recio2,3, Siyao Liu2,3, Xiaping He2,3 and Charles M. Perou 2,3,4✉

Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of Invasive Ductal Carcinoma (IDC) and thus the
identification of features that may predict DCIS progression would be of potential clinical value. Experimental mouse models can be
used to address this challenge by studying DCIS-to-IDC biology. Here we utilize single cell RNA sequencing (scRNAseq) on the
C3Tag genetically engineered mouse model that forms DCIS-like precursor lesions and for which many lesions progress into end-
stage basal-like molecular subtype IDC. We also perform bulk RNAseq analysis on 10 human synchronous DCIS-IDC pairs comprised
of estrogen receptor (ER) positive and ER-negative subsets and utilize 2 additional public human DCIS data sets for comparison to
our mouse model. By identifying malignant cells using inferred DNA copy number changes from the murine C3Tag scRNAseq data,
we show the existence of cancer cells within the C3Tag pre-DCIS, DCIS, and IDC-like tumor specimens. These cancer cells were
further classified into proliferative, hypoxic, and inflammatory subpopulations, which change in frequency in DCIS versus IDC. The
C3Tag tumor progression model was also associated with increase in Cancer-Associated Fibroblasts and decrease in activated
T cells in IDC. Importantly, we translate the C3Tag murine genomic findings into human DCIS where we find common features only
with human basal-like DCIS, suggesting there are intrinsic subtype unique DCIS features. This study identifies several tumor and
microenvironmental features associated with DCIS progression and may also provide genomic signatures that can identify
progression-prone DCIS within the context of human basal-like breast cancers.
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INTRODUCTION
Breast cancer (BC) involves the transformation of the normal breast
ducts through a variety of histopathologic recognized precursor
non-invasive states into fully transformed malignant tumors1.
Ductal carcinoma in situ (DCIS) is believed to be a precursor of
invasive ductal carcinoma not otherwise specified (IDC), the most
common BC histologic type2. DCIS comprises 20–30% of BC in the
US and worldwide3,4. Similar molecular profiles, and DNA clonality
commonalities, exist between many DCIS and IDC lending support
to the precursor status of DCIS to IDC5. However, approximately
only 20–40% of DCIS progress to IDC if left untreated, and this
progression can be in part predicted by the histological grade of
the DCIS6–8. These studies highlight that there is a subset of DCIS
that are true precursors to IDC, and that features like grade can
predict a higher propensity of a given DCIS lesion to turn into an
IDC. This DCIS subset is likely enriched in cell populations
containing genetic and/or genomic aberrations that increase the
risk of malignant progression. However, there is a lack of biological
understanding and diagnostic methods to robustly identify
progression-prone DCIS beyond grade, thus leading to a present
state of clinical consensus of DCIS overtreatment8,9.
Based on gene expression, IDC can be subdivided into “intrinsic”

subtypes with basal-like subtype showing the worst clinical
prognosis10,11. DCIS can also be similarly subtyped using gene
expression like IDC suggesting a molecular continuum as DCIS
progresses into cancer5,12–14. Specifically, these studies suggest the
existence of basal-like DCIS as a distinct entity that is unique from

other DCIS. These studies also highlight that basal-like DCIS to
basal-like IDC transition is associated with a microenvironment
immune cell changes unlike DCIS-IDC transitions of other
molecular subtypes12. However, PDX models fail to include the
complete microenvironment changes in DCIS progression accu-
rately and thus there is a pressing need to use animal models with
intact immune systems for studying DCIS progression. In this
regard, the C3(1)/SV40 T-antigen GEM model (henceforth called
C3Tag) forms early Mammary Intraepithelial Neoplasia (MIN; DCIS
equivalent term in veterinary histopathology) that histologically
resembles human DCIS and end-state IDC-like tumors of basal-like
subtype, and therefore might be a good model to study
progression-prone DCIS15–18. Our hypothesis is that specific tumor
and/or microenvironmental changes occur that governs DCIS to
IDC transformation, and that these changes may be identified in a
GEM model and also occur in human DCIS as well. Our aim was to
identify these molecular changes in C3Tag MIN (henceforth called
DCIS) and IDC-like tumors (henceforth called Tumor) utilizing single
cell RNA sequencing (scRNAseq) and analyze these findings
relative to human DCIS to identify possible commonalities.

RESULTS
Epithelial cell populations identified across C3Tag mammary
prepuberty, DCIS, and IDC-like tumor states
To identify both epithelial and microenvironment cellular changes
associated with normal ducts transitioning into invasive tumors in
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the C3Tag mouse model, we performed 6 scRNAseq experiments
on the whole mammary glands from three distinct disease states/
timepoints (n= 2 for each timepoint) including: (1) Prepuberty:
5–6 weeks; (2) DCIS: 12–16 weeks; and (3) Invasive IDC-like Tumor:
more than 16 weeks with presence of a palpable tumor. For the
gland harvested for DCIS and prepuberty disease state scRNAseq,
we hemi-sectioned the mammary gland and performed a routine
formalin-fixed paraffin embedded (FFPE) hematoxylin and eosin
(H&E) staining to confirm that the gland contained MIN/DCIS
lesions and normal ducts before conducting the scRNAseq
experiment on the contralateral gland of the same mouse (Fig.
1a). At the same time, we also harvested another mammary gland
of the same mouse to perform bulk RNAseq from the prepuberty
and DCIS disease states (Fig. 1a). We defined prepuberty and DCIS
disease states as per established developmental timepoints for
normal ductal and MIN lesions found in C3Tag mouse model15,19.
Normal ducts are seen in the C3Tag mouse when the SV40-large T-
antigen is not fully activated and therefore the mice from these
time points were collected before they attained puberty and thus
called “Prepuberty” state. “DCIS” disease state was defined as the
time frame after puberty and where the ducts start containing
MIN lesions that are veterinary pathological entities like human
DCIS. Furthermore, for this time point we sampled mammary
glands that showed higher grade of MIN and presence of areas of
central necrosis like human DCIS by routine H&E staining (Fig. 1b).
For “Tumor” disease state, palpable tumor was detected,
harvested, and sectioned for scRNAseq and bulk RNAseq.
For our primary analyses of C3Tag scRNAseq we captured

21,332 cells from 6 scRNAseq experiments and identified multiple
cell type specific clusters comprising the mouse mammary gland
milieu (Fig. 1c). We identified statistically significant differentially
expressed (DE) genes defining each cluster and used previously
determined marker genes to annotate the UMAP cell group
clusters. Clusters 0, 2, 9, 18, and 7 were epithelial (Epcam, Krt8 and
Krt18 high; Fig. 1d; Supplementary File 1). We also mapped the
SV40-large-T-antigen gene sequences on our scRNAseq data and
found that clusters 0, 2, 18, and 7 expressed this feature with a
significant high expression in cluster 2 (Fig. 1d). Moreover, cluster
7 was composed of cells with SV40-large-T-antigen expression and
many proliferative genes like Cenpe and Mki67 indicating a
mitotically active subset of epithelial cells. Epithelial cluster 9 was
devoid of SV40-large-T-antigen, showed low expression of
proliferative genes, and had high expression of luminal genes
namely Cd24a and Prlr indicating that this population was likely
non-tumor normal epithelial cells (Fig. 1d). We also identified
myoepithelial cells as a separate cluster 6 (Fig. 1d) based on the
expression of Krt5, Tagln and Acta2, and no expression of SV40-
large-T-antigen. In a similar fashion, we were able to identify
several cell types of the microenvironment in all 3 disease states:
clusters 1, 3, 16 (Fibroblasts: Pdgfra, Dcn, Lum); clusters 4, 8, 14
(Endothelial cells: Pecam1, Cd34); cluster 5 (Macrophage: Cd68,
Fcer1g); cluster 15 (Monocyte/ Dendritic cells: Napsa, Klrk1); cluster
11 (T lymphocytes: Cd3g, Cd3d); cluster 17 (B lymphocytes: Ms4a1),
cluster 10,12 (Smooth muscle: Des) and cluster 13 (Neural
Schwann cells: Mpz, Mbp).
Although all the cell clusters in the merged data set were found

to contain cells from all three disease states, we found that the
relative proportions of cells differed across the disease states. For
example, both cluster 9 (normal luminal cells) and cluster 6
(myoepithelial cells) were shown to be almost entirely composed
of cells from the Prepuberty and the DCIS disease states (Fig. 1e).
To assess the statistical significance of the changes in the cellular
composition across all 3 disease states, we utilized a generalized
linear regression model that accounted for the batch effects and
the 2 technical replicates for each state (Supplementary File 1).
The results of this analysis showed that there was statistical
significance of differences in cell numbers of epithelial clusters 2,
7, and 11 in the Tumor state versus the DCIS (p value < 0.001). In

fact, the odds of finding a cell from cluster 2 that was high in SV40-
large-T-antigen, was 8-fold (odds ratio: 8.05) higher in the Tumor
state than the DCIS state. Interestingly, the T lymphocyte cluster
11 (odds ratio: 4.46) and macrophage cluster 5 (odds ratio: 1.35)
were also significant for an increased odds ratio to be found in the
Tumor state. The same analysis between the Prepuberty and DCIS
state showed that the fibroblast and endothelial cells to be
significantly more in the prepuberty disease state than the DCIS
disease state (Supplementary File 1).

Genomic and cell biological approaches to identify cancer cell
populations and epithelial cells across C3Tag prepuberty,
DCIS and IDC-like Tumor states
Since gene expression “dropout” events are known to be
associated with scRNAseq data, we utilized inferCNV20–22 to
identify epithelial cells with DNA copy number changes (i.e., tumor
cells) in the C3Tag mouse model, as opposed to only using SV40-
large-T-antigen expression to identify malignant cells. InferCNV
identifies Copy Number Aberrations (CNA) from scRNAseq data as
chromosomally located regions of common high, or low, gene
expression levels, and is considered a robust means of identifying
cancer cells in a mix of normal and cancer cells. InferCNV identifies
regions of CNAs using comparisons to normal reference cells, and
hence we utilized our previously published scRNAseq data (n= 2)
of FVB/NJ normal (12 weeks) mouse mammary glands23, which are
the same strain background as C3Tag mice used here; specifically,
we utilized the FVB normal mammary gland epithelial cells to call
CNA events in our dataset.
Using the InferCNV approach we were able to identify CNA+

cells in all three disease states (Supplementary Fig. 1), albeit at
very different frequencies. Only small numbers of CNA+ cells were
identified in our Prepuberty (Supplementary Fig. 1a) and DCIS
disease states, with shared events between the two DCIS samples
identified (Supplementary Fig. 1a). However, there were distinct
human breast CNA events identified in the two Tumor samples
where one tumor – ‘Tumor1’ was identified as KRAS altered with a
chr6 related KRAS amplification (Supplementary Fig. 1a), which is a
previously noted common event in this tumor model24. We also
performed array CGH (aCGH) analysis on bulk DNA harvested from
DCIS and Tumor states and validated many of the CNA profiles
coming from the scRNAseq InferCNV calls (Supplementary Fig. 1b,
c). For DCIS states, chr2q deletion (del) was identified in both
scRNAseq and bulk aCGH. For Tumor, chr1 amplification (amp),
chr3 amp, chr6 amp, and chr10 del were identified in bulk aCGH
and inferCNV (Supplementary Fig. 1c). Lastly, to robustly identify
malignant CNA+ cells for downstream analyses, we used a
correlation approach and calculated two correlation values for
each cell in relation to i) the CNA profile of the top 5% of non-
epithelial cells in each individual disease timepoint and ii) the CNA
profile of normal FVB epithelial cells (Supplementary Fig. 2a–e).
Cells were designated as CNA high cancer cells if they had a
higher score than the median correlation value to the top 5% of
non-epithelial cells and had a score lower than the median
correlation value to normal epithelial cells. We also looked at the
SV40 large -T-antigen expression in our CNA inferred cancer cells
and found that 80–90% of these cells were SV40-large-T-antigen
positive. Thus, we identified 2025 CNA high cancer cells
(Prepuberty 1: 62 cells; DCIS 1: 319 cells; DCIS 2: 267 cells; Tumor
1: 986 cells; Tumor 2: 391 cells) out of 9679 epithelial cells from our
6 scRNAseq data combined; no CNA high cancer cells were found
in Prepuberty 2.
We next utilized IKAP (Identifying K mAjor cell Pory ducts at

prepuberty diseapulation)25 to identify the optimal cluster number
using the CNA altered cells and identified 5 subpopulations of
cancer cells (Figs. 2a, b and 3). Since these are relatively unknown
subpopulations, we relied on known breast cancer gene
signatures26 instead of specific marker genes to identify their
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biological features. Statistically significant gene signatures indicat-
ing unique cellular biological processes were identified: Hypoxia
and glycolysis gene signature for cluster 0; Proliferation for cluster
3 and an Interferon/Inflammatory gene signature for cluster 4 (Fig.
2c; Supplementary File 2). Through the gene signature analysis, we

were then able to better understand many of the differentially
expressed genes identified in these cancer cell subpopulations.
For example, cluster 0 had significant high expression of Aldoa,
Pgam1, and Pgk1 (Supplementary File 2), which are involved in the
glycolysis pathway, and Timp1, Ldha, and Eif4ebp1 (Supplementary

a)

b)
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e)

c)
Prepuberty DCIS 

Tumor 
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File 2) that are involved in HIF-1 alpha signaling. Similarly, cluster 4
had significant high expression of Gbp2, Usp18, Irf7, Ifit1, B2m, and
Stat1, which are genes involved in the interferon pathway
(Supplementary File 2). Cluster 1 and cluster 2 had no specific
enriched breast cancer signatures however cluster 1 had several
ribosomal and ER stress-associated genes (Rpl41, Rps27, Rps29,
Fosb, and Jund). Cluster 2 had high expression of other mammary
gland-specific genes (Fxyd3, Trf, Wfdc18, Plekhb1, and Lcn2).
We next identified 141 genes that were constitutively high

within all cancer cells in all 3 disease states. These conserved
genes comprised predominately of 78 proliferation genes includ-
ing Ube2c, Cdc20, and Cenpf (Supplementary Fig. 4a), and 43 pro-
inflammatory genes such as Cxcl10, Ifit1, and Isg15 (Supplementary
Fig. 4b; Supplementary File 2). These genes arose early even in
InferCNV+ prepuberty cells and remained high in the C3Tag DCIS-
Tumor transformation process indicating that these genes could
be early markers of cancer transformation. This finding of
proliferation-associated genes is also directly related to the natural
biology of the SV40-Large T antigen that drives tumorigenesis in
C3Tag mice by inactivating p53 and Rb. In fact, 30/78 of genes
from our proliferation signature had an E2F transcription binding
site (Supplementary File 2).
Since we identified many genes aberrantly high in the DCIS

state, we sought to examine the panel of OncotypeDx DCIS
genes27,28 in our mouse models cells dataset. Oncotype Dx DCIS
score was specifically developed as a prognostic score to identify
biologically aggressive human DCIS and consists of 5 proliferative
genes (Ki67, STK15, Survivin, CCNB1, and MYBL2), 2 non-
proliferation genes (PR, GSTM1) and 5 housekeeping reference
genes. Interestingly we found 5/7 of the Oncotype Dx DCIS non-
housekeeping genes constitutively high in the C3Tag cancer cells
from all 3 states except Pgr, which was <10% in cells of our murine
DCIS states and completely not present in the murine tumor state
(Supplementary Fig. 4c); these finding highlights that our CNA
high C3Tag cancer cells are expressing genes already used to
identify biologically aggressive human DCIS.
We also constructed disease state specific gene signatures for

the 3 states. Since both our C3Tag tumors showed different CNA
profiles (Supplementary Fig. 1a), they each showed unique
upregulated genes with Tumor1 exhibiting high level of Kras
(Fig. 2d). Cancer cells (i.e., CNA+) from the prepuberty disease
state had significant high expression of genes involved in the
innate immunity and chemokine signaling pathway (Ccl2, Ltf, Ccl7,
Ccl20; Fig. 2d). The genes enriched in the DCIS state were
associated with regulation of stress response (Hspa1a, Hspa1b),
apoptosis (Txnip, Bex3, Gadd45a, and Ankrd1), proliferation (Cebpd,
Nfkbia) and inflammation (Ccl20, F3, Icam1); however, most genes
identified between the cancer cells in prepuberty, and DCIS states
were shared in both states (Fig. 2d; Supplementary File 2). We also
calculated breast cancer gene signatures for each CNA+ cellular
disease state and found many disease state relevant signatures
including high expression of interferon signature enriched in
prepuberty state; NFKB associated gene signature was enriched in
DCIS state; KRAS gene signature was enriched in Tumor1 and
RHOA gene signature was enriched in Tumor2 (Fig. 2e;
Supplementary File 2). We also computed gene set variation
analysis (GSVA)29 scores for the MSigDB H: Hallmark gene sets for

the cancer cells per each disease states and found similar gene
signature patterns (Supplementary File 2). Namely, Prepuberty
cancer cells were enriched in Hallmark Interferon alpha response
and Hallmark Interferon gamma response; DCIS cancer cells were
enriched in Hallmark IL6-JAK-STAT3 signaling and TNFA signaling
via NFKB; Tumor1 cancer cells were enriched in Hallmark
angiogenesis, KRAS-up and DNA repair; Tumor2 cancer cells were
enriched in Hallmark E2F targets and MTORC1 signaling (Supple-
mentary File 2). Thus, using our CNA high cancer cells, we re-
identified proliferation gene signatures but also put forth gene
signatures that may be associated with basal-like precursor states.

Microenvironment-specific disease state signatures show
similarities between prepuberty/DCIS state and the tumor
state
The surrounding fibroblasts and immune cells are considered to
play a role in influencing DCIS-Tumor transition12,30. We first
examined fibroblasts from the 3 disease states and when
examined alone these cells clustered into 2 broad populations
including a myofibroblast like group (Supplementary Fig. 5a, b;
cluster 1) and an inflammatory like group (Supplementary Fig. 5a,
b; clusters 0, 2) based upon marker genes from published
fibroblasts subsets in BC31 (Supplementary File 3). Upon construc-
tion of disease state-specific gene signatures, we found that the
fibroblasts from the Tumor disease state were distinct (Fig. 3a);
these fibroblasts from the Tumor state were associated with
increased expression of genes involved in extracellular matrix
organization and signaling pathways like Integrin and FGF
signaling pathways (Col3a1, Col5a1, Tnc, Sdc2, and Spp1;
Supplementary File 3). We also applied a published breast tumor
Cancer-Associated Fibroblast/CAF gene signature32 from the
Molecular Signatures Database (MSigDB)33,34 and found it was
significantly higher in the Tumor vs DCIS and Prepuberty
fibroblasts (Fig. 3b).
Analysis of immune cells across all 3 disease states revealed 4

broad immune cell types (Fig. 1d and Supplementary Fig. 5c, d),
which included T and B lymphocytes, monocytes, and macro-
phages. Disease state specific T cells signatures showed unique
gene expression profiles for DCIS and Tumor states (Fig. 3c;
Supplementary File 3). Specifically, DCIS T Lymphocytes exhibited
significant upregulation of the Pdcd1 gene (Fig. 3c, f), which was
lower in the Tumor state. We also applied gene signature modules
from fractionated T cells from human DCIS and BC35 (Supple-
mentary File 3) and noted that the C3Tag mouse DCIS T
Lymphocytes had a significant upregulation of activated T cell
gene signature (Fig. 3d). Furthermore, we also found a significant
upregulation of the cytotoxic T cell gene signature in the Tumor
state T cells (Fig. 3d).
Similarly, analysis of macrophages from the 3 states revealed

that there were distinct genes in the Tumor macrophages which
includes genes like Cotl1, Tgfbi, Fos, and Fn1 along with
complement activation genes C1qa, C1qb, and C1qc (Fig. 3e;
Supplementary File 3). Finally, we saw a significant high
expression of immune checkpoint markers PDL1/Cd274 in DCIS
macrophages (Fig. 3f) and PD1/Pdcd1 in DCIS T cells (Fig. 3g), both
of which drop in the Tumor state.

Fig. 1 The overall single-cell RNAseq experimental set up and description of all single-cell populations identified per C3Tag disease
stage. a Schematic of C3Tag experimental strategy to identify MIN/DCIS lesions for downstream scRNAseq and bulk RNA sequencing.
b Hematoxylin and Eosin (H&E) stained photomicrographs showing normal C3Tag mammary ducts at prepuberty disease state (×100
magnification), DCIS-like MIN lesions at DCIS disease state (×200 magnification) and mammary tumor cells at tumor disease state (×200
magnification). Scale bars, 100 μm. c UMAP plot of 21,332 single cells in C3Tag mammary colored by the disease state (Left panel) and by the
identified cell populations (Right panel). d Dot plot of the expression of specific marker genes across the cell populations identified. e Barplots
showing relative contribution of disease state to the identified cell populations [MIN: Mammary intra-epithelial neoplasia; DCIS: Ductal
carcinoma in-situ, FF-mRNAseq: Flash-frozen mRNA sequenced]. Source data are provided as a Source Data File 1.
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C3Tag DCIS disease state signatures are enriched in Human
TNBC and Basal-like DCIS
We next sought to evaluate the C3Tag scRNAseq derived gene
signatures on human DCIS specimens. To achieve this, we curated

multiple published gene expression datasets of human DCIS and
performed PAM50 subtyping on all the DCIS samples within these
studies. To achieve robustness, we included only published
studies that had at least 3 basal-like DCIS samples, which yielded
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2 studies12,36–38. Since these studies consisted of gene profiles of
micro-dissected DCIS epithelial areas, we applied only the C3Tag
InferCNV+ malignant cell-derived gene signature onto these
human datasets. In both datasets, we found that our C3Tag
malignant cells gene signature (Supplementary File 4) was
enriched in human basal-like DCIS samples compared to DCIS of
other molecular subtypes (Fig. 4a, b).
Next, we harvested RNA from archival FFPE DCIS-IDC pairs from

our hospital from samples containing synchronous DCIS and IDC
within the same specimen; the DCIS and IDC regions for each were
individually cored, RNA isolated, Ribo-Zero bulk RNAseq per-
formed, and then we focused on those specimens with
PAM50 subtyping characterization of basal-like DCIS (n= 4) and
basal-like IDC (n= 3), LumA DCIS (n= 6) and LumA IDC (n= 5).
Since RNA was collected from tissue sections containing both
epithelial and non-epithelial components, we calculated our
C3Tag DCIS malignant cells and microenvironment signatures
(Supplementary File 4) on these samples. We observed a
significant enrichment of the C3Tag DCIS signatures in the
basal-like DCIS samples relative to all other DCIS or IDC samples
tested (Fig. 4c). We also observed a significant enrichment of the
C3Tag DCIS fibroblast signature in human basal-like DCIS (Fig. 4d),
and enrichment of C3Tag DCIS immune in human basal-like DCIS
(Fig. 4e). All these microenvironment and tumor cell changes are
summarized in Fig. 5. Lastly, we investigated NFKB associated
gene signatures that were enriched in the CNA+ C3Tag DCIS cells,
in all the above human datasets (Supplementary Fig. 6a–c). Basal-
like DCIS in 2/3 human datasets (Balleine et al. and the present
study) showed a statistically significant upregulation of the C3Tag
DCIS-like NFKB gene signature.

DISCUSSION
It is the current consensus that DCIS is being overtreated leading
to physical, emotional, and economic burden for patients and
society39. This is possibly due to the increased detection of DCIS
from increased radiologic screening40, and also the knowledge
that if left alone, most DCIS would not progress to an invasive
disease6,7 while yet many DCIS patients receive either systemic
and/or local therapies. A challenge in studying DCIS biology is that
to study it experimentally one needs to study the dynamic
interaction of multiple cells within the controlled environment of a
duct through to the occurrence of the invasive disease, or a
sufficiently long enough time to know that DCIS will not progress
to invasive disease. Currently, many human DCIS basic biology
studies utilize MCF10DCIS cell line either alone41–44 or injected
into a mouse duct (MIND model)45–48 to study DCIS in the
laboratory. Although these studies add to our biological knowl-
edge, they do not fully mimic human DCIS disease biology as it
might interact with the adaptive immune system, which is likely
an important component of progression potential. Importantly, a
recent study by Risom et al. showed that it is those DCIS with an
intact basement membrane and myoepithelial cell activation, and
not those with direct tumor-to-microenvironment interactions,
that were the most likely to progress49; thus, model systems that
contain all microenvironment components would be valuable to

study DCIS progress. In addition, most human studies utilize
human synchronous DCIS-IDC FFPE/frozen tissue to estimate
molecular similarities between the two entities, however, these
studies link the DCIS features when an invasive component is
already present and does not follow the natural course of DCIS
progression. Indeed, currently, there are 3 ongoing clinical trials
that are studying the progression of low-risk DCIS naturally till the
incidence of breast cancer50–52. With all these challenges in mind,
we used the C3Tag mouse model that spontaneously forms high-
grade DCIS-like lesions towards its natural course of forming IDC
basal-like mammary tumors15.
Here we utilized this consistent murine model, and single-cell

RNA sequencing, to study cell type-specific features in the DCIS
and invasive disease states, including both tumor cells and non-
epithelial cells. Copy number aberrant malignant cells were
identified and showed increased expression of genes associated
with unique biological pathways including Interferon response in
prepuberty state, NFKB pathway in DCIS state, and cancer specific
pathways like KRAS, p53, Myc, MTORC1 in the IDC state (Fig. 5).
Importantly we also identified in the CNA+ high cancer cells,
regardless of disease state, a set of genes with sustained high
expression of proliferative and pro-inflammatory genes. For the
microenvironment, there was an increase in the number of T cells
and macrophages as a normal duct transition to DCIS to IDC,
however, there were significant cellular changes in each disease
state. There was an increase in PD1+ T cells at the DCIS state in
comparison to prepuberty and IDC states. This was also associated
with an increased activated T cell signature in the DCIS state (Fig.
5). Conversely there was a reduction of PD1+ T cells and PDL1+
macrophages in the IDC state. The IDC T cells were also more
cytotoxic in nature, and it should be noted that the IDC tumors are
rapidly increasing in size, and thus the cytotoxic T cells are not
keeping the tumor in check despite their presence. Finally, cancer-
associated fibroblasts (CAFs) were only found in the IDC state.
Using a methodology of inferring copy number to identify

malignant cells from scRNAseq data, we show that gene
signatures of glycolysis and hypoxia, along with sustained
expression of genes associated with proliferation and interferon
pathway, are present in both DCIS and CNA+ tumor/IDC cells. This
finding suggests that certain genes and pathways are already
initiated in pre-cursor states. Casasent et al. reported the same
finding using single cell sequencing on human DCIS-IDC pairs
putting forth a polyclonal mechanism of DCIS-invasive transfor-
mation53. In line with this, we report genes associated with other
broad human DCIS pathways like hypoxia42,54, glycolysis54,55 and
proliferation27, which have been previously used for mathematic
modeling of DCIS progression54. Importantly, we recapitulated
some of the findings of the prognostic Oncotype Dx DCIS assay
and identified 78 proliferation-associated genes sustained in CNA
high cancer cells at the C3Tag DCIS stage, including 5/7 exactly
found in the OncotypeDX DCIS proliferation feature.
Using our C3Tag DCIS cancer cell data, we report that there is a

NFKB pathway enriched in these cells. NFKB has been reported
involved in hypoxia and proliferation in breast pre-cursor
disease42,56,57. Muggerud et al. also reported that the NFKB gene
signature was specifically enriched in the ER- high-grade DCIS in

Fig. 2 The different subpopulations and gene pathways identified in copy number high C3Tag cancer cells across the disease states.
a UMAP plot of 2025 copy number high cancer cells with RNAseq data colored by the disease state (Top panel) and by the cell populations
identified (Bottom panel). b Heatmap of top 10 significant upregulated genes identified per cancer cell subpopulation using the Wilcoxon
rank sum test. c UMAP plots highlighting significant breast cancer gene signatures from Fan et al.26 enriched in specific cancer cell
subpopulations: Glycolysis and Hypoxia gene signature for subpopulation 0, Proliferation gene signature for subpopulation 3, and Interferon
gene signature for subpopulation 4. d Heatmap of top 10 significant upregulated genes identified in cancer cells per Prepuberty, DCIS,
Tumor1 (KRAS amplified) and Tumor2 disease states by Wilcoxon rank sum test. e Violin plots of NFKB pathway, KRAS pathway, and RHOA
pathway scores in cancer cells from Prepuberty, DCIS, Tumor1 (KRAS amplified), and Tumor 2 states. Source data are provided as a Source Data
file 2.
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comparison to ER+ high-grade DCIS58. Liu et al., and Elsarraj et al.,
have also reported biological mechanisms of NFKB in the DCIS
state that can alter the invasive disease course59,60. Since we also
correlated our C3Tag DCIS cancer cell gene signature to human

basal-like DCIS and found that the NFKB gene signatures were
significantly high in basal-like DCIS in 2/3 of our human sets, the
NFKB pathway activation in the DCIS disease state may play an
important role disease progression; additional complex
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experiments would be needed to definitively demonstrate this
hypothesis, although as discussed above, there already exists data
in human DCIS implicating the NKFB pathway as being
important42,56,57,59. One can speculate some technical and/or
biological factors that might explain the absence of NFKB gene
activation in the basal-like DCIS subset in the Lesurf et al dataset,
however, it is difficult to say which it is. These results support
additional studies to elucidate the NFKB pathway’s role in DCIS
progression.
Applying our C3Tag DCIS cancer cell gene signature on human

DCIS datasets, we found that our C3Tag signature was significantly
higher in basal-like DCIS versus non-basal-like DCIS, especially the
ER+ LumA-like DCIS. Since very few public datasets have gene
expression profiling of microenvironment cells from DCIS, we also
constructed our own RNAseq dataset from FFPE scrolls of DCIS-
IDC synchronous pairs containing cancer and microenvironment
cells. Again, upon applying our C3Tag DCIS cancer cell, fibroblast,
and immune cell signatures we demonstrate that these are
significantly enriched in human basal-like DCIS vs LumA DCIS, thus
showing that both tumor cell and microenvironmental features
are conserved in human basal-like DCIS and C3Tag mouse basal-
like DCIS, and that these are different than what is occurring in
Luminal A DCIS.
Although, few studies have examined the microenvironment in

human DCIS, both LeSurf et al. and Alcazar et al. reported higher
T cells and T cell-based immune signatures in the basal-like DCIS
state compared to other molecular subtypes12,35. Our C3Tag
immune cell findings are similar to their findings including higher
number of PD1 expressing T cells in the C3Tag DCIS state. IHC-
based studies on pure human DCIS FFPE samples have found that
almost all subsets of T cells are increased in ER-negative DCIS61,62,
but then many go lower in the IDC state. We report a similar
decrease in pdcd1(PD1)+ T cells in DCIS vs IDC, however, we also
saw an increase in cytotoxic T cell signature in the tumor state and
subsequent decrease in PDL1 expressing macrophages in the
tumor state, which are features of basal-like invasive breast
cancer61,63. Recently a study on pure human DCIS has also
reported the importance of studying immune-epithelial cell
interactions in DCIS and DCIS can exhibit 3 states based on this
– active, suppressed, and excluded64. This study further high-
lighted that the exclusion of T cell infiltration in the DCIS duct seen
in the excluded state could be seen as an early immune-
suppressive event influencing the cancer cells in DCIS to become
more aggressive and start showing lack of MHC class I
expression64. We thereby add to the current knowledge and put
forth a specific immune gene signature for basal-like DCIS from
immune cells identified in C3Tag DCIS that is loss of PD1+
immune cells as a marker of possible progression, and support
more studies in this regard to study immune-epithelial relation-
ships with more spatial methods.
Few studies have analyzed the DCIS-Invasive transition in a

subtype-specific manner, but most of them used microarray data
from FFPE tissues12,65. Our findings strengthen the previous results
and put forth new genes of interest. However, we admit that there
are limitations to our study. First our mouse tumor single cell

analysis may not include all cell types that can be found in the
human DCIS setting. Indeed, there might be unique cell
subpopulations with other defining gene features that may be
present in the human DCIS setting yet not present in our current
mouse model. Second, our two C3Tag invasive tumors were
molecularly distinct, with each showing unique inferred DNA copy
number changes and gene expression features; nonetheless, we
were able to find common features between these tumors. Lastly,
we only examined a single mouse model, and our sample size of
two specimens per time point is noted; however, this does
represent >2000 cells per time point per specimen, and thus each
specimen was well represented, and each time point showed
common tumor cell and microenvironmental features, many of
which were also seen in human basal-like DCIS.
In conclusion, we build upon the need to study DCIS based

upon a molecular stratification and propose C3Tag mouse model
as a good model to study human basal-like progression. We put
forth scRNAseq-derived cell type-specific DCIS gene signatures
that can be relevant in understanding DCIS biology and clinical
behavior, especially since one of our signatures reiterates a major
feature of the Oncotype Dx DCIS assay. Finally, we encourage the
application of single cell technologies in studying the roles played
by cancer cells and microenvironment cells in the malignant
transformation of DCIS of other tumor subtypes.

METHODS
Animal model details
All animal work was carried out in University of North Carolina Division
of Laboratory and Animal Medicine (UNC DLAM) facilities in compliance
with Institutional Animal Care and Use Committee (IACUC) approved
protocols. Female FVB/NJ and C3(1)-Tag mice were obtained in
collaboration with the UNC Lineberger Comprehensive Cancer Center
(LCCC) Mouse Phase I Unit (MP1U). C3(1)-Tag mice transgenic model
produces spontaneous mammary tumors and were originally developed
in the FVB/NJ background15. Animals were cared for according to the
recommendations of the Panel on Euthanasia of the American Veterinary
Medical Association. Mice were housed in a climate-controlled Depart-
ment of Laboratory Animal Medicine facility with a 12 h light:dark cycle
and ad libitium access to food and water66. The C3(1)-Tag mice are
maintained on 2018 Teklad global 18% protein rodent diets (#2918,
Harlan/Teklad/Envigo) until tumor development. For C3(1)-Tag mice, the
glands were harvested at 5–6 weeks for prepuberty and 12–14 weeks for
DCIS stage. The tumor was harvested when it was approximately 1 cm.
Animal histopathology was performed by The Animal Histopathology &
Laboratory Medicine Core at UNC. Finally, Glands were cryopreserved in
liquid nitrogen for bulk RNA isolation.

Cell Suspension Preparation details for scRNAseq
The mammary glands for prepuberty and DCIS were placed in 10 ml of a
digestion medium containing EpiCult™-B Mouse Medium Kit (#05610,
StemCell Technologies), Collagenase/Hyaluronidase (#07912, StemCell
Technologies), and 1% penicillin-streptomycin (Gibco). The mammary
gland was digested overnight in a thermocycler maintained at 37 °C with
continuous rotation. The C3(1)-Tag tumors were digested with the
Miltenyi tumor dissociation kit (#130-096-730, Miltenyi Biotech) under a
gentle agitation setting. The cell pellets retrieved from these

Fig. 3 Microenvironment subpopulations and gene signatures across the disease states. a Heatmap of top 10 significant upregulated
genes identified in fibroblasts per disease states by Wilcoxon rank sum test. b Violin plot showing significant enrichment of MSigdbr cancer
fibroblast gene signature (Mishra-Carcinoma Associated Fibroblast Up Signature) between C3Tag Tumor fibroblasts (n= 564 cells) and DCIS
fibroblasts (n= 1776 cells) using the t-test with Benjamini–Hochberg (BH) correction. c Heatmap of top 10 significant upregulated genes
identified in T Lymphocytes per disease states by Wilcoxon rank sum test. d Violin plot showing Alcazar et al.35 T cell signatures differences
between T cells of Prepuberty (n= 93 cells), DCIS state (n= 69 cells), and Tumor T cells (n= 273 cells) by t-test with BH correction. Activated T
cell signature (d; left panel) and Cytotoxic T cell signature (d; right panel). e Heatmap of top 10 significant upregulated genes identified in
Macrophages per disease states by Wilcoxon rank sum test. f Violin plot of Cd274 (human PD-L1) gene in Prepuberty (n= 171 cells), DCIS
(n= 366 cells) and Tumor (n= 437 cells) macrophages. P-value significance calculated by Wilcoxon rank sum test. g Violin plot of Pdcd1
(human PD1) gene in Prepuberty (n= 93 cells), DCIS state (n= 69 cells) and Tumor T cells (n= 273 cells). P-value significance calculated by
Wilcoxon rank sum test. [*p < 0.05, **p < 0.001, ***p < 0.0001]. Source data are provided as a Source Data file 1.
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suspensions were treated with a 1:4 solution of hanks balanced salt
solution (HBSS) and ammonium chloride to remove the RBCs. After RBC
removal, the cell suspensions were trypsinized with 0.05% Trypsin and a
mix of Dispase and DNAse. A portion of this cell suspension was stained
with trypan blue and counted using the Countess Automated Cell

Counter (Invitrogen). Based on the counting, the cells were diluted to the
appropriate cell stock concentration for running on the 10× chromium
machine. Based on the 10× genomics pre-defined cell stock concentra-
tions, each experiment was run to retrieve ~5000 cells after the single
cell experiment.

Molecular Subtype
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Single-cell scRNAseq library construction and alignment
The cell suspensions were loaded on a 10× Genomics Chromium
instrument to generate single-cell gel beads in emulsion (GEMs) for
targeted retrieval of approximately 5000 cells. Single-cell RNA-Seq libraries
were prepared using the following Single Cell 3′ Reagent Kits v2:
Chromium™ Single Cell 3′ Library & Gel Bead Kit v2, PN-120237; Single
Cell 3′ Chip Kit v2 PN-120236 and i7 Multiplex Kit PN-120262” (10×
Genomics) and following the Single Cell 3′ Reagent Kits v2 User Guide
(Manual Part # CG00052 Rev A). One tumor (Tumor 2) library was
processed using Single Cell 3′ Reagent Kits v3: Chromium™ Single Cell 3′
Library & Gel Bead Kit v3, PN-1000092; Single Cell 3′ Chip B Kit PN-1000074
and i7 Multiplex Kit PN-120262 (10× Genomics) and following the Single
Cell 3′ Reagent Kits v3 User Guide (CG000183_ChromiumSingleCell3′
_v3_UG_RevB). Libraries were run on an Illumina HiSeq 4000 as 2 × 150
paired-end reads. The Cell Ranger Single Cell Software Suite, version 3 was
used to perform sample de-multiplexing, barcode ad UMI processing, and
single-cell 3′ gene counting. The SV40-large-T-antigen was added as a

vector into the Cell Ranger pipeline; the vector sequence is available in
SV40-large-T-antigen vector sequence.txt.

C3Tag mouse sample bulk mRNA-seq library construction and
data analysis
Cryopreserved glands/tumors were homogenized using a tissue homo-
genizer. RNA was isolated using the RNeasy Mini Kit (#74104, Qiagen)
according to manufacturer protocol. mRNA quality was assessed using the
Agilent Bioanalyzer and libraries for mRNA-seq were made using total RNA
and the Illumina TruSeq mRNA sample preparation kit. Paired end
(2 × 50 bp) sequencing was performed on the Illumina HiSeq 2000/
2500 sequencer at the UNC High Throughput Sequencing Facility (HTSF).
Resulting fastq files were aligned to the mouse mm10 reference genome
using the STAR aligner algorithm67. The resulting BAM files were sorted
and indexed using Samtools and quality control was performed using
Picard. Transcript read counts were determined was performed using
Salmon68. Genes with no reads across any of the samples were removed.

Fig. 4 C3Tag gene signatures applied on human basal-like DCIS datasets. a Box and whisker plots of DCIS microarray data from Balleine
et al.37 where x-axis denotes the PAM50 subtype and y-axis shows C3TAG DCIS cancer cell gene signature. b Box and whisker plots of DCIS
microarray data from LeSurf et al.12 where x-axis denotes the PAM50 subtype and y-axis shows C3TAG DCIS cancer cell gene signature. c Box
and whisker plots of Ribo-Zero RNAseq data from human DCIS-IDC tumor pairs where x-axis denotes the PAM50 subtype and y-axis shows
C3TAG DCIS cancer cell gene signature. d Box and whisker plots of Ribo-Zero RNAseq data from human DCIS-IDC tumor pairs where x-axis
denotes the PAM50 subtype and y-axis shows C3TAG DCIS Fibroblast gene signature. e Box and whisker plots of Ribo-Zero RNAseq data from
human DCIS-IDC tumor pairs where x-axis denotes the PAM50 subtype and y-axis shows C3TAG DCIS immune gene signature. T-test with BH
correction was used for all pair-wise comparisons. The upper and lower edges of the boxes represent the upper and lower quartile respectively.
The middle line represents the median value. [*p < 0.05, **p < 0.001, ***p < 0.0001]. Source data are provided as a Source Data File 3.

Fig. 5 Schematic diagram of DCIS-IDC progression based upon the C3Tag model. The schematic diagram represents key biological
pathways and cell population changes from scRNAseq analysis as normal duct (pre-puberty stage) transforms to DCIS, which then transforms
to tumor in the C3Tag model. The interferon pathway is high in the pre-puberty CNA+ high cancer cells. The NFKB pathway also is enriched in
the CNA+ high cancer cells in the DCIS state in reference to baseline normal pre-puberty ducts and then becomes low in the tumor state.
Tumor specific biological pathways like KRAS, MYC, p53, MTORC1 are only present in the CNA+ high cancer cells from the tumor and are low in
pre-puberty and DCIS states. In terms of the microenvironment cell flux, activated T lymphocytes with increased PD1+ expression is highest in
the DCIS state. The cytotoxic T lymphocytes are only present in the tumor state. PDL1+ macrophages are reduced in the tumor state along
with an increased number of cancers associated fibroblasts (CAFs) in the tumor state. All these changes are summarized using pre-puberty
normal ducts as the baseline reference. We hypothesize that all these dynamic gene features in multiple cell types along with a sustained
proliferation in the CNA+ high cancer cells drive tumorigenesis in the C3Tag basal-like mouse tumor model.
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C3Tag array comparative genomic hybridization (arrayCGH)
processing and analysis
To investigate DNA copy number changes on bulk tumors, we used the Mouse
244 k Custom Oligo platform (GPL15359 Agilent UNC Perou Lab 1 × 244 k
Custom Tiling CGH Array)69. Labeling and hybridization were performed
according to the manufacturer’s instructions using the Agilent Genomic DNA
Labeling Kit PLUS (Catalog Number 5188–5309). One microgram of DNA from
liver or spleen of FVB strain mouse was used as normal reference DNA, which
was compared versus 1 μg of DNA from C3Tag DCIS and tumor samples.
Microarrays were scanned on an Agilent DNA Microarray scanner (G2565CA)
and the data uploaded to the University of North Carolina Microarray Database
(www.genome.unc.edu). To determine regions of Copy Number Aberration
(CNA), we utilized the R package SWITCHdna18,70.

Single-cell scRNAseq preprocessing and data analysis
The 6 scRNAseq Cell Ranger derived output gene-barcode matrices were
analyzed and integrated into one single dataset using Seurat R package
v.3.071. Individual datasets first underwent a stringent filtering criterion to
construct a matrix with relevant genes and cells. For a gene to be selected
for downstream analysis, it had to be present in a minimum of 3 cells in the
dataset. Similarly, for a cell to be selected, it had to have a minimum of 200
uniquely mapped genes. In addition, dead cells and cell doublets were
regressed out by calculating metrics like mito.percentage (mito genes/
nUMI) and unique genes mapped ratios (nGene/nUMI). The mito
percentage value to exclude dead cells was 5–10. After these filtering
steps, the data were ‘log normalized’ and scaled. Variable features were
selected according to the default ‘vst’ setting in the Seurat package with
nfeatures= 2000. The datasets were then combined into one using the
Seurat:: FindIntegrationAnchors and Seurat:: IntegrateData. Clusters were
then identified using 20 significant PCs and visualized as UMAP plots. DE
genes were calculated using Wilcoxon rank sum test with a logFC
threshold of 0.25 and the top 100 DE genes were calculated for each
individual cell subpopulations. Conserved genes were calculated using
Seurat::FindConservedMarkers.
InferCNV was run using standard settings in ‘sample’ mode of

cutoff= 0.1, window_length= 101 and max_centered_threshold= 3. The
inferCNV CNA scores were used to calculate correlations in two ways. First,
correlation was calculated between the CNA profile of each cell and the
average CNA profile of all copy number altered cells within the sample
which is similar to the approach by Neftel et al.20. Second, correlation was
calculated between the CNA profile of each cell and the average CNA
profile of all normal cells within the sample. The final cancer cells were
identified by plotting the two correlations values for each cell and
identifying cells with high correlation to copy number altered cells and low
correlation to normal cells. The limits for both correlation scores were
identified using the mean+− 2SD.
IKAP was calculated using the Seurat v3 code - https://github.com/

NHLBI-BCB/IKAP/tree/master/Seurat3_code for the tumor cell clusters.
Breast cancer gene signatures26 were calculated within the single cell

gene space by using the Seurat scaled.data in the “RNA” assay tab of the
integrated datasets. Individual signature values for each cell were
calculated as an average expression of all genes present in the gene
signature. Once calculated, the significant gene signatures were identified
using the Wilcoxon rank sum test.
GSVA was calculated using the log transformed data in the “RNA” assay

slot of the integrated datasets in R. We utilized the Hallmark gene sets (H)
and the immunologic gene sets (C7) for “mus musculus” using msigdbr R
package. Once the GSVA scores were calculated, they were fit into a linear
model, and cluster identity, or disease state labels were used to identify
significant gene signatures per clusters or disease states.
The generalized linear regression model for cell proportions was

constructed using the emmeans R package.

Human external microarray gene expression PAM50 centroid
calculations and data analysis
Microarray data from DCIS studies were downloaded from Balleine et al.37

(GSE7882) and LeSurf et al.12 (GSE59246). Individual datasets were gene
median centered before application of the conventional PAM50 centroid
predictions using the 50 gene PAM50 predictor72. The median centered
values were used for C3TAG DCIS signature calculations. Significance testing
was done using t-test with Benjamini–Hochberg correction of p values.

Human Bulk Ribo-Zero library construction and data analysis
All human tissue was procured under IRB approval from the University of
North Carolina at Chapel Hill with written consent from patients to
participate. FFPE sections of tumor specimens with co-occurring DCIS and
IDC were identified from the medical records, examined by a pathologist,
and the DCIS and IDC regions separately cored using 1mm coring
technology typically used to make Tissue Microarrays. Each core was placed
into a separate Eppendorf tube and RNA was isolated using the RNeasy Mini
Kit (QIAGEN, Hilden, Germany) according to manufacturer protocol. Next,
Ribo-Zero libraries were made using Illumina Ribo-Zero plus rRNA Depletion
Kit #20037135 following the manufacturer’s protocol. Paired end (2 × 50bp)
sequencing was performed on the Illumina HiSeq 2000/2500 sequencer at
the UNC High Throughput Sequencing Facility (HTSF). Resulting fastq files
were aligned to the human hg38 reference genome using the STAR aligner
and transcript read counts were determined was performed using
Salmon67,68. Genes with no reads across any of the samples were removed.
The data were upper-quartile normalized, log-transformed, and median
centered before calculating the C3TAG DCIS signatures. Significance testing
was done using t-test with Benjamini–Hochberg correction of p values.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All C3Tag mouse 10× single cell RNAseq data generated from the 10× Genomics Cell
Ranger pipeline and C3Tag mouse bulk mRNAseq count data are available in GEO
database (GSE182389) and raw FASTQs for are deposited in SRA (SRX11865213). All
aCGH DNA data are available in GEO database (GSE182389). All the raw human data
FASTQs are deposited in dbGAP (phs002443) and in SRA (SRX11865213). Processed
human gene counts matrix is deposited in GEO database (GSE182389). The source
data underlying Figs. 1c–e, 3a, c, e–g and Supplementary Fig. 5 are provided as
Source Data file 1. The source data underlying Fig. 2 and Supplementary Figs. 1–4, are
provided as Source Data File 2. The source data underlying Fig. 4 and Supplementary
Fig. 6 are provided as Source Data File 3.

CODE AVAILABILITY
There were no special new codes generated for any analysis in this paper. To
determine regions of Copy Number Aberration (CNA), we utilized the R package
SWITCHdna (version 1.0). All scRNAseq was done by using Seurat R package (version
3.0). Inferred copy number was determined using InferCNV (version 1.10.0). GSVA was
calculated using GSVA R package (version 1.41.4) and msigdbr (version 7.4.1). Cell
proportion analysis was done using emmeans R package (version 1.5.2). All bulk
RNAseq subtyping was performed by PAM50 R functions (https://genome-
publications.bioinf.unc.edu/PAM50/).
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