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Thermo-osmotic slip – the flow induced by a thermal gradient along a surface – is a well-known
phenomenon, but curiously there is a lack of robust molecular-simulation techniques to predict
its magnitude. Here, we compare three different molecular simulation techniques to compute the
thermo-osmotic slip at a simple solid-fluid interface. Although we do not expect the different
approaches to be in perfect agreement, we find that the differences are barely significant for a range
of different physical conditions, suggesting that practical molecular simulations of thermo-osmotic
slip are feasible.

Thermo-osmosis and thermophoresis are phenom-
ena of great practical interest in the context of non-
isothermal hydrodynamics [1, 2], non-equilibrium
thermodynamics [3], thermophoresis [4–6], and the
propulsion of active matter [7]. Thermo-osmosis is
usually described phenomenologically as the induced
slippage of fluid along an interface, due to an applied
temperature gradient. Phoretic motion is driven by
the interfacial stresses induced by a temperature gra-
dient in a microscopic boundary region, where the
properties of the solvent are influenced by the inter-
actions with the surface (or interface) [4–6].

Clearly, it would be useful to be able to pre-
dict thermo-osmotic slip on the basis of a molecu-
lar description of the solid-liquid interface. How-
ever, in practice this is not simple because much
of the existing theoretical framework is couched in
terms that assume the validity of a local continuum
theory (e.g. Debye-Hückel plus the (Navier-)Stokes
equation) and make drastic assumptions about the
excess enthalpy density and viscosity near the sur-
face [8]. Yet, crucially, near an interface, a contin-
uum description of the structure or dynamics of a
liquid is not allowed. More ominously, the defini-
tion of the stress in a liquid is not unique. This
non-uniqueness has no effect on the computed value
of, say, the liquid-liquid surface tension [9], but it
could affect the prediction of phoretic flows, where
the local value of the stress gradient is what drives
the flow. In this paper, we consider this problem
and explore novel ‘microscopic’ methods to predict
thermo-osmotic slippage in a simple model system.

The ‘classical’ approach to predict thermo-
osmotic slippage is based on Onsager’s reciprocity
relations (see Ref. [10]). These relations have pre-
viously been used in molecular simulations to com-
pute diffusio-osmotic slip [2]. Derjaguin [11] used
Onsager’s Linear Non-Equilibrium Thermodynam-
ics (LNET) approach to derive an expression for
thermo-osmotic slip. His approach exploits the rela-

tion between the flow caused by a temperature gra-
dient and the excess heat flux due to hydrodynamic
flow, resulting in the following equation:

vs = −2

η

∫ ∞
0

dz z∆h(z)
∇T
T
, (1)

where ∆h(z) is the excess enthalpy density at a
height z above the surface and η is the viscosity.
The difficulty with this expression is that there is
some ambiguity in the microscopic definition of the
local excess enthalpy ∆h(z), a quantity that is also
not easy to probe in experiments [4].

The key motivation for our work is that while a
continuum approximation to Eq (1) may be suffi-
cient for interaction lengths on the order of tens of
nanometers, it does not work for atomic or molecular
liquids that do not contain free charges. Rather, the
excess enthalpy density ∆h(z) is a function of the
solvent polarity [12], liquid structure in the bound-
ary layer [8], temperature, and pressure. Addition-
ally, the viscosity η can vary dramatically near a
(structured) surface. Our approach circumvents all
these issues: we argue that the numerical tools that
we use can be applied to realistic models that cannot
be described using continuum approaches.

To place the various descriptions of thermo-
osmotic slip in a broader context, we first consider
the classical thermodynamic approach to the prob-
lem, based on the assumption of Local Thermal
Equilibrium (LTE). We note that neither temper-
ature gradients nor, for that matter, chemical po-
tential gradients can exert a net force on a fluid el-
ement in a bulk liquid. Mechanical forces in liquids
can only be caused by body forces such as gravity,
or by pressure gradients. If temperature gradients
cause flow near a surface, it is only because a local
pressure gradient is induced. To clarify this, we first
consider the thermodynamics of the problem. Con-
sider a temperature gradient +x direction parallel to
a hard wall; the z coordinate measures distance per-
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pendicular to the wall. Dividing the Gibbs-Duhem
relation for an n-component mixture by V and dif-
ferentiating with respect to x gives

∂P

∂x
=

(
n∑
i=1

ρi
∂µi
∂T

+
S

V

)
∂T

∂x
, (2)

where ρi is the number density of species i. The
Gibbs-Duhem equation makes use of the fact that
the system is homogeneous. A stratified system in
equilibrium, is homogeneous in the directions par-
allel to the stratification, but not perpendicular to
it. Hence, here and in what follows, the ‘pressure’ P
refers to a component of the pressure tensor par-
allel to the surface (e.g. Pxx). In the bulk, the
pressure is equalised quickly and the fluid reaches
hydrostatic equilibrium. Since the bulk pressure is
constant, Eq (2) reduces to(

∂µi
∂T

)
P

= −sBi (3)

using S =
∑
iNisi, where si is the specific entropy of

species i and the superscript B denotes a bulk quan-
tity. At a position z above the surface, the pressure
gradient remains. Assuming that there are no gradi-
ents of µi and T perpendicular to the surface, Eq (3)
can be substituted into Eq (2) to give

∂P (z)

∂x
=

(
−

n∑
i=1

ρi(z)s
B
i +

n∑
i=1

ρi(z)si(z)

)
∂T

∂x
.

(4)
Eq (4) can be simplified by noting that the expres-
sion in brackets is the difference between the specific
entropy at position z and the bulk specific entropy.
Since µi and T do not depend on z, µi = hi − Tsi
can be used to rewrite Eq (4) as

∂P (z)

∂x
=
(∑n

i=1 ρi(z)[hi(z)−hB
i ]

T

)
∂T
∂x (5)

=
(

∆h(z)
T

)
∂T
∂x , (6)

where ∆h(z) is the excess enthalpy density at a dis-
tance z from the surface. To compute the flow ve-
locity, we integrate the expression for the pressure
gradient using the linearised (Navier-)Stokes equa-
tion giving

vs = −1

η

∫ ∞
0

dz z

(
∆h(z)

T

)
∂T

∂x
. (7)

This is equivalent to Eq (1) apart from a factor of 2.
The factor of 2 in Derjaguin’s result arises from his
missing a factor of 1/2 in his expression for Poiseuille
flow [11].

+d
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FIG. 1: Atomic fluid (blue) interacting with solid
walls (grey) in a slit pore. 2d is the gap width.

To relate our LTE expression to Derjaguin’s
LNET approach, consider the slit pore as depicted
in Fig. 1. A pressure and temperature gradient
is maintained across the slit. Fluid flows in the
−x direction as depicted by the arrows. For a
one-component fluid, the resulting phenomenologi-
cal equations are

vx = −β11∇P − β12
∇T
T

(8)

Qx = −β21∇P − β22
∇T
T
. (9)

where vx is the fluid velocity (m/s) and Qx is the
heat flux (J/(m2 · s)). Following Derjaguin [11], by
considering the isothermal heat flux across the pore,
β21 can be expressed as

β21 = −
(
Qx − hBvx
∇P

)
T

. (10)

β21 defined here is conventionally known as the
‘mechano-caloric’ coefficient. Similarly, by consid-
ering the isobaric mass flux in Eq (8), we can write

β12 = −
(

vx
(∇T/T )

)
P

. (11)

Assuming that the hydrodynamic flow in Eq (10) is
linear in the boundary layer vx(z) = −dz∇P/η and
substituting Eq (7) for vx in Eq (11) immediately
shows β12 = β21 as expected. This provides the link
between our LTE and Derjaguin’s LNET approach.

The usual definition of the ‘slip’ velocity is the ex-
trapolated velocity at the interface, where the fluid
density approaches zero. For a thin boundary layer,
the slip velocity is equal to the fluid velocity in the
bulk just outside the boundary layer. β12 in Eq (11)
is the ‘thermo-osmosis’ coefficient.

Of course, the analytical theory given by Eqs (5)-
(7) is inappropriate for a molecular description of
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slip. The viscosity η is not constant near the inter-
face. To avoid making such continuum assumptions,
we compute thermo-osmotic slip, using a mechanical
route, i.e. by computing the force on a volume el-
ement directly from the gradient of the microscopic
stress. Such an approach could be problematic due
to the non-uniqueness of the definition of the mi-
croscopic stress. Han [13] postulated a similar ap-
proach, however, did not validate his results.

We start with the relation between the stress
gradient and fx(z) the force per unit volume on
a fluid element at a distance z from the surface.
Rather than computing the stress gradient in a non-
equilibrium simulation, we use the fact that Pxx de-
pends on x, only through T . Hence,

fx(z) = −
(
P eq,T2
xx (x, z)− P eq,T1

xx (x, z)

T2 − T1

)(
∂T

∂x

)
,

(12)
where the superscript eq denotes equilibrium cal-
culations that are both carried out at the same
bulk pressure. With this method, ∆P/∆T is de-
termined, and for any ∂T/∂x, fx(z) can be com-
puted via Eq (12). The thermo-osmotic force per
particle fPx (z) = fx(z)/ρave(z) where ρave(z) =
(ρ(T1, z) + ρ(T2, z))/2. To compute the thermo-
osmotic flow, we carry out a second simulation at
the average temperature Tave = (T1 + T2)/2, where
we apply the local body force fPx (z) to fluid parti-
cles. The resulting slip velocity and therefore β12

can then be computed.

The calculation as described above is complicated
by the fact that the pressure tensor in an inhomoge-
neous fluid is not unique [14, 15]. Irving and Kirk-
wood (IK) [16] proposed an expression by integrat-
ing the total momentum flux acting across a virtual
surface element. This approach gives the appropri-
ate mechanical force balance normal to the interface.
However, as argued by Schofield and Henderson [9],
the definition of the pressure tensor is not unique
since any term with a vanishing divergence can be
added without changing the momentum flux. All
common definitions do, however, yield the correct
surface tension.

In a simulation, we need to know the thermo-
osmotic force acting on atoms, as opposed to the
force on the fictitious surface of a volume element.
This would suggest that the atom-based virial (V)
expression for pressure might be preferable.

In order to determine if the choice of the pressure
affects the computed thermo-osmosis coefficient, we
computed Pxx in Eq (12) using both the V and IK

expressions. The V pressure is given by [17]

PVxx(z) = 〈ρ(z)〉kBT−
1

2V (z)

〈
N(z)∑
i

∑
j 6=i

x2
ij

rij
φ′(rij)

〉
.

(13)
where rij is the distance between atoms i and j, xij
is the distance in x, φ(rij) is the interaction poten-
tial between the atoms, V (z) and N(z) are the bin
volume and number of atoms in the bin at position
z. The IK pressure is computed using [18]

P IKxx (z) = 〈ρ(z)〉kBT

− 1

2A

〈
N∑
i

∑
j 6=i

x2
ij

rij

φ′(rij)

|zij |
Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)〉
.

(14)

In addition to these ‘mechanical’ expressions for
the thermo-osmotic force, consider the right-hand
side of Eq (5). We express the local specific enthalpy
as

h(z) = u(z) +
PVxx(z)

ρ(z)
, (15)

where u is the specific internal energy. In Eq (15),
we have made explicit that the pressure that enters
into the expression for the local enthalpy must be the
component that is parallel to the surface, as argued
below Eq (2). The body force on a fluid element at
a height z above the surface is then given by

fx(z) = −ρ(z)(h(z)− hB)

T

(
∂T

∂x

)
. (16)

Eq (16) can be computed in a simulation thermostat-
ted at Tave and applied as a body force in the same
vein as Eq (12).

We compare the above calculations of the slip co-
efficient with the result for β21 that follows from Der-
jaguin’s approach based on the Onsager reciprocity
relations. In this case, a uniform pressure gradient
represented by a body force is applied during a sim-
ulation at Tave. β21 is computed via Eq (10) (see
Supplemental Material S2). The mechanical and
LTE approaches for computing β12 and the ‘Der-
jaguin’ method for computing β21 should be equiv-
alent if the temperature and pressure gradients are
small enough to ensure that the resulting response is
linear. Thus, we also include in this paper the first
molecular simulation of the ‘mechano-caloric’ effect.

All Molecular Dynamics simulations reported here
were performed using the LAMMPS package [19].
The simulation setup is depicted in Fig. 1. The
system consists of N = 2640 fluid atoms interacting
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with other fluid atoms and solid atoms via a trun-
cated and shifted Lennard-Jones potential.

Vtrunc(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6]− V (rc) r ≤ rc
0 r > rc.

(17)
where rc = 4σ, σfluid-fluid = σsolid-fluid = σ and
εfluid-fluid = ε. Two different wall-fluid interactions
were investigated: a less attractive Lennard-Jones
potential where εsolid-fluid = 0.55ε and a purely
repulsive Weeks-Chandler-Andersen potential [20]
such that rc = 21/6σ for solid-fluid interactions.
Solid atoms are bonded via harmonic springs to their
nearest neighbors in an fcc lattice of density 0.9σ−3.
The stiffness kbond = 5000ε/σ2 and rest length is
1.1626σ. All computed quantities are expressed in
Lennard-Jones reduced units.

NVT dynamics with a time step ∆t = 0.001τ
were run to equilibrate the system. This was accom-
plished using a Nosé-Hoover thermostat for 100, 000
MD steps. For an additional 100, 000 steps, the
system was barostatted at P≈ 0.122 by applying a
downward force to the top wall atoms.

Using the pressure profiles (see Supplemental Ma-
terial: Figs. S1(a,b)), ∆Pxx(z)/∆T was computed
for the three temperatures shown in Figs. 2(a) and
2(b). Encouragingly, the choice of the pressure ten-
sor makes no significant difference to the measured
response.

At constant temperature, Tave, the specific kinetic
energy is uniform everywhere and therefore com-
puted by dividing the total average kinetic energy by
the number of atoms. For the same temperatures,
the specific potential energy profiles were spatially
averaged in z. Using the profiles of Pxx (Fig. S1(a))
and density profiles (Fig. S1(c)), ∆h(z)/T was com-
puted via Eqs (15) and (16) and shown in Fig. 2(c).

We note that the V and IK expressions (Figs. 2(a),
2(b)) and the LTE quantity Fig. 2(c) show similar
qualitative behavior. The body force vanishes in the
bulk and the profiles flatten and shift outward as the
temperature is increased.

The body force per particle fPx (z) can be com-
puted by dividing the profiles in Figs. 2(a-c) by ρ(z)
(Fig. S1(c)) and multiplying by a sufficiently small
gradient e.g. ∂T/∂x = 0.0005 for WCA wall-fluid
interactions. To compute slip, non-equilibrium sim-
ulations were carried out by applying these forces to
the equilibrated systems at the appropriate temper-
atures. To obtain reasonable statistics, forces were
applied for 108 steps until the fluid approached a
steady velocity. The slip was then computed for an
additional 2× 108 steps.

Figs. 3(a,c) show calculations of the slip velocity.
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∂
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T = 0.8

T = 0.9

T = 1.0

FIG. 2: −∆Pxx(z)/∆T [kB/σ
3] computed using

the (a) IK and (b) V pressure tensor e.g. the
profile for T = 0.8 is computed by taking the

difference in Pxx at T = 0.85 and 0.75 and dividing
by ∆T = 0.1. (c) WCA wall-fluid interactions

significantly exclude volume and thereby create a
large enthalpy difference at the surface. The solid

wall is located at z ∼ 0.

Interestingly, although the mechanical and LTE ap-
proaches give different force profiles (Fig. 2), they
predict the same velocity far away from the surface.
The flow profile computed at T = 0.9 (Fig. 3(b))
shows that for WCA wall interactions the velocity
decreases monotonically, indicating that the viscos-
ity close to the surface is constant. For less attrac-
tive Lennard-Jones (Fig. 3(d)), the viscosity and
forces are clearly not constant showing significant
departure from (Navier-)Stokes and Derjaguin’s re-
sult (Eq (1)).

To compare our stress gradient and LTE ap-
proaches with Derjaguin’s method (see Supplemen-
tal Material S2), β12 was computed via Eq (11) using
the slip calculations shown in Figs. 3(a,c). Fig. 4
shows a comparison of all three methods. For the
range of temperatures, there appears to be reason-
able agreement. For T ∼ 96 − 120 K in Argon
units, the thermo-osmosis coefficient ranges from
0.85 − 3.8 × 10−8m2/s for less attractive Lennard-
Jones and 4.2− 5.6× 10−6m2/s for WCA walls.

As expected, the slip velocities for solely repulsive
wall-fluid interactions are considerably larger than
those for interactions with an attractive component.
Furthermore, both cases demonstrate an approxi-
mately linear dependence of the thermo-osmosis co-
efficient with respect to temperature.

In addition to the methods described above, we
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FIG. 3: Calculations of the slip velocity and flow
profile for different wall-fluid interactions: (a,b)
WCA at ∇T = 0.0005 and (c,d) Lennard-Jones

(εwf = 0.55ε) at ∇T = 0.003.

also attempted to compute β21 using linear-response
theory [21]. However, no reliable results were ob-
tained as the statistical noise overwhelmed the sig-
nal.
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FIG. 4: Comparison of Onsager reciprocal
relations, β12 computed via our ‘stress gradient’

(circles, crosses) and LTE (squares) approaches and
β21 calculated by following Derjaguin’s LNET

method (diamonds). Thermo-osmosis coefficients
are computed for (a) WCA (∇T = 0.0005,
∇P = 0.00004) and (b) Lennard-Jones

(∇T = 0.003, ∇P = 0.0005) interactions.

Previous molecular simulation studies of thermal
transport have dealt with the Soret coefficient of

atomic species [22][23]. One cannot directly com-
pare the Soret coefficient ST with our computed
values of the thermo-osmosis coefficient β12 since
the separation between excess and bulk enthalpy
density becomes meaningless if all particles have
the same size. As a rough comparison, given that
ST = (β12/T )/DAr, taking the average of our com-
puted values of β12 for T = 0.8 and 0.9 and using
DAr ' 2.47 × 10−5 cm2s−1 as reported in [23], we
compute ST ∼ 0.047 K−1, which is the same order of
magnitude as ST ∼ 0.014 K−1 at T = 0.85 reported
by [23].

In summary, we have considered three different
methods to compute thermo-osmotic slip on the ba-
sis of molecular simulations. The first approach is
based on a computation of the thermally-induced
stress gradient method, computed using equilibrium
simulations and then represented as a body force in
non-equilibrium simulations. We find no evidence
that different choices for the pressure tensor lead to
different results. In the second approach, we com-
pute the excess enthalpy density near the wall and
use a local-thermodynamics formalism to derive the
body force acting on the fluid. These methods do
not assume that macroscopic thermodynamics or hy-
drodynamics holds close to an interface. The final
approach is based on Onsager’s reciprocal relations,
which allow us to derive thermo-osmotic slip from
the excess heat flux due to a pressure gradient.

The key results are encouraging and surpris-
ing: for certain wall-fluid interactions, the thermo-
osmotic flow profile does not monotonically depend
on the distance from the surface, indicating that the
viscosity and forces near the surface are not con-
stant. Furthermore, we find that all methods yield
results for the thermo-osmosis coefficient that do not
differ significantly. Hence, choice of the method to
compute thermo-osmotic slip seems to be a matter
of taste or convenience.
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fully acknowledges a PhD Grant from the Sackler
Fund.
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1 Pressure Computation

As discussed in the main text, the molecular definition of pressure is not unique. In order to determine if this
non-uniqueness impacts our result, we compute the pressure tensor using both the virial and Irving-Kirkwood
expressions. The virial is given by

PV ir
xx (z) = 〈ρ(z)〉kBT −

1

V (z)

〈
1

2

N(z)∑
i

∑
j 6=i

x2ij
rij

φ′(rij)

〉
. (1)

Irving-Kirkwood is computed using

P IK
xx (z) = 〈ρ(z)〉kBT −

1

2A

〈
N∑
i

∑
j 6=i

x2ij
rij

φ′(rij)

|zij |
Θ

(
z − zi
zij

)
Θ

(
zj − z
zij

)〉
. (2)

For a range of temperatures T ≈ 0.75 − 1.05, the pressure and density profiles were averaged in slabs
at constant height for 3 × 107 time-steps for ∆t = 0.001τ , where τ = σ(m/ε)1/2 in Lennard-Jones reduced
units. We found that a slab thickness dz = 0.05 gave sufficient resolution. Figures 1a and 1b show the
virial and Irving-Kirkwood pressures computed via Eqs (1) and (2) for WCA wall-fluid interactions. As the
temperature is increased, the difference between the surface and bulk pressure decreases. In the bulk, all
profiles converge to P ≈ 0.122 as expected.

2 ‘Derjaguin’ Method

As derived in the main text, β21, the ratio of the isothermal excess heat flux to the externally imposed
pressure gradient, is given by

β21 = −
(
Qx − hBvx
∇P

)
T

. (3)

It can be computed by re-expressing Eq (3) as

β21 =

 1
V

[∑N
i (p2i /2m+

∑
i<j φij)v

x
i − 1/2

∑
i<j(x

2
ij/rij)φ

′(rij)(v
x
i + vxj )−∑N

i hBvxi

]
∇P


T

. (4)

To compute β21, a uniform pressure gradient was simulated by applying a force per particle fPx (z) =
−∇P/ρ(z) to all fluid atoms. Figure 2a shows the force profile for different values of ∇P at T = 0.9.
Body forces were applied for 108 steps and the excess heat flux as expressed in Eq (4) was computed for
2 × 108 steps. Figure 2b shows calculations of β21 for each force profile. For sufficiently small gradients,
β21 remains constant indicating transport in the linear regime. Within this regime, LNET applies. As the
gradient increases, β21 increases, indicating entry into a nonlinear regime. In the bulk, the excess heat
current should vanish as indicated by β21 ≈ 0 while outside of the linear regime β21 > 0.
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Figure 1: 1a and 1b show PV ir
xx (z) and P IK

xx (z) respectively for simulations conducted at different tempera-
tures. P IK

zz in 1b remains constant for all T , satisfying mechanical equilibrium normal to the surface. Density
profiles for the temperatures of interest are shown in 1c.
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Figure 2: 2a shows the force per particle that must be applied in order to simulate a uniform ∇P . A range
of pressure gradients was tested in separate simulations to determine the extent of the linear regime. The
mechano-caloric coefficients β21 for these gradients are shown in 2b. Blue dots correspond to integration of
the excess heat flux from the wall (z ≈ 0) into the bulk (z ≈ 6). In the linear regime, β21 ≈ 92− 95. Green
dots correspond to integration of the excess heat flux in the bulk where, as expected, it is approximately
zero.
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