
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Journal of Chemical Theory and Computation. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Pronk, S., Pouya, I., Lundborg, M., Rotskoff, G., Wesén, B. et al. (2015)

Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a

Distributed High-Performance Computing Platform.

Journal of Chemical Theory and Computation, 11(6): 2600-2608

http://dx.doi.org/10.1021/acs.jctc.5b00234

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170691

Molecular Simulation Workflows as Parallel

Algorithms: The Execution Engine of

Copernicus, a Distributed High-Performance

Computing Platform

Sander Pronk,†,§ Iman Pouya,†,§ Magnus Lundborg,‡ Grant Rotskoff,† Björn

Wesén,† Peter Kasson,¶ and Erik Lindahl∗,†,‡

Swedish eScience Research Center, Department of Theoretical Physics, KTH Royal

Institute of Technology, Stockholm, Sweden, Department of Biochemistry and Biophysics,

Science for Life Laboratory, Stockholm University, and Dept. of Molecular Physiology and

Biological Physics, University of Virginia, Charlottesville, VA, USA

E-mail: erik.lindahl@scilifelab.se

Abstract

Computational chemistry and other simulation fields depend critically on com-

puting resources, but few problems scale efficiently to the hundreds of thousands of

processors available in current supercomputers - in particular for molecular dynamics.

This has turned into a bottleneck as new hardware generations primarily provide more

∗To whom correspondence should be addressed
†Swedish eScience Research Center, Department of Theoretical Physics, KTH Royal Institute of Tech-

nology, Stockholm, Sweden
‡Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University
¶Dept. of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
§These authors contributed equally to this work.

1

processing units rather than making individual units much faster, which simulation

applications are addressing by increasingly focusing on sampling with algorithms such

as free energy perturbation, Markov state modeling, metadynamics or milestoning. All

these rely on combining results from multiple simulations into a single observation.

They are potentially powerful approaches that aim to directly predict experimental

observables, but this comes at the expense of added complexity in selecting sampling

strategies and keeping track of dozens to thousands of simulations and their depen-

dencies. Here, we describe how the distributed execution framework Copernicus allows

the expression of such algorithms in generic workflows: dataflow programs. Because

dataflow algorithms explicitly state dependencies of each constituent part, algorithms

only need to be described on conceptual level, after which the execution is maximally

parallel. The fully automated execution facilitates the optimization of these algorithms

with adaptive sampling, where undersampled regions are automatically detected and

targeted without user intervention. We show how several such algorithms can be for-

mulated for computational chemistry problems, and how they are executed efficiently

with many loosely coupled simulations using either distributed or parallel resources

with Copernicus.

1 Introduction

The performance of statistical mechanics-based simulations in chemistry and many other

fields has increased by several orders of magnitude with faster hardware and highly tuned

simulation codes.1–3 Conceptually, algorithms such as molecular dynamics are inherently

parallelizable since particle interactions can be evaluated independently, but in practice it is

a very challenging problem when the evaluation has to be iterated for billions of dependent

time steps that only take a fraction of a millisecond each. Large efforts have been invested

in improving performance through simplified models, new algorithms, and better scaling of

simulations,4–7 not to mention special-purpose hardware.8,9

2

Most force fields employed in molecular dynamics are based on representations devel-

oped in the 1960s that only require a few dozen floating-point operations per interaction.10

This provides high simulation performance, but it limits scaling for small problems that

are common in biomolecular research. With a few thousand particles there are not enough

floating-point operations to spread over 100,000 cores in less than a millisecond, no mat-

ter what algorithm or code is used. This limit to strong scaling is typically expressed in

a minimum number of atoms/core and is becoming an increasingly challenging barrier as

computing resources increase in core numbers. Computational power is expected to con-

tinue to increase exponentially, but it will predominantly come from increased numbers of

processing units rather than faster individual units, including the use of GPUs and similar

accelerators.11

One potential solution to this problem derives from the higher-level analyses commonly

used for simulations. In computational chemistry and related disciplines, a study almost

never relies on a single simulation trajectory — multiple runs are used even in simple studies

for uncertainty quantification and for comparison between conditions. Furthermore, sam-

pling and ensemble techniques12–17 are increasingly used to combine many simulation trajec-

tories into a higher-level model that is then compared to experimental data. This presents

an opportunity for increased parallelism across simulation trajectories as well as within each

trajectory. Simulation trajectories need not be completely independent, as some algorithms

rely upon data exchange between simulations, but they should be loosely coupled compared

to the tight coupling within simulations. This looser coupling permits efficient paralleliza-

tion over much larger core counts and potentially higher latency interconnects than would

be practical for a single simulation trajectory with a comparable number of atoms.

In this paper, we describe the execution engine of Copernicus:18 a parallel computation

platform for large-scale sampling applications. The execution is based on formulating high-

level workflows in a dataflow algorithm. These workflows are then analyzed for dependencies,

and all independent elements will automatically be executed in parallel. Copernicus has a

3

fully modular structure that is independent of the simulation engine used to run individual

trajectories. We have initially focused on writing plugins for the Gromacs molecular simu-

lation toolkit, but this can easily be exchanged for any other implementation. Similarly, the

core Copernicus framework is designed to permit easy implementation of a wide variety of

sampling algorithms, which are implemented as plugins for the dataflow execution engine.

As described below, the Copernicus formalism allows straightforward specification of any

sampling or statistical-mechanics approach; once this has been done, the dataflow engine

takes care of scheduling, executing, and processing the simulations required for the problem.

The advantage of Copernicus compared to a completely general-purpose dataflow engine is

that the structure of statistical-mechanics simulations is infused into the design of the engine,

so it works much better ”out of the box” for such applications.

2 Formulating a Workflow as a Dataflow

The key to parallelism in Copernicus is formulating problems as dataflow networks. This is

illustrated in Fig. 1 for a simple example: free energy perturbation. In this calculation, the

enthalpy and entropy changes associated with an event such as the binding of a molecule to

a protein are calculated using a thermodynamic cycle composed of many individual simula-

tions. In general, a free energy difference cannot be computed directly since the start and end

conformations sample different parts of phase space. This problem is handled by artificially

separating the change into many stages:19,20 each of these requires an individual molecular

dynamics simulation so the difference between adjacent points is small enough for them to

sample overlapping states. When simulations are finished, post-processing of the combined

output yields the free energy. Clearly, the individual simulations can be run in parallel. This

is apparent from the diagram of Fig. 1, because the links between the nodes denote the flow

of data and explicitly show dependencies. The workflow therefore is a dataflow diagram and

thus can be executed by an algorithm that runs each individual component when its data

4

dependencies are met.

In addition to parallelization, formalizing the free energy perturbation process as a

dataflow network permits easy reuse and automated repetition. For a single case, it is

relatively straightforward to manually run 10-20 simulations and perform post-processing,

but a screening study examining 1000 small molecules suddenly becomes much more oner-

ous. The dataflow network formalism also enables more sophisticated approaches such as

altering the simulation setup to achieve more efficient overlap with a different distribution

of stages based on short initial runs (known as adaptive lambda spacing).

The basis of the execution mechanism in Copernicus is as follows: the highest-level de-

scription of a job is a dataflow program,21–26 which the platform distributes among connected

worker processes. If the individual work items are themselves parallel, this creates a hierar-

chy of parallelism where thousands of workers each parallelizing over thousands of cores can

make efficient use of very large resources (Fig. 2).

In addition to presenting an opportunity for parallel execution, the workflow description

also allows for algorithms where the simulations to be executed depend on the analyzed

results of completed simulations in an automated manner, enabling fully automated adaptive

sampling. This class of algorithms attempts to determine whether regions of phase space have

been over- or under-sampled and uses this information to weight the priority of subsequent

simulations. Such an approach can reduce the uncertainty associated with kinetic quantities

by over three orders of magnitude using the same amount of compute time.27 The sampling

algorithm is implemented as a loop where simulations are started, results are processed and

new iterations are started until some stop condition is reached, such as the error estimate

of the end result falling below a threshold. This is where the real power of the dataflow

program formulation becomes evident: the executable elements are no longer limited to

the mere simulations, but it can also include complex analysis programs that analyze the

output of previous simulations, or combine molecular simulations with docking or Monte

Carlo approaches to sample different parts of phase space. The only limitation is that the

5

algorithms must be formulated in terms of elements with well-defined input and output data.

2.1 The Copernicus Dataflow Network

To describe the Copernicus dataflow layout in detail we reuse the free energy example.

Fig. 3 shows an annotated graph of the components used for this application. The entire

dataflow program itself is run inside a Copernicus project - this nomenclature was chosen

to avoid confusion with the separate programs within the execution elements. This project

consists of a network of active function instances and their connections. In this particular

example there are three types of function instances inside the project, corresponding to

the preprocessing used to setup the simulations (fe_prep), the program used to execute

simulations (mdrun), and the final analysis to compute the free energy (g_bar). The arrows

between them correspond to data such as conformations of molecules, settings, and energy

differences. However, looking at the entire outer rectangle corresponding to the project, this

network too can be seen as a function instance with input in the form of conformations,

settings and a molecule description, and the free energy (dG) as well as final conformations

as output. Copernicus fully embraces this hierarchical structure; any function instance either

consists of an internal network, or it is directly runnable. Runnable function instances are

the units of direct execution: once all their required inputs are present and there is hardware

available, the instance will be run by executing the function. For the present example, this

means the complete free energy project can be reused as a function instance to compute the

free energy for a molecule as part of a more complex project screening different molecules,

testing multiple protein conformations, or iteratively optimizing parameters.

The data in the dataflow program flows from output sockets to input sockets, both of

which are strongly typed: the type of an input socket on a function instance must match the

type of the output socket to which it is connected. Runnable functions are automatically

executed every time an input changes, but only once all non-optional inputs are available.

There are 4 base datatypes: int, float, bool, string and file, for integers, real numbers,

6

booleans, strings and files tracked by Copernicus, and two compound types: array for items

indexed by number, and record for named lists of items. These types are intentionally kept

simple to make it easy to reuse components: If data has to be combined we can easily create

a function instance to achieve that, or when dealing with complex data such as a trajectory

or molecule description in computational chemistry we can simply send the entire file and

let the runnable function instances deal with the contents of the file.

In order to enable dynamic execution (such as iterations and conditionals), two types of

dynamism are supported in the dataflow network. First, a function can be both runnable

and have a network; this type of function is described in section 2.4. The second type of

dynamism is associated with arrays: instance arrays will instantiate as many copies of a

function as there are inputs in its array of function inputs; the output is an array of function

outputs (Fig. 4). This is a straightforward way to implement iterations and conditional

execution. In the simplified annotation above we would in reality have the fe_prep function

instance output a (variable) number of simulation setups, and then use an instance array

of the simulation execution mdrun to handle all those simulations. It is worth pointing out

that Copernicus does not use explicit iteration constructs such as for-loops; at first sight this

might seem counter-intuitive, but it can be extremely difficult or impossible to automatically

analyze dependencies inside such loops. The fundamental idea of the dataflow networks is

that we do not think in terms of single-threaded execution of functions, but instead focus on

the flow of data and dependencies. This creates an obvious analogy between instance arrays

and explicit parallelism, but Copernicus is not limited to only parallelize over a single instance

array at a time - the network will always execute as many runnable function instances as

possible in parallel, based on the full network.

2.2 Execution by Function Instances

When all required inputs are present, a runnable function instance is executed. This consists

of collecting the input data, running the function and propagating the output (Fig. 5). With

7

powerful server hardware short function instances can be run instantly on the server, but in

general they will require significant computing resources, and in this case the execution step

is more complex since it also requires suitable hardware, with function instances subject to

prioritization to optimize dependencies in the entire network.

If execution on hardware separate from the server is appropriate, a function instance

can issue a command to the Copernicus command queue, requesting a program be run on a

worker. The output is then passed back to the function instance, with the original inputs,

allowing the function instance to check whether the command has completed successfully.

The output data is propagated and updated atomically; updates to other runnable functions

are done simultaneously in a single update per function instance.

2.3 Workers from Supercomputers to Desktops

Copernicus targets everything from high-end parallel jobs running through queues at super-

computers to small clusters, desktops, or throughput computing in the cloud. No matter

what the hardware is, the computers running the commands are called workers. Workers

announce their presence and availability to run commands by connecting to a server and

presenting their platform and a list of available executables. This can be a client program

running on a desktop, or a batch script submitted to a supercomputer queue - in this case

the worker will announce its availability when the supercomputer scheduler starts to execute

it, and it ceases to be available when the batch job finishes. A worker’s platform holds the

capabilities and resources of the worker, such as the number of cores and whether there is

a high-performance interconnect available for parallel MPI execution. The executable list

describes the programs that can be executed on a worker (i.e., which are installed) given the

platform.

On the basis of the platform and executable list, the server that the worker connects to

either matches its available jobs and returns a list of jobs to run, or delegates the request

to another server, e.g., when acting as a gateway. This allows for capability matching where

8

large jobs are run on supercomputers or clusters available in the network while throughput-

style jobs execute on desktops, clouds, or distributed computing resources. Copernicus is

also capable of using e.g. a 10,000-core worker allocation to execute 100 separate function

instances each needing 100 cores. This effectively makes the network of connected servers

a global pool of commands that can share idle high-performance computing resources in a

peer-to-peer fashion (Fig. 2).

Worker progress is checked by monitoring regular heartbeat signals from workers. If

no heartbeat has been received for a specified time, the worker is presumed dead, and the

commands running on the worker are reissued. When executing in cluster environments with

shared filesystems, Copernicus makes use of checkpointing in programs that support it (such

as Gromacs), which means the reissued command starts from the checkpointed state of the

original command. This is particularly useful for preemptable cluster queues or spot-market

cloud computing where large amounts of resources can be used freely or at very low cost on

the condition that execution can be terminated at any time.

2.4 The Dataflow Network is Dynamic

Representing networks as function instances provides encapsulation and abstraction, which

facilitates reusing components similar to high-level programming languages. For this type

of subnet we define a separate set of standard input/output nodes that apply to the entire

subnet, in contrast to the internal subnet inputs and outputs that are only accessible inside

this particular subnet. Each subnet will also have a runnable function that is executed when

all dependencies are available on the inputs. In many cases this will be a trivial function

that merely executes the first directly runnable functions inside the subnet, but we allow

the subnet to be dynamically controlled by the subnet function. In other words, the subnet

itself can establish new instances and connections inside its own dataflow network (Fig. 4).

This provides for a fully dynamic dataflow network. Based on intermediate results a

project can, e.g., introduce an extra clustering step or alter the algorithm. All these decisions

9

are made based on availability, flow, and contents of data, and any time input data changes

anywhere in the network it is subject to partial re-evaluation.

2.5 Transparent Client Access to Data

An advantage of using explicit dataflow descriptions is that program execution becomes

transparent to the user; any value can be examined or set at any time. With Copernicus,

this is possible through the command-line interface cpcc (copernicus-client) that is typically

run on a client, like a laptop, connecting to a server. The easiest way to illustrate this is to

use an example:

> cpcc get fe.iter_lj_1.out.dg

Here, we use the top-level function fe, in which we access the instance called iter_lj_1,

which is the first iteration of the Lennard-Jones decoupling. For that function instance, we

fetch the output variable called dG. In this particular case the value is an energy difference

in a free energy simulation. If the output data was not yet available we would get a message

saying so. Similarly, any non-connected inputs can be set or re-set, and we can even create

new function instances through the client. When we alter input data this will automatically

cause re-evaluation of function instances that depend on this data - a good analogy is the

Makefile used for compiling large software projects. This allows the user to not only monitor a

running project for intermediate results, but it allows real-time interaction with the algorithm

and state of the dataflow network.

3 Applications

Copernicus is meant for expressing high-level algorithms, which run on top of collections of

individual parallel processes. In our work, this is typically focused of sampling algorithms

analyzing collections of energies or conformations obtained from large numbers of molecular

dynamics simulations. A number of such projects are included in the Copernicus distribution.

10

This section describes some of these as examples of how adaptive sampling algorithms can

be implemented to provide automated optimal sampling.

3.1 Program Modules: Gromacs molecular simulation

Gromacs is one of the common high performance molecular simulation packages.7 In Coper-

nicus, it is used as a molecular simulation engine for free energy calculations, Markov state

models and string method calculations. The implementation consists of a fault-tolerant func-

tion for running simulations (relying on mdrun, the Gromacs program to run simulations),

and a mapping of some of the Gromacs pre- and post-processing tools. If the user would

prefer to use a different package, similar plugins can be written with very little work.

The Copernicus function controlling mdrun uses the mechanism shown in Fig. 5 in con-

junction with mdrun’s capability to save and recover from checkpoints. Whenever a worker

returns output from an mdrun command it either has finished, has saved a checkpoint file,

or has made no progress. In the latter case, the original command is re-issued. If there is a

checkpoint file, a new command is emitted to recover from the checkpoint. If the simulation

has finished, all the output files are concatenated and sent as workflow outputs. This means

the rest of the network can always count on complete and correct output data - any con-

tinuation or hardware failure will be handled by the program module. To support efficient

parallelism, there is a run tuning function that checks which number of cores to use for a

given set of simulations. This is used by the server’s worker-workload matching to distribute

the available cores over the available simulation commands in the most efficient way.

3.2 Free energy Perturbation Calculations

To describe a typical project, we expand the initial free energy example. These are some of

the most widely used throughput-focused molecular simulation methods, and aim to calculate

a free energy difference ∆F between two systems with Hamiltonians H0 and H1. The

free energy difference between the two states is calculated using an average exponential

11

Hamiltonian difference in both end states’ ensembles.20 Common applications include static

quantities such as ligand-protein binding affinity in drug design,28 solubility,29 and phase

stability.30 In practice, this cannot be done in a single step without significant sampling

error, so instead we introduce a Hamiltonian coupled to a parameter λ:

Hλ = λH0 + (1− λ)H1. (1)

The free energy difference then becomes a sum of smaller free energy difference calculations

between a set of chosen points λ1 . . . λN with

∆F =
N−1∑

i=1

∆F (λi, λi+1). (2)

as illustrated in Fig. 1. Using more points will lead to better phase space overlap, but also

more simulations. The location of the set of points in λ provides an opportunity for adaptive

sampling; the optimal location of these points is when the per-sample standard deviation20

of all individual free energy differences is equal. This distribution can be iterated towards,

using very short individual free energy calculations.

Copernicus has two different high-level free energy calculation functions. The first handles

free energy of solvation calculations where one or more molecules’ interactions with the rest

of the system is gradually turned off as λ goes from 0 to 1. The second is one for free energy

of binding calculations, where the interactions are turned off while restraining the molecule

to locations relative to other molecules, such as tethering a ligand to the protein for binding

affinity calculations. This free energy is then compared to turning off the interactions in

pure solvent, yielding the excess free energy of binding, or binding affinity.

The structure of the free energy of solvation function is outlined in Fig. 6. Its inputs

include the files necessary to run a simulation, the name of the molecule(s) to decouple from

the rest of the system, and the precision threshold in the free energy output. This precision

serves as the stop condition for the calculation.

12

The solvation free energy function first routes most of the inputs to an initialization

function, where a short simulation is scheduled that gradually changes λ from 0 to 1 (sep-

arately for electrostatic and Lennard-Jones interactions), outputting configurations on the

way. These configurations are routed to the first iteration of the lower-level function that

actually performs the free energy simulations and calculation. This function outputs its final

configurations, the calculated free energy difference and the inputs for the next iteration,

including new values for the set λi. The output free energy differences are collected in the

function and their weighted average is the output of this function.

The free energy of binding function takes as inputs a bound configuration of ligand and

target molecule (such as a protein), a set of restraints to keep the ligand close to the target

as it is decoupled, in addition to the parameters needed for the free energy of solvation

function. The function then consists of three different lower-level free energy calculations:

one to calculate a free energy difference between the ligand bound to the target and the

ligand decoupled from the system (∆Ftarget), one to calculate the free energy of solvation

of the ligand (∆Fsolv), and one to calculate the free energy contribution of the restraints

(∆Frestr). The free energy of binding is then28

∆Fbinding = ∆Ftarget −∆Fsolv −∆Frestr. (3)

where the structure of the individual free energy contribution functions is similar to that

shown in Fig. 6. This also shows the power of reusing components in higher-level building

blocks.

3.3 Markov state modeling

Perhaps no modern sampling technique is as closely associated with distributed computing

approaches as Markov state modeling16,31–33 (MSM). MSM attempts to give a picture of the

dynamics of a system by combining clustering with a kinetic description of transitions.34

13

The technique consists of several stages: first, the set of configurations of a large number of

simulation trajectories is clustered. Second, an inter-cluster transition matrix is constructed,

from which a rate matrix is calculated, assuming a characteristic ‘lag time’. The highest-

valued eigenvalues and eigenvectors of this rate matrix describe the slowest and largest-scale

motions of the system in cluster space. This can then be used to further coarse-grain the

clusters into a kinetic picture of the important transitions of the system.

MSMs work exceptionally well with adaptive sampling,18,27,31 where new simulations

are started from existing clusters, either by identifying under-sampled clusters, or simply

by evenly sampling clusters. Because it relies on ensembles of trajectories and stochastic

processing, the progress of all individual runs is not necessary for the progress of adaptive

sampling as a whole. This, combined with the high level of parallelism inherent in many

hundreds of trajectories, makes MSM a very attractive sampling method for distributed

computing.

The Copernicus MSM implementation is outlined in Fig. 7, and has also been described

in our prior work.18 The MSM function inputs include a number of starting configurations,

simulation settings, the number of simulations to initially start, the amount of trajectory

data required for an MSM iteration, the lag time, and the number of microstates to generate.

The MSM function will create a user-specified number of simulation runs, and collect enough

data to create an MSM. After this, new runs will be spawned based on even sampling of

the generated microstates. This will lead to subsequent generations of MSMs until a user-

specified number of them has been reached.

With the dataflow network formulation, all the steps necessary to select conformations,

execute simulations, cluster data and build MSMs are fully automated. For a novice user,

this means they can used very advanced sampling algorithms largely as black boxes (for

better or worse). This is not necessarily a free lunch; an expert user might do better by

manually analyzing clustered conformations and alter the settings. As described above, this

is eminently possible - the user can both monitor convergence of the transition state matrix

14

and inspect individual cluster conformations from each iteration as the project is running,

or alter the settings on-the-fly to force a new clustering which will result in new runs being

generated.

An example that can be run in 24 h on a handful of computers is the folding of Fs-peptide,

a 21 amino acid peptide that folds into an α-helix on the 200 ns timescale.35 The initial

seeds were four extended conformations from a 500 ps simulation at 700 K. Each iteration

spawns ten new simulations and initiates clustering for every 10 ns of new trajectories. 1500

microstates were clustered using hybrid clustering and a lag time of 100 ps. These microstates

were further clustered using PCCA+36 to identify ten macrostates. After four generations of

MSM a folded state was identified, and with seven generations there was sufficient sampling

to determine convergence and identify the folded state with no a priori knowledge (Fig. 8).

Simulations were run in Gromacs 4.67 using the Amber03 force field37 and a rhombic do-

decahedron box with 7000 TIP3P38 waters. The MSM building steps utilize MSMBuilder,39

but other packages, such as EMMA,40 could be used to obtain similar results. The simula-

tions were run on a total of 4 machines: two 32-core AMD Opteron machines equipped with

dual Geforce GTX Titan GPUs, one 16-core Intel Xeon equipped with dual Geforce GTX

Titan GPUs, and one 12-core Intel Xeon equipped with dual Tesla K20 GPUs.

3.4 String method using swarms

In many cases there are experimental structures available for different states of molecules,

but computational methods are needed to understand the transition. In general it requires an

extremely high-dimensional ’reaction-coordinate’ to describe transitions between two states

A and B. One powerful approach is the string method with swarms of trajectories, which

finds transition paths between stable states by restricting sampling to refine a quasi-one-

dimensional path embedded in a high-dimensional collective variable space.41,42

Briefly, the technique works by first interpolating a path between A and B states in

the chosen collective variable space (for instance some, or all, torsions) to get an initial set

15

of points. Restrained minimization and relaxation simulations are used to produce several

conformations for each point in collective variable space. A large number of short simulations

from these conformations are then started without restraints. The average drift in collective

variables space is computed for each ’swarm’, and used to move the path towards lower

free energy, which will gradually converge towards the most probable transition pathway.

To ensure that the sampling is optimally distributed along the path, a reparameterization

scheme41 is used to maintain equal spacing of points in collective variables space. Fig. 9

illustrates the state of the swarms module after two iterations; for real projects there can be

hundreds.

Copernicus can easily execute the classical alanine dipeptide string example,42 and the

fully automated setup makes it trivial to e.g. test different force fields. Using the φ and

ψ dihedral angles of the peptide as collective variables, the path between the states Ceq =

(−82, 73) and Cax = (70,−69) was optimized for the charmm27 force field with and without

the cmap corrections,43 using 80 iterations with 18 string points. Relaxation simulations

of 25 ps at 300 K with dihedral restraints (4000 kJmol−1 rad−2) were used to generate 20

structures from each trajectory, all of which were run for 30 fs without restraints. As seen

in Fig. 10, the application of cmap correction leads to a slightly different transition path

that converges to a local saddle point; the automated setup makes it possible to test a large

number of initial seed paths. For large solvated protein complexes, the Copernicus swarms

module can simultaneously execute over 10,000 short simulations if given a sufficient pool of

workers.

4 Discussion

Just as the number of transistors has doubled roughly every 18 months according to the

observation in Moore’s law, the number of cores in large computers appear to have followed

this curve too for the last decade. There is no sign of this trend reversing; on the contrary,

16

increased funding means supercomputers are currently outpacing it. With a rough extrap-

olation, this would imply the first machines with a billion processing elements a decade

from now, and at that point even a small workgroup cluster will require millionfold paral-

lelism. Hardly any current programs will exhibit strong scaling on such resources, but by

combining parallelization of the core programs over tens of thousands of processors with

higher-level sampling algorithms it will become possible to harness this power for impor-

tant applications. A number of high-level sampling algorithms - in particular in molecular

simulations - can be expressed in a straightforward way as dataflow networks for execution

by a distributed execution platform. We have developed Copernicus as such an engine for

expression and execution of dataflow networks to solve problems in statistical mechanics and

computational chemistry. Copernicus utilizes the explicit dependency structure of these net-

works to optimize parallel execution and also provides an interface for users to monitor and

interact with the calculation while it is running, as is frequently desired in this discipline.

The plugin model allows straightforward implementation of many sampling or statistical-

mechanics-driven algorithms and the use of many different simulation programs to compute

trajectories, thus providing a powerful and flexible framework for parallel execution of com-

plex and compute-intensive applications in computational chemistry. Copernicus is freely

available from http://copernicus.gromacs.org.

Acknowledgement

This work was supported by the European Research Council (209825), the Swedish Research

Council (2013-5901) and the Swedish Foundation for International Cooperation in Research

and Higher Education (STINT). Computational resources were provided by the Swedish

National Infrastructure for Computing (2014/11-33).

17

References

(1) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;

Karplus, M. J. Comput. Chem. 1983, 4, 187–217.

(2) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E., III;

DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comp. Phys. Comm. 1995, 91, 1–41.

(3) Lindahl, E.; Hess, B.; Van Der Spoel, D. J. Mol. Model. 2001, 7, 306–317.

(4) Case, D. A.; Cheatham, T. E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M., Jr.;

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26,

1668–1688.

(5) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781–1802.

(6) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.;

Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.;

Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kucz-

era, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.;

Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;

York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30, 1545–1614.

(7) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.;

Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. Bioinformatics

2013, 29, 845–854.

(8) Shaw, D. E.; Grossman, J. P.; Bank, J. A.; Batson, B.; Butts, J. A.; Chao, J. C.; Den-

eroff, M. M.; Dror, R. O.; Even, A.; Fenton, C. H.; Forte, A.; Gagliardo, J.; Gill, G.;

Greskamp, B.; Ho, C. R.; Ierardi, D. J.; Iserovich, L.; Kuskin, J. S.; Larson, R. H.;

Layman, T.; Lee, L.-S.; Lerer, A. K.; Li, C.; Killebrew, D.; Mackenzie, K. M.; Mok, S.

18

Y.-H.; Moraes, M. A.; Mueller, R.; Nociolo, L. J.; Peticolas, J. L.; Quan, T.; Ramot, D.;

Salmon, J. K.; Scarpazza, D. P.; Ben Schafer, U.; Siddique, N.; Snyder, C. W.; Spen-

gler, J.; Tang, P. T. P.; Theobald, M.; Toma, H.; Towles, B.; Vitale, B.; Wang, S. C.;

Young, C. Anton 2: Raising the Bar for Performance and Programmability in a Special-

purpose Molecular Dynamics Supercomputer. Proceedings of the 2014 International

Conference for High Performance Computing, Networking, Storage and Analysis. 2014;

pp 41–53.

(9) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon, J. K.;

Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.;

Grossman, J.; Ho, C. R.; Ierardi, D. J.; Kolossváry, I.; Klepeis, J. L.; Layman, T.;

McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.;

Theobald, M.; Towles, B.; ; Wang, S. C. Communications of the ACM 2008, 51,

91–97.

(10) Lifson, S.; Warshel, A. J. Chem. Phys. 1968, 49, 5116–5129.

(11) Fuller, S. H. Computer 2011, 44, 31–38.

(12) Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141–151.

(13) Elmer, S. P.; Pande, V. S. J. Chem. Phys. 2004, 121, 12760–12771.

(14) Faradjian, A. K.; Elber, R. J. Chem. Phys. 2004, 120, 10880–10889.

(15) Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. J. Chem. Phys. 2007, 126, 155102.

(16) Pan, A. C.; Roux, B. J. Chem. Phys. 2008, 129, 064107.

(17) Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Dona-

dio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A.; Parrinello, M. Comp. Phys. Comm.

2009, 180, 1961–1972.

19

(18) Pronk, S.; Bowman, G.; Hess, B.; Larsson, P.; Haque, I.; Pande, V.; Pouya, I.;

Beauchamp, K.; Kasson, P.; Lindahl, E. Copernicus: A new paradigm for parallel

adaptive molecular dynamics. Proceedings of the 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis. 2011; p 60.

(19) Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed.; Academic Press:

London, 2002.

(20) Bennett, C. H. J. Comput. Phys. 1976, 22, 245–268.

(21) Chambers, C.; Raniwala, A.; Perry, F.; Adams, S.; Henry, R. R.; Bradshaw, R.; Weizen-

baum, N. FlumeJava: easy, efficient data-parallel pipelines. ACM Sigplan Notices. 2010;

pp 363–375.

(22) Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.;

McVeety, S.; Mills, D.; Nordstrom, P.; Whittle, S. MillWheel: fault-tolerant stream

processing at internet scale. Proceedings of the VLDB Endowment. 2013; pp 1033–

1044.

(23) Murray, D. G.; McSherry, F.; Isaacs, R.; Isard, M.; Barham, P.; Abadi, M. Naiad:

a timely dataflow system. Proceedings of the 24th ACM Symposium on Operating

Systems Principles. 2013; pp 439–455.

(24) Zhao, Y.; Hategan, M.; Clifford, B.; Foster, I.; Von Laszewski, G.; Nefedova, V.;

Raicu, I.; Stef-Praun, T.; Wilde, M. Swift: Fast, reliable, loosely coupled parallel com-

putation. Proceedings of the 2007 IEEE Congress on Services. 2007; pp 199–206.

(25) Raicu, I.; Zhao, Y.; Dumitrescu, C.; Foster, I.; Wilde, M. Falkon: a Fast and Light-

weight tasK executiON framework. Proceedings of the 2007 ACM/IEEE conference on

Supercomputing. 2007; p 43.

20

(26) Zaharia, M.; Das, T.; Li, H.; Shenker, S.; Stoica, I. Discretized streams: an efficient

and fault-tolerant model for stream processing on large clusters. Proceedings of the 4th

USENIX conference on Hot Topics in Cloud Computing. 2012; p 10.

(27) Hinrichs, N. S.; Pande, V. S. J. Chem. Phys. 2007, 126, 244101.

(28) Mobley, D. L.; Graves, A. P.; Chodera, J. D.; McReynolds, A. C.; Shoichet, B. K.;

Dill, K. A. J. Mol. Biol. 2007, 371, 1118–34.

(29) Paliwal, H.; Shirts, M. R. J. Chem. Theory Comput. 2011, 7, 4115–4134.

(30) Polson, J. M.; Trizac, E.; Pronk, S.; Frenkel, D. J. Chem. Phys. 2000, 112, 5339–5342.

(31) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Methods 2010, 52, 99–105.

(32) Swope, W. C.; Pitera, J. W.; Suits, F. J. Phys. Chem. B 2004, 108, 6571–6581.

(33) Singhal, N.; Pande, V. S. J. Chem. Phys. 2005, 123, 204909.

(34) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.;

Schütte, C.; Noé, F. J. Chem. Phys. 2011, 134, 174105.

(35) Gnanakaran, S.; Nymeyer, H.; Portman, J.; Sanbonmatsu, K. Y.; Garca, A. E. Curr.

Opin. Struct. Biol. 2003, 13, 168–174.

(36) Deuflhard, P.; Weber, M. Linear Algebra Appl. 2005, 398, 161–184.

(37) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.;

Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. J. Comput. Chem.

2003, 24, 1999–2012.

(38) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J.

Chem. Phys. 1983, 79, 926–935.

21

(39) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; Haque, I. S.; Pande, V. S.

J. Chem. Theory Comput. 2011, 7, 3412–3419.

(40) Senne, M.; Trendelkamp-Schroer, B.; Mey, A. S.; Schütte, C.; Noé, F. J. Chem. Theory

Comput. 2012, 8, 2223–2238.

(41) Pan, A. C.; Roux, B. J. Chem. Phys. 2008, 129, 064107.

(42) Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G. J. Chem. Phys. 2006,

125, 024106.

(43) MacKerell, A. D.; Feig, M.; Brooks, C. L. J. Comput. Chem. 2004, 25, 1400–1415.

22

λ = 0 λ = 1Setup

Simulation

Analysis of pairs

of simulations

Result (Free energy)

? ? ?

...

ΔG±σ
ΔG

λ = 0.3 λ = 0.8

Figure 1: Free energy calculation is an example of a sampling-based workflow. It is calcu-
lated by separating the binding into several stages (typically 10-20) with different coupling
parameters λ, and running independent simulations. The work in each step is obtained by
analyzing two (or more) simulations, and all parts contribute to the total free energy. Arrows
denote flow of data, and thus dependencies, which is equivalent to a workflow diagram.

Cluster 2

Cluster 1 Worker

Worker

Worker

Worker

Server

Projects

msm_villin

fe_heme

Cmd Queue

gen_04_01

gen_04_01

lambda_01

Server

Projects

fe_ala

fe_gly

fe_his

fe_trp

fe_cys

Cmd Queue

lambda_07

lambda_09

lambda_04

lambda_08

lambda_07

lambda_07

Server

Projects Cmd Queue

Server

Projects Cmd Queue

Worker

Worker

Worker

Worker

User

User

Server

Projects Cmd Queue

Worker

Worker

Worker

Worker

Figure 2: An example Copernicus network layout in computational chemistry. Two users
each have a handful of different projects that they interact with on their workstation, and
servers that schedule the project elements and worker execution. Here, cluster 2 might be a
larger resource where both users have allocations, and due to a firewall there is an additional
Copernicus server acting as a gateway to propagate jobs and results.

23

mdrun

mdrun

g_bar

fe_prep

conf

molecule

settings

dG

partial_results

confs

confs

dE

dE

conf

conf

fe_iteration

settings

Network
function
instance

Runnable
function
instances

Connections

Project

Figure 3: An annotated simplified Copernicus project. The project consists of runnable
function instances corresponding to executable programs, and connections that describe the
flow of data and dependencies. This assembly is called a network, and a complete such unit
can itself be used as a network function instance with well-defined input and output as part
of a larger project.

function with subnet

function array
function
function

...

in
p

u
ts

[]

function o
u

tp
u

ts
[]

in
p

u
ts

[]

subnet instance 1

function

function

function
function

subnet instance 2

function

function

function
function

o
u

tp
u

ts
[]

Figure 4: Example function instances. By using a function array the actual work will be
performed separately on each element in the variable size input, and produce an output
array of the same size (top). A function instance will appear as a black box externally, but
internally it can contain subnets, which in turn can be instantiated into arbitrary new copies
on the fly (bottom).

24

All inputs
present

Run function

Queue
command

Yes

Run command
on worker

Propagate
Output

Command
created?

No

Create any new
connections &

instances

Figure 5: Function instance execution. In general, function execution will correspond to
large external computations such as simulations or analyses queued for running on worker
hardware. When executions return output to the function, it will either propagate data from
finished runs in the network or automatically reissue the command if a worker failed.

fe_solv

iter_0init

s
im

 s
e

tt
in

g
s

conf, sim settings sim settings

ΔF

ΔF

confs,

λ
i

Δ
F

c
o

n
fs

confs,

λ
i

λ
i

c
o

n
f

s
im

 s
e

tt
in

g
s

p
re

c
is

io
n

mdrun

mdrun
mdrun
mdrun

tune_ λ

calc_ ΔF

ΔE

iter_1

mdrun
mdrun
mdrun

tune_ λ

calc_ ΔF

ΔE

Figure 6: Free energy of solvation workflow after initialization, equilibration (iter 0) and the
first iteration of production simulations. New iteration subnets to improve the precision are
instantiated automatically. In most cases only the final output is of interest, but it is trivial
to manually query specific data from functions inside any subnet. Even this simple project
uses function arrays, subnets, and dynamic instantiation for flow control.

25

MSM project

p
a

ra
m

e
te

rs

s
e

e
d

 c
o

n
fs

simulation

MSM

#
 s

im
s
 p

e
r

it
e

r
#

 g
e

n
e

ra
ti
o

n
s

la
g

 t
im

e
#

 m
ic

ro
/m

a
c
ro

s
ta

te
s

re
c
lu

s
te

ri
n

g
 f
re

q

c
o

n
f,
 p

a
ra

m
s

s
im

.s
e

tt
in

g
s

init

tu
n

e
 s

im

m
d

ru
n

settings conformations (seed) settings

Lag time

generation_0

build MSM

build micro-

state MSM

spawn

sims.

mdrun

…

mdrun

mdrun

mdrun

conformations

eq. weights

sim settings

adaptive

sampling

MSM settings

trajectories

microstates

la
g

 t
im

e
clustering

count matrix

build macro-

state MSM

tr
a

n
s
it
io

n

p
ro

b
a

b
ili

ti
e

s

macrostates

state confs. &

transition rates

state weights
trajectories

Lag time

generation_1

build MSM

build micro-

state MSM

spawn

sims.

mdrun

…

mdrun

mdrun

mdrun

conformations

weights

sim settings

adaptive

sampling

MSM settings

trajectories

microstates

la
g

 t
im

e

clustering

count matrix

build macro-

state MSM

tr
a

n
s
it
io

n

p
ro

b
a

b
ili

ti
e

s

macrostates

state confs. &

transition rates

state weightstrajectories

s
ta

ti
s
ti
c
s
 &

 p
lo

ts
tr

a
n

s
it
io

n
 r

a
te

s
s
ta

te
s

w
e

ig
h

te
d

 c
o

n
fo

rm
a

ti
o

n
s

s
ta

te
s
,
tr

a
n

s
it
io

n
 r

a
te

s

Figure 7: Markov state modeling adaptive sampling project. Starting from seed conforma-
tions, a first generation subnet is instantiated which spawns a large number of simulations,
and trajectories are provided to a subnet using MSMbuilder for clustering and modeling of
states. The output from the first generation is a set of weighted states, from which the next
generation is instantiated. Only two generations are show; a typical MSM project uses many
more, but the final output is always states and transition rates.

0.05

0.50.006

0.22

0.010.13

0.1
0.3

0.18

0.09
0.3

0.4

Figure 8: Macrostate MSM of Fs-peptide. Starting from extended conformation (green),
each MSM generation captures new states and spawns simulations. After four generations,
the folded state (blue) is sampled, and with seven generations it is identified as the lowest
free energy without prior knowledge. Arrows indicate transition pathways, with thickness
reflecting net flux probability (indicated); Self-flux and low-probability edges are omitted.

26

Swarms

swarms

it
e

ra
ti
o

n
s

c
o

n
v
e

rg
e

n
c
e

 d
is

ta
n

c
e

re
a

c
ti
o

n
 c

o
o

rd
in

a
te

#
s
w

a
rm

s

In
te

rp
o

la
te

d
 p

a
th

sim settings

e
n

d
 s

ta
te

s
ta

rt
 s

ta
te

e
m

 t
o

le
ra

n
c
e

s
e

tt
in

g
s

sim settings swarms

Lag time

generation_0

Minimize

mdrun

…

mdrun

Thermalize

mdrun

…

mdrun

equilibrate

mdrun

…

mdrun

swarms

mdrun

…

mdrun

reparametrize

calc avg

drift

find

dihedrals

s
e

ttin
g

s

e
m

 to
le

ra
n

c
e

s
ta

rt s
ta

te
s
e

ttin
g

s

#swarms,settings Start/End state

dihedrals

settings,states

sim settings swarms

Lag time

generation_1

Minimize

mdrun

…

mdrun

Thermalize

mdrun

…

mdrun

equilibrate

mdrun

…

mdrun

swarms

mdrun

…

mdrun

reparametrize

calc avg

drift

find

dihedrals

s
e

ttin
g

s

e
m

 to
le

ra
n

c
e

s
ta

te
s

s
e

ttin
g

s

#swarms,settings Start/End state

dihedrals

settings,states n
e

w
 s

ta
te

s
 a

lo
n

g
 p

a
th

Figure 9: Swarms project after two generations. The module requires two states and a
reaction coordinate, typically all or some of the torsions in the system. The first generation
performs minimization, thermalization and equilibration, followed by the large number of
short swarm simulations. The final step updates the path and reparameterizes the spacing of
points, after which the subnet function instantiates a similar function for the next generation.

-150 -100 -50 0 50 100 150

-150

-100

-50

 0

 50

 100

 150

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

ψ

-150 -100 -50 0 50 100 150φ

k
J
/m

o
l

Figure 10: Convergence of swarms transition paths in dialanine. Compared to the default
charmm27 force field (left), the inclusion of the cmap correction term leads to a slightly
different transition path that converges in a local saddlepoint (right). Reference energy
landscapes calculated with metadynamics.17

27

