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A complete understanding of how proteins fold, i.e. self-assemble to their biologically relevant
“native state,” remains an unattained goal1. Computer simulation, validated by experiment, is
a natural means to elucidate this. There is over a million-fold range in folding rates, suggesting
a possible diversity in mechanisms between slow and fast folding proteins2. Very fast
(microsecond timescale) folding proteins3,4 appear to fold via a large number of heterogeneous,
parallel paths5–7, potentially key for folding on such fast timescales. Does the folding of much
slower proteins change this picture?

To date, the slowest-folding proteins folded ab initio by all-atom molecular dynamics
simulations with fidelity to experimental kinetics have had folding times in the range of
nanoseconds to microseconds. These include the designed mini-protein Trp-cage (~4.1 μs)8,
the villin headpiece domain (~10 μs)9, a fast-folding variant of villin (<1 μs)7, and Fip35 WW
domain (~13 μs)10. In this communication, we report simulations of several folding trajectories,
each from fully unfolded states, of the 39-residue protein NTL9(1–39), which experimentally
has a folding time of ~1.5 milliseconds11.

MD simulation
Trajectories were simulated via the Folding@Home distributed computing platform12 at 300K,
330K, 370K and 450K from native, extended, and random-coil configurations using an
accelerated version of GROMACS written for GPU processors13, for an aggregate time of 1.52
ms. GPUs play a key role here, allowing for dramatically longer trajectories than previously
possible. The AMBER ff96 forcefield14 with the GBSA solvation model15 was used, a
combination previously shown to give good results folding Fip35 WW domain10, and shown
to exhibit a good balance of native-like secondary structure for a set of small helical and beta
sheet peptides studied by replica exchange17.

Prediction of native structure and folding rates
We find that the native state (taken from the N-terminal domain of the crystal structure of
ribosomal protein L918) is stable in this forcefield at 300K, exhibiting decreasing stability with
increasing temperature (Figure 1a). RMSD-Cα distributions after 10 μs show well-defined
native and collapsed unfolded basins near 3Å and 5Å, respectively. Of the ~3000 trajectories
started from unfolded (extended and coil) states at 370K (Figure 1b), two reach an RMSD-
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Cα < 3.5Å and eight reach an RMSD-Cα < 4Å. No productive folding trajectories were observed
at lower temperatures, consistent with the enhanced forward folding rate expected by Arrhenius
kinetics. Higher temperature trajectories (450K) exceed the melting temperature of NTL9 in
the forcefield.

The observed number of folding events n is consistent with expectations from a simple model
of parallel uncoupled folding simulations19 in which folding is modeled as a two-state Poisson
process: <n> = ∫M(t)k exp(−M(t)kt)dt, where M(t) is the number of simulations that reach time
t (Figure 1b) and k is the experimental folding rate (~640/sec)11. This theory predicts (on
average) ~1.8 folding trajectories for the amount of sampling performed, in agreement with
the two folding trajectories found in practice. Posterior distributions of folding rates given the
amount of simulation time and number of folding trajectories were computed using a Bayesian
approach16, which yield expectation values within an order of magnitude of the experimental
folding rate.

In addition to native-like conformations, we see near-native configurations, which show
heterogeneity in hydrophobic packing, most notably in alternative side chain arrangements in
the beta-sheet structure (Figure 2). Most common of these is a non-native hydrophobic core
involving residues I4, I18 and I37 (which normally contact the C-terminal helix in the full-
length protein) with F5 solvent-exposed.

Insight into folding mechanisms
In order to describe the kinetics and mechanistic aspects of folding, we employ a new paradigm
for sampling the global free energy landscape of folding, using Markov State Models (MSMs).
MSM approaches, by automatically identifying a set of kinetically metastable states (such as
foldons20) and efficiently sampling transitions between these states, can model long-timescale
kinetics from much shorter trajectories21–24.

Our strategy for simulating slow-folding proteins is first to generate an initial series of
kinetically connected states from both the folding and unfolding directions, and then to use
adaptive resampling techniques25 to produce statistically converged estimates of metastable
basins and the transition rates between them. In the remainder of this communication, we report
progress toward the first goal, by constructing an MSM from the entire set of 370K trajectory
data26,27, which we will use to seed future rounds of transition sampling. While additional
rounds of adaptive sampling could likely aid in increasing the quantitative power of this model,
there are several notable observations which can be made with the current data set.

Key to accurately identifying metastable states is the clustering of trajectory conformations
into microstates fine-grained enough to be used for lumping into groups of maximally
metastable macrostates26. 100,000 microstate clusters were calculated using an approximate
k-centers algorithm28, each with an average radius of 4.5Å RMSD-backbone. Lag times
ranging from 1 to 32 ns were used to build a series of MSMs. The implied time scales predicted
by these models (obtained by diagonalizing the rate matrix) show a clear spectral gap separating
the slowest relaxation time scale from the rest, indicative of single-exponential kinetics (see
Figure S1). The implied time scale of the model levels off beyond a lag time of ~10 ns to an
implied time scale of ~1 ms, close to the experimental folding time.

An important strength of MSMs is their ability to gain insight at coarser scales by “lumping”
the kinetic transitions into a simpler model with fewer states. To gain a mesoscopic view of
the folding free energy landscape, we lumped our 100,000- microstate MSM into a 2000-
macrostate model. In this view, we find that the metastable states are diffuse collections of
conformations over which multiple possible folding pathways can occur, indicating a vast
heterogeneity of folding substates that need to be understood in greater detail. At the same
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time, we can identify highly populated “native” (state n) and “unfolded” (state a) macrostates
that dominate the observed relaxation rates (Figure 3 and Figure S2).

The ten pathways with the highest folding flux from macrostate a to n were calculated by a
greedy backtracking algorithm (see SI) from the macrostate transition matrix using transition
path theory29,30 (TPT). The diversity of pathways demonstrates the power of the MSM
approach: although we observe only a few folding trajectories directly, a network of many
possible pathways can be inferred from the overlapping sampling of local transitions.

While NTL9(1–39) folds quickly for a two-state folder, it is similar in size to many ultrafast
(sub-millisecond) folders that appear to exhibit so-called “downhill” folding. Hence, we would
like to understand the structural features that limit the overall folding rate. As in a macroscopic
two-state model, the highest-flux pathways in our mesoscopic model are a→m→n and
a→l→n direct routes from disordered to structured macrostates, reminiscent of nucleation-
condensation. These pathways by themselves, however, account for only ~10% of the total
flux, and the structural diversity seen in all pathways is reminiscent of more hierarchical folding
models such as diffusion-collision. Thus, we sought to more fully study the 15 macrostates
transited by the top ten folding pathways.

To examine structural changes along the folding reaction, we considered three main native
structural elements: the central helix (α), the pairing of strands 1 and 2 (β12), and the pairing
of strands 1 and 3 (β13). To quantify the extent of native-like structuring for each of these
elements we calculated Qα, Qβ12 and Qβ13, respectively (see SI for details). The Q-value is a
number between 0 and 1 that quantifies the extent of native-like contacts. We then examined,
for each macrostate, the Q-values in relation to the pfold value (committor), a kinetic reaction
coordinate. The pfold value is computed from the macrostate transition matrix24,29,30.

This analysis yields several key insights into the folding mechanism of NTL9(1–39) on the
mesoscale. We find the “unfolded” state a is compact, and contains a baseline level of residual
native-like structure, with Qα near 0.5, and Qβ12 and Qβ13 near 0.2. In general, across the fifteen
macrostates studied, Q-values increase as pfold values increase, although the relative balance
of Qα, Qβ12 and Qβ13 varies, indicating pathway heterogeneity: i.e. native-like structures can
form in different orders (Figures S4–S6). An exception to this, however, is observed for β12
strand pairing. Only for macrostates with pfold > 0.5 (states g-n) does appreciable β12 strand
pairing occur (Figure 4). This suggests that the formation of a local strand pair (β12), rather
than a nonlocal strand pair (β13), is rate-limiting. This effect is not predicted by strictly
topological models of folding in which loop closure entropy loss dominates31, but instead may
result from sequence-specific details. Unlike the β13 strand pair, which has a small interaction
surface stabilized by hydrophobic contacts, the β12 hairpin contains seven of the protein's eight
lysine residues, and three of its five glycine residues in a flexible loop region, features which
may imbue β12 with larger barriers to folding. This proposed role of β12 is also consistent with
the large changes in kinetics and stability seen experimentally for mutations in the β12
hairpin11.

It is natural to compare our results with previous unfolding simulations of NTL9(1–39) K12M
by Snow et al.32. In that work, a detailed characterization of the transition state ensemble
required the definition of strand-pairing reaction coordinates corresponding to β12 and β13
formation. In our MSM analysis, no such pre-definition is required. Snow et al. also note the
difficulty in resolving kinetic intermediates not captured by the chosen order parameters.
Indeed, our structural analysis can resolve subtle kinetic intermediates within the native basin,
corresponding to alternative rearrangements of the β12 hairpin loop (Figure S7).

Voelz et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusion
The above results suggest that existing forcefield models using implicit solvent are indeed
accurate enough to fold proteins ab initio at long time scales (milliseconds), opening the door
to simulating more structurally complex proteins. Moreover, our work demonstrates that there
need not be a single pathway or single, dominant mechanism for the folding of a given protein:
since the theories proposed for how proteins fold are based on broadly relevant physical
principles, it is natural to imagine that multiple mechanisms could be simultaneously present,
but that the sequence of the protein, coupled with the chemical environment would control the
balance to which each mechanistic pathway is seen.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the NSF for support through FIBR grant EF-0623664, the NIH through R01-GM062868 and Simbios U54-
GM072970, and NSF award CNS-0619926 for computer resources.

References
(1). Dill KA, Ozkan SB, Weikl TR, Chodera JD, Voelz VA. Current Opinion in Structural Biology

2007;17:342–346. [PubMed: 17572080]
(2). Plaxco KW, Simons KT, Baker D. Journal of Molecular Biology 1998;277:985–994. [PubMed:

9545386]
(3). Yang WY, Gruebele M. Nature 2003;423:193–197. [PubMed: 12736690]
(4). Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J. Journal of Molecular Biology

2006;359:546–553. [PubMed: 16643946]
(5). Kubelka J, Hofrichter J, Eaton WA. Current Opinion in Structural Biology 2004;14:76–88. [PubMed:

15102453]
(6). Udgaonkar JB. Annual Review of Biophysics 2008;37:489–510.
(7). Ensign DL, Kasson PM, Pande VS. Journal of Molecular Biology 2007;374:806–816. [PubMed:

17950314]
(8). Pitera JW, Swope W. PNAS 2003;100:7587–7592. [PubMed: 12808142]
(9). Zagrovic B, Snow CD, Shirts MR, Pande VS. Journal of Molecular Biology 2002;323:927–937.

[PubMed: 12417204]
(10). Ensign DL, Pande VS. Biophysical Journal 2009;96:L53–L55. [PubMed: 19383445]
(11). Horng J-C, Moroz V, Raleigh DP. Journal of Molecular Biology 2003;326:1261–1270. [PubMed:

12589767]
(12). Shirts M, Pande V. Science 2000;290:1903–1904. [PubMed: 17742054]
(13). Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns

CM, Pande VS. Journal of Computational Chemistry 2009;30:864–872. [PubMed: 19191337]
(14). Wang J, Cieplak P, Kollman PA. Journal of Computational Chemistry 2000;21:1049–1074.
(15). Onufriev A, Bashford D, Case D. Proteins 2004;55:383–394. [PubMed: 15048829]
(16). Ensign DL, Pande VS. Journal of Physical Chemistry B 2009;113:12410–12423.
(17). Shell MS, Ritterson R, A. K. Journal of Physical Chemistry B 2008;112:6878–6886.
(18). Hoffman DW, Davies C, Gerchman SE, Kycia JH, Porter SJ, White SW, Ramakrishnan V. The

EMBO Journal 1994;13:205–212. [PubMed: 8306963]
(19). Shirts MR, Pande VS. Physical Review Letters 2001;86:4983–4987. [PubMed: 11384401]
(20). Panchenko AR, Luthey-Schulten Z, Wolynes PG. PNAS 1996;93:2008–2013. [PubMed: 8700876]
(21). Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC. Journal of Chemical Physics

2007;126:155101. [PubMed: 17461665]

Voelz et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(22). Noé F, Fischer S. Current Opinion in Structural Biology 2008;18:154–162. [PubMed: 18378442]
(23). Chodera JD, Swope WC, Pitera JW, Dill KA. Multiscale Modeling and Simulation 2006;5:1214–

1226.
(24). Singhal N, Snow CD, Pande VS. Journal of Chemical Physics 2004;121:415–425. [PubMed:

15260562]
(25). Huang X, Bowman GR, Bacallado S, Pande VS. PNAS 2009;106:19765–19769. [PubMed:

19805023]
(26). Bowman GR, Huang X, Pande VS. Methods 2009;49:197–201. [PubMed: 19410002]
(27). Bowman GR, Beauchamp KA, Boxer G, Pande VS. Journal of Chemical Physics 2009;131:124101.

[PubMed: 19791846]
(28). Dasgupta S, Long PM. J. Comput. Syst. Sci 2005;70:555–569.
(29). Metzner P, Schütte C, Vanden-Eijnden E. Multiscale Modeling and Simulation 2009;7:1192–1219.
(30). Noé F, Schütte C, Vanden-Eijnden E, Reich L, Weikl TR. PNAS 2009;106:19011–19016. [PubMed:

19887634]
(31). Weikl TR. Archives of Biochemistry and Biophysics 2008;469:67–75. [PubMed: 17662688]
(32). Snow CD, Rhee YM, Pande VS. Biophysical Journal 2006;91:14–24. [PubMed: 16617068]

Voelz et al. Page 5

J Am Chem Soc. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) Distributions of RMSD-Cα for native-state simulations of NTL9(1–39) after 10 μs. The
arrows indicate thresholds defined for the native basin at 3.5Å and 4Å. (b) The number of
parallel simulations M(t) started from unfolded states at 370K that reach time t. (c) Posterior
predictions of the folding rate given the amount of simulation time and observed folding events
for 3.5Å (dashed) and 4Å (solid) thresholds, using uniform (black) and Jeffrey's (gray) priors,
using methods from16. In red is a Gaussian distribution representing the experimental rate mean
and standard deviation.
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Figure 2.
(a) A snapshot from a folding trajectory (dark blue) achieves an RMSD-Cα of 3.1Å compared
to the native state (cyan). (b) Non-native (top) and native-like (bottom) hydrophobic core
arrangements observed in low-RMSD conformations of folding trajectories. Highlighted are
sidechains of residues F5 (magenta), V3,V9,V21 (tan), and L30,L35 (pink).
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Figure 3.
A 2000-state Markov State Model (MSM) was built using a lag time of 12 ns. Shown is the
superposition of the top 10 folding fluxes, calculated by a greedy backtracking algorithm (see
Supporting Information). These pathways account for only about 25% of the total flux, and
transit only 15 of the 2000 macrostates (shown labeled a-n, for convenient discussion). The
visual size of each state is proportional to its free energy, and arrow size is proportional to the
inter-state flux.
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Figure 4.
Q-values, which capture the extent of native-like structures, plotted versus pfold (committor)
values. The lines are to guide to eye.
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