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1 Introduction: molecular simulation
beyond the nutshell

Molecular simulation (MS) could be concisely described
as computational statistical mechanics [1], i.e., numeri-
cal methods combined with computer power to address
physico-chemical problems arising in condensed mat-
ter systems. Given the laws governing the interactions
between the atoms or molecules in the system (the
model), one would use MS to quantify a variety of sys-
tem properties as predicted by the model, such as ther-
mal averages, transport coefficients, and perhaps even
discover unforeseen microscopic processes in the sys-
tem, such as reaction mechanisms, that no amount of
educated guessing could have anticipated without the
detailed microscopic view that MS offers. As we will
discuss below, but even more in the articles published
within this Special Issue (SI), such a nutshell descrip-
tion, while not wholly inaccurate, fails to do justice to
the variety and richness of MS techniques currently in
use in the scientific community.

One of the aims of this Special Issue is to provide
a general view of how MS is growing, complementing
the nutshell description given above. This SI aims to
illustrate the most active directions of current research.
Indeed, the field of fundamental computer simulations
of matter is as active as it ever was, as will become
apparent. We will be covering the fruitful interaction
of atomistic simulations and Machine Learning, one of
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the most interesting developments to have taken place
in the field in recent years. Progress in the sampling of
rare events and non-equilibrium processes will also be
discussed; we will delve into the most recent methods
for integrating the equations of motion and addressing
quantum dynamics, and new ideas on how to extend
the applicability of computer simulations beyond the
realm of atomistic descriptions of condensed matter
by means of coarse-graining or continuum approaches
will be explored. Finally, we also hope to provide some
pointers for directions in which MS may evolve in the
future.

To better appreciate where we are, and especially
where we may be going from here, it is appropriate to
look back and consider where we have come from. We
do not aim to provide here a detailed historical per-
spective; that would be hardly appropriate in a preface
article (readers interested in the details of the history
of MS should consult Ref. [2]). Rather, we just want to
remark on a few key landmarks that have contributed
to give shape to what we now know as molecular simula-
tion. We do so in Sect. 2. Then, in Sect. 3, we introduce
the topics that are covered in this SI, put them in the
context of the present state of the art, and discuss how
they could contribute to the future evolution of MS.

2 Molecular simulation: a brief history

Computer simulations applied to condensed matter sys-
tems began in the 1950s. Two of the corner stones of
molecular simulations were introduced then, namely
the Monte Carlo (MC) sampling technique [3] and
the molecular dynamics (MD) method [4]. That the
two techniques appeared almost simultaneously at this
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time is no coincidence. During the previous decade,
electronic computing machines had been developed to
address many of the computational demands going
beyond direct human capabilities that had to be con-
fronted in connection with the war effort, and in par-
ticular the Manhattan project and the breaking of the
Enigma code. A decade later, improved computers were
still employed at several US national labs, primarily
for military purposes, but with the war over, the high
cost of such machines made it desirable to search for
new civilian areas in which their capabilities could be
exploited. It was thus that scientific applications began
to take shape.

The basic idea behind MC is to estimate the average
value of a system property by sampling over a collec-
tion of configurations generated at random from the
probability distribution corresponding to the appropri-
ate statistical mechanics ensemble (e.g., the canonical
ensemble for systems at constant temperature); it is
a numerical realisation of Gibbs’s program. The idea
behind MD is even more intuitive: simply, solve New-
ton’s equations of motion for the classical particles in
the system; in other words, it is the numerical reali-
sation of Boltzmann’s dream. Besides providing time
averages of system properties (which in the limit of suf-
ficiently long trajectories should approximately coin-
cide with the configuration averages provided by MC),
MD allows one to monitor the time evolution of the sys-
tem, thus giving access to what are commonly known
as dynamical properties, in particular transport.

From today’s perspective, MC and MD may seem
like trivial, obvious procedures, but they were not so at
the time. Indeed, it took a certain change of perspec-
tive to consider that numerical techniques and com-
puter power could be combined to address models of
matter for which, in spite of their small size and sim-
plicity (e.g., 32 hard spheres [4]), the equations of sta-
tistical mechanics were analytically intractable. It was
not simply a question of original thinking; simulation
took some time to be accepted by a scientific commu-
nity brought up in the belief that the job of a scientist
was to discover the laws of nature, not necessarily to
solve the resulting equations. However, the seed had
been planted, and little by little, it started growing.

During the following decade, computers grew in
power and speed, and also became more widely avail-
able to researchers both in the US and in Europe.
In 1964, Rahman [5] published the first simulation
results on a realistic model system, an MD simula-
tion of liquid Argon. Previous MD simulations of Alder
and Wainright [4] were used to simulate systems con-
sisting of hard spheres, a discontinuous potential that
counted more as a generic model than as a realistic
one. The work of Rahman showed that MD simulations
were indeed possible with smooth potentials (he used a
Lennard-Jones pair-wise additive potential to account
for the interactions between Ar atoms).

Basic algorithms and their improvements were essen-
tial, particularly in an age in which computers were
still comparatively few and had limited speed and mem-
ory. Verlet [6] proposed a stable numerical integration
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scheme that carries his name, still very much in use
today. He also introduced a time-saving algorithm, the
Verlet neighbour list.

Gradually, an increasing number of scientific publi-
cations demonstrated the power of MS to help inter-
pret experiments, and sometimes even predict their
results. A remarkable step forward in this respect was
the work of Rahman and Stillinger [7], who reported
for the first time in 1971 an MD study on a model
of liquid water, a system composed of molecules, not
just atoms. This work was a significant achievement:
it demonstrated that the structure of liquid water con-
sisted of a random network of hydrogen bonds, hav-
ing no structural resemblance to its solid phases; it
also showed that the diffusion of water molecules took
place continuously, and not via a hopping mechanism,
as was widely assumed at the time. Beyond that, this
work contributed more than any other published up to
then to underline the message that MS was capable
of greatly contributing to the advancement of science.
Indeed, from today’s perspective, the importance of the
work of Rahman and Stillinger lies in the fact that it
inspired the scientific community to think that, if it
was possible to simulate water, which is after all the
medium in which the chemistry of life takes place, why
not simulate also biomolecules themselves? Although
many difficulties had to be addressed first, the goal was
nevertheless clear, and a multinational group of scien-
tists centred around Berendsen at CECAM! began to
work, as early as 1972, with this objective in mind.
The first MD simulation of a simple protein was due to
Karplus and collaborators, and appeared shortly after,
in 1977 [8].

One of the technical issues to be addressed was how
to cope with the different time-scales in molecular sys-
tems, where vibrations and bond-bendings occur over a
time-scale of a few femtoseconds (10715 s), while con-
formational changes can take place over macroscopic
time-scales. The constraint method [9] was introduced
to freeze out fast degrees of freedom, thus allowing the
use of longer time-steps and consequently speeding up
the simulations. The constraint method was to find
important applications later, in the study of rare events
[10] and in the combination of molecular dynamics
with electronic structure calculations [11]. The efforts
started then by many researchers on the simulation of
biomolecules were eventually to lead to the award of
the Nobel prize for Chemistry to Warshel, Levitt, and
Karplus in 2013 for their contributions to computer
simulations in biochemistry. Somewhat later, symplec-
tic, time-reversible multiple time-scale (MTS) integra-
tion algorithms were introduced [12], which allowed dif-
ferent force components, such as bonded, short-range
non-bonded, and long-range forces, acting on different
time-scales to be integrated with an appropriate time-
step. MTS integration allowed the largest time step, in
biomolecular simulations to be increased to roughly 5—
10 fs while retaining the full physics built into modern
atomistic force fields. As the largest time-step is asso-
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ciated with the computationally most expensive forces,
the gains in efficiency were on a par with or somewhat
better than those obtained using constraints. MTS algo-
rithms, along with variable transformations, were key
to providing a molecular dynamics-based approach for
incorporating nuclear quantum effects via Feynman
path integrals [13].

More or less in parallel with the development of mod-
els and techniques required to address biochemical sys-
tems, efforts were being made to extend the applica-
bility of MS to other fields. One example of this was
the case of quantum many-body systems: techniques to
address quantum systems, such as variational Monte
Carlo, had been developed during the 1960s, but the
computer power required to apply them to truly many-
body systems was simply not available at the time. It
was not until the late 1970s and 1980s that the work
of Ceperley and Alder to address such systems as the
electron gas [14] and hydrogen at high pressures [15]
became computationally feasible. Another example was
the study of liquid crystals. The chemical complexity
of such systems, usually colloids or complex organic
molecules, gave many the impression that these sys-
tems would not be amenable to simulation. However,
the work of Frenkel and collaborators [16,17] demon-
strated that the phase dynamics of liquid crystals was
controlled by their shape rather than by their chemical
interactions.

Another landmark in our leapfrog (pun intended)
path along the history of MS took place in 1980. In this
year, Andersen published a paper [18] which was to have
wide repercussion. In short, Andersen described how to
extend MD to enable it to sample the isoenthalpic (con-
stant pressure) ensemble. The standard MD algorithm
samples the microcanonical (constant energy) ensem-
ble, since Newton’s equations of motion conserve the
total energy, and it was not immediately apparent how
could one modify MD to sample other, more experimen-
tally relevant conditions. Andersen’s solution to achiev-
ing constant-pressure MD sampling was to extend the
dynamical variables of the system to include the vol-
ume; in other words, the volume became a new dynam-
ical variable, with a fictitious mass and a velocity (or
momentum) associated with it. With a term PV
added to the potential energy, where Py is the exter-
nal pressure and V' the volume, this method, commonly
known as Andersen’s barostat, can be seen to sample
the isoenthalpic ensemble at pressure P = Pey;. Shortly
after, Parrinello and Rahman [19,20] showed how the
scheme could be generalised to include shape as well as
volume fluctuations. This was an important generalisa-
tion, as it made possible to consider such problems as
crystallisation and solid—solid-phase transitions.

Following Andersen’s extension of MD to sample the
isoenthalpic ensemble, the question arose as to whether
it was possible to find a similar scheme allowing MD to
sample the canonical ensemble. Nosé [21,22], following
in the steps of Andersen, incorporated a new dynami-
cal variable coupling the kinetic energy of the atoms to
the external (bath) temperature, in such a way that the
resulting dynamics can be shown to sample the desired
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ensemble. This is now known as the Nosé-Hoover ther-
mostat, as it is most frequently used in a modification
due to Hoover [23]. Andersen’s idea of extending the
system’s dynamical variables to include fictitious ones
such as a barostat, or Nosé’s thermostat, is not only
ingenious; it is actually quite remarkable that a single
additional degree of freedom can effectively play the
role of an entire pressure or temperature reservoir.

In 1985, Car and Parrinello [11] published a paper in
Physical Review Letters which was to take the simula-
tion community by storm. Their paper offered a scheme
to combine MD with the direct calculation of the elec-
tronic structure by means of density functional the-
ory (DFT). Effectively, this obviated the need to rely
on a potential model: energy, forces, and stress could be
obtained directly from the electronic structure calcula-
tion. Bonds could be formed or broken during the sim-
ulation. The idea was to combine the “real” dynamics
of the ions with a fictitious dynamics of the electronic
degrees of freedom, designed in such a way that it would
remain adiabatically separated from the slower dynam-
ics of the ions, while at the same time keeping close to
the electronic ground state.

The Car—Parrinello method was indeed a very impor-
tant breakthrough. For one thing, it showed for the first
time that it was possible to combine finite temperature
simulations and ground-state electronic structure calcu-
lations, something that up to that point, most scientists
would have regarded as far too computationally inten-
sive to be practical. On the other hand, it also served as
a bridge between scientific communities: the simulation
community, that generally had a statistical mechanics
background, and the solid-state physics and quantum
chemistry communities, working on electronic structure
calculations at zero temperature.

During the 1980s and 1990s, MS studies in condensed
matter became more common, thanks in part to earlier
successes and also to ever growing computer power and
its wider availability. However, as is always the case
in science, previous advances had only brought nearer
and made more evident the significant challenges that
still lied ahead. One of these challenges was the study
of phase equilibria. In spite of the dramatic increase
in computer power experienced since the early days of
MS, this problem was still regarded as largely out of
reach, due to the apparent need to explicitly include
the interface. However, Panagiotopoulos [24] devised an
MC algorithm, known as Gibbs ensemble Monte Carlo,
that required only the simulation of the involved phases,
and bypassed any need to consider the interface.

Another challenge, perhaps the most fundamental
one, is the question of time-scales and rare events. The
long-time dynamics of many processes (e.g., protein
folding) is dominated by the presence of free energy
barriers that separate long-lived configurations or states
of the system. Conventional MS techniques are partic-
ularly adept at exploring the short-time-scale dynam-
ics (MD) or the more probable regions of configuration
space (MC), but they are not efficient when it comes
to rare events. New algorithms and theoretical meth-
ods were needed, and began to appear at this time,
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such as the Blue Moon ensemble [10], minimum-energy
path methods such as the Nudged-Elastic Band [25] and
the String [26] method, dynamical algorithms, such as
hyper-MD [27] or metadynamics [28]. Path sampling
methods were also developed at this time [29], eventu-
ally leading to the development of transition-path the-
ory [30]. Another possible avenue was recently opened
by applying some important mathematical results on
Markov processes to the study of metastability [31].

Beyond the question of spanning the multiple time-
scales present in many physico-chemical processes in
condensed matter systems, there is also the question
of addressing different length scales. Certain problems,
such as fracture, catalysis, or biochemistry, require a
description of the system that encompasses the atom-
istic level, where chemical bonds are formed and bro-
ken, all the way up to the mesoscopic level and beyond.
Clearly, these different length scales cannot be treated
at the same level of detail, and it becomes necessary
to seamlessly match different levels of description in
a physically consistent way. Incidentally, this was a
problem already confronted by early simulations of
biomolecules; indeed, the work of Warshel and Levitt
[32] to address enzymatic reactions involved combin-
ing a quantum-mechanical description of the fragments
where chemical reactivity requires it with a molecular
mechanics description for the rest. This work was to
eventually lead to their sharing of the 2013 Chemistry
Nobel prize with Karplus (see above).

To conclude this bird’s eye view of the history of
MS, it is perhaps appropriate to remark that nowa-
days MS has clearly established itself as a key scientific
instrument, capable of aiding in the interpretation of
experimental results, of suggesting new experiments,
and more and more frequently even predicting their
results. That this is so is demonstrated by the grow-
ing number of publications in which both experiments
and simulation tools are used in tandem. However, in
spite of the remarkable advances detailed above (and
many others that we could not do justice to), MS is
still subject to numerous limitations, and, as will be
discussed in the following section, the simulation com-
munity is constantly searching for new ways in which
to overcome them. This search is what will drive the
future evolution of the field.

3 Molecular simulation: the best is yet to
come

While molecular simulation has evolved at breathtaking
speed from its beginnings in the 1950s, driven by the
rapid increase of raw computing power, the invention of
clever algorithms, and the development of efficient and
user-friendly software packages, it is still some distance
away from the grand, but perhaps a little too optimistic
vision of making it possible to understand and accu-
rately predict emergent phenomena all the way from
the atomistic to the macroscopic scale. For instance, the
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precise prediction of phase diagrams of materials from
first principles is often out of reach of current capabili-
ties and so is the simulation of many biomolecular pro-
cesses. While the growth in computational power con-
tinuously pushes the boundaries of what is feasible, we
are currently witnessing several promising algorithmic
and conceptual developments that have the potential to
expand the scope of molecular simulation and are the
focus of this special issue.

3.1 Machine learning

While, as famously remarked by Dirac, the basic nat-
ural laws that determine the interactions of atoms and
molecules are known, often their application is com-
putationally extremely expensive. In the early days
of computer simulations, this problem was circum-
vented by postulating the functional form of inter-
atomic interactions and adapting parameters, so that
the simulations reproduce selected experimental data
or results of high-accuracy quantum mechanical calcu-
lations. This so-called force-field approach did not only
provide numerous insights into the generic mechanism
of many physical processes, but is still the basis for most
atomistic/molecular simulations of complex systems in
biology and materials science. In parallel, approximate
quantum mechanical methods such as coupled clus-
ter theory and density functional theory were devel-
oped and increasingly used in molecular simulations.
Such calculations, however, are computationally very
demanding, severely limiting accessible system sizes,
and simulation times. Recently, data-driven machine
learning approaches have been shown to provide a con-
venient way to circumvent this problem and combine
the advantages of inexpensive force fields with the accu-
racy of ab initio methods.

The main idea in the application of machine learn-
ing to the calculation of energies and forces in molec-
ular simulations is to use high-precision reference data
obtained from costly electronic structure calculations
to parameterize inter-atomic potentials represented by
flexible machine learning models such as neural net-
works [33] or kernel-based approaches [34]. Once prop-
erly trained, machine learning models accurately inter-
polate between the reference data, producing force
fields that deliver the accuracy of ab initio calculations
at a fraction of their cost. The development of such ML
force fields, which can easily model also chemical reac-
tivity, relies on the availability of large sets of train-
ing data that are usually constructed iteratively, but
recently on-the-fly approaches have been put forward
to generate reference data only when needed [35,36].
Since with a sufficiently large set of training data, the
accuracy of the machine learned model will be limited
mainly by the quality of the reference data, machine
learning-based simulations will expose any deficiencies
of the computational methods used to produce the ref-
erence data, providing a further drive for the develop-
ment of more accurate quantum mechanical methods.
Due to their computational efficiency, machine learn-
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ing methods make it more and more possible to apply
ab initio methods to large systems and truly go all the
way from the atomistic description to the calculation
of macroscopic properties, eventually completing the
unification of the statistical mechanics and electronic
structure communities initiated by the advent of the
Car—Parrinello method [11] in the mid-1980s.

The significance of machine learning in molecular
simulation, however, goes far beyond the development
of computationally inexpensive yet accurate force fields.
Enormous amounts of data are produced every day
by molecular dynamics simulations running on high-
performance computers around the world and one of
the big challenges is to make sense of this data rather
than to generate them. In particular, clustering, dimen-
sionality reduction and pattern recognition, and clas-
sical methods of machine learning can be applied to
discover hidden patterns and regularities in the out-
put of large-scale molecular simulations. Such machine
learning approaches help to identify the (hopefully)
few degrees of freedom that capture the essential fea-
tures of the process under study and that can be used
to construct coarse-grained lower dimensional mod-
els amenable to human understanding [37,38]. Fur-
thermore, generative models based on learned map-
pings promise to provide a way to sample the equi-
librium distribution efficiently, bypassing the statisti-
cal correlations that often hamper molecular dynam-
ics and Monte Carlo simulation [39,40]. Finally, let
us mention that the relation between molecular sim-
ulation and machine learning is not necessarily a one-
way street. Techniques developed to explore the rugged
potential energy surface of complex molecular systems
may turn out to be helpful in training deep learning
models by viewing them as interacting particle systems
[41].

3.2 Rare events and enhanced sampling

The advances in machine learning approaches men-
tioned in the previous section are also likely to have
an impact on the simulation of processes dominated
by rare events, for instance phase transitions, chem-
ical reactions, or biomolecular rearrangements. Such
processes are characterized by widely separated time-
scales arising from narrow energetic or entropic bottle-
necks that the system needs to cross when transitioning
between long-lived states. The resulting long waiting
times represent a significant computational challenge
and often preclude the straightforward simulation of
rare but important barrier crossing events. While in the
past 50 years, big advances have been made in the devel-
opment of simulation methods to circumvent this prob-
lem [42], devising more efficient methods for the sam-
pling and, perhaps even more importantly, the analysis
of rare events is still a very active area of research, as
is demonstrated by the related contributions included
in this special issue.

Since rare events are caused by rarely visited bar-
riers, one idea to solve the rare event problem in
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molecular simulations consists in artificially enhanc-
ing the probability to sample these configuration space
regions by applying a suitable bias or constraint. In
the equilibrium case, the effect of the bias can then
be removed easily by reweighting. This general bias-
ing strategy has been widely and very successfully
applied in many forms, either using static biases like
in umbrella sampling [43] or building up the bias func-
tion dynamically as in metadynamics [44], flat his-
togram sampling [45], or the nested sampling meth-
ods discussed in this special issue [77]. As a result
of such calculations, one typically obtains free energy
profiles along selected degrees of freedom, which can
be complemented with dynamical information obtained
from unbiased dynamical trajectories initiated in bar-
rier regions to obtain information on the kinetics of the
process under study.

In general, biasing schemes work well, if one has a
good idea of the collective variables governing the evolu-
tion of the system. In this case, free energy barriers cor-
respond to true dynamical bottlenecks traversed by the
system. Particularly for complex disordered systems,
however, characterizing the dynamics in terms of a few
relevant collective variables is a highly non-trivial prob-
lem and while corresponding free energy landscapes
might look meaningful, they can be deceptive in terms
of kinetics and mechanism. Path-based methods have
been devised exactly to avoid this problem and to study
rare events without prior mechanistic knowledge. Some
of these approaches, including the nudged-elastic band
method [25] or the string method [26], are based on arti-
ficial pathways that connect stable states in an unbi-
ased way, but do not obey the underlying dynamical
rules. Other methods, such as transition-path sampling
[46,47], forward flux sampling [48,49], and milestoning
[50], employ dynamical trajectories that embody the
true time evolution of the system. Here, the bias that
ensures reactivity is applied at the trajectory level with-
out affecting the natural dynamics the system follows
along each individual trajectory.

While the ability to sample rare events is crucial for
the investigation of many condensed matter processes,
it is only the first step towards mechanistic understand-
ing. Further analysis of the generated pathways is nec-
essary to identify important degrees of freedom that
capture the essential features and to construct mean-
ingful low-dimensional models. The probabilistic frame-
work of transition-path theory [51] and of Markov state
models [52] offers the theoretical underpinning for this
task, which will become more and more important as
the amount of generated data continues to increase at
a rapid pace. Machine learning approaches are increas-
ingly used for the sampling and analysis of rare event
trajectories as exemplified in the application of the
transition manifold analysis to amyloid fibrillation dis-
cussed in the contribution of Bittracher et al. [76].
Other exciting developments in this area include the
application of maximum entropy and maximum caliber
principles to incorporate experimentally known rate
constants into trajectory-based simulations presented
in the article of Bolhuis et al. [78].

@ Springer



3 Page 6 of 12

3.3 Transport and non-equilibrium molecular
dynamics

On a macroscopic level, the transport of conserved
quantities like mass, charge, momentum, and energy in
response to weak external perturbations is described in
terms of phenomenological equations, such as Fourier’s
law for heat conductions or Fick’s law for diffusion, in
which all microscopic details are condensed into the val-
ues of some material specific transport coefficients. The
perhaps most direct method to compute these coeffi-
cients is to carry out non-equilibrium molecular dynam-
ics simulation and monitor the currents induced by
external fields or gradients [53]. Alternatively, the con-
nection to the microscopic dynamics of the system is
provided by the Green—Kubo theory of linear response
[54,55]. In this framework, transport coefficients such
as the diffusivity, the shear viscosity, and the thermal
conductivity are expressed as integrals over the equi-
librium time autocorrelation function of the appropri-
ate fluxes. The correlation functions can be computed
in equilibrium MD simulations, and this approach has
been used extensively to investigate transport processes
in many systems ranging from solids to liquids and
complex soft materials. Often, however, autocorrelation
functions decays very slowly, particularly in solids but
also in dilute gases, such that excessively long simula-
tion times are needed to converge the results. As dis-
cussed in the contribution by Grasselli and Baroni [80]
and demonstrated using heat transport in insulators
and charge transport in ionic conductors as examples,
this problem can be significantly alleviated by exploit-
ing the gauge invariance of transport coefficients com-
bined with a new spectral analysis of the fluxes.

A particular challenge in the field of transport lies
in the simulation of phoretic phenomena such as ther-
mophoresis and diffusiophoresis, in which the motion
of colloidal particles is driven by gradients in the sur-
rounding fluid [56]. The magnitude of the phoretic
motion and sometimes even its direction may depend in
unexpected ways on parameters such as salinity and pH
of the solvent, temperature, solute concentration, spe-
cific surface coatings, and molecular weight. Phoretic
processes, however, are difficult to model with com-
puter simulations due to the disparate time and length
scales that arise, because the colloids are much bigger
than the solvent molecules. Moreover, computer simula-
tions of this complex phenomenon need to both include
thermal fluctuations and reproduce hydrodynamic flow.
The challenges arising in the computer simulation of
phoretic transport as well as recent progress in this area
are the subject of the article by Ramirez-Hinestrosa and
Frenkel included in this special issue [79].

While in the case of weak perturbations, transport
properties are related to equilibrium fluctuations, these
relations break down for large forces that drive the sys-
tem far from equilibrium. In this case, which is particu-
larly relevant at the nanoscale, transport properties are
dominated by large fluctuations and non-linear behav-
ior arises. The statistics of non-equilibrium fluctuations
can be analysed in the framework of stochastic thermo-
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dynamics [57] and large deviation theory [58] provides
the mathematical formalism to determine higher order
transport coefficients in numerical simulations of non-
equilibrium steady states, as discussed in the contri-
bution by Limmer [81]. The full non-linear response of
a system to an external perturbation is also considered
in the dynamical non-equilibrium approach (D-NEMD)
method often applied to study biomolecular systems
and reviewed in the article of Oliveira et al. [89].

3.4 Adiabatic separation, dynamics, and statistics

Time-scale separation in the evolution of complex sys-
tems is a well known phenomenon in theoretical physics,
and has been used many times in the past, in quan-
tum and classical dynamics to justify successful approx-
imations in the solution of relevant questions. Possibly,
the most widespread use of this phenomenon is with
the Born—Oppenheimer (BO) approximation, in which
one assumes that the electrons stay in their ground
state (parametrically dependent on the nuclear coor-
dinates), while the nuclei slowly move in the (mean)
field produced by the electrons around them. It is
difficult to underestimate the importance of the BO
approximation, since a large part of condensed mat-
ter physics is based on it. Beyond that, however, the
adiabatic approximation is used also in the solution of
the dynamics of classical many-body systems where it
finds an appropriate expression close in spirit to the BO
one. Very often, in partial treatments, the use of the
approximation is limited to the solution of the prob-
lem associated with the simplified system generated by
the adiabatic separation without tackling the solution
of the whole coupled problem. In molecular simulation,
instead, the association of computer power and smart
algorithms has permitted to address the problem in its
entirety, solving on the fly the “evolution” (in the quan-
tum case, the calculation of the ground state) of the fast
variables to drive that of the slow variables .

Of course, the invention of suitable algorithms is
essential and never a trivial job. However, as we have
already recalled, in the 80s, Car and Parrinello gave
the good way to solve this problem and created what
is normally called Car—Parrinello molecular dynamics
[11]. On the footpath of this success, Sprik, a few years
later, suggested a smart way to solve the dynamics of
polarizable models which are built in a way that can be
read as two set of adiabatically separated variables [59)].
Another 10 years elapsed before, first, Réthlisberger
and, then, Vanden Eijnden and Maragliano produced
an algorithm to sample the mean force in a statistical
system adding to it some extra-variables adiabatically
separated by the natural ones [60]. All in all, a magnif-
icent demonstration of the power of the method is to
solve complex dynamical situation. This line of research
is far from being abandoned, and recently, there have
been at least a couple of advances worth recording. This
is why, in this collection, you will find a paper on the
exact adiabatic separation of real and virtual degrees
of freedom by exploiting the motion of zero-mass par-
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ticles constrained to move on an hypersurface of the
real variables space [82] and another on an attempt
to improve stability and performances of the original
Car—Parrinello approach by introducing a new extended
Lagrangian in place of the original one [83].

3.5 Integrators: deterministic and stochastic

The molecular dynamics approach is based on the solu-
tion of Newton’s equations of motion, which, for a sys-
tem of N particles, constitute a set of 3N second-order
ordinary differential equations. For any realistic sys-
tem, the forces in these equations are of such com-
plexity that the equations cannot be solved analyti-
cally, and therefore, a numerical integrator or solver
must be used. Numerical integrators for Newton’s equa-
tions must operate on both a formal and a practical
level. On a formal level, an integrator should preserve,
to the greatest extent possible, the underlying physics
of the equations of motion. Since Newton’s equations
are equivalent to Hamilton’s equations of motion, the
integrator should preserve their underlying symplec-
tic structure and, thereby, satisfy Liouville’s theorem
of classical statistical mechanics, so that the energy-
conservation error is bounded and phase-space volume
is preserved. On a practical level, in a molecular dynam-
ics simulation, whatever tricks are employed to speed
up the calculation of the forces, ultimately, it is the
force calculation that is the most time-consuming part
of the simulation. Therefore, the time-scale that can
be accessed in a molecular dynamics simulation will
be limited by the number of force evaluations needed
to reach that time-scale. The accuracy of an integra-
tor determines the number of force evaluations needed
and, therefore, controls the efficiency of the simulation.
The same practical considerations must be taken into
account in designing integrators for stochastic simula-
tions based on the Langevin or generalised Langevin
equation or for deterministic thermostats and barostats
for sampling isothermal and/or isobaric ensembles.
The MTS integrators mentioned in Sect. 2 repre-
sent a perfect marriage of algorithms that preserve
the formal structure of the underlying equations while
attempting to enhance the efficiency of a simulation
[12,13]. The formal aspects of an MTS algorithm are
captured via the use of a Trotter factorized classical
propagator derived from the Liouville operator, a for-
malism that has proved extremely powerful in designing
numerical solvers for both deterministic and stochas-
tic equations of motion. Unfortunately, when forces are
decomposed by time-scale and the decomposition is in
an MTS algorithm, numerical ”resonances” emerge, in
which frequencies associated with the fast forces limit
the time steps that can be chosen for the slower force
components. This is why the largest time-step is fun-
damentally limited to the 5-10 fs range, even though
temporal variations in long-range forces should allow
a much longer time-step to be employed. Solving the
resonance problem has been a major challenge in the
design of efficient and rigorous molecular dynamics
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integrators. One of the contributions [85] will discuss
several strategies for overcoming these resonances and
allowing use of very large time-steps approaching 100
fs to be employed within an MTS framework. These
will include isokinetic and regulated dynamics schemes
for sampling commonly used ensembles and computing
equilibrium properties and methods derived from the
generalised Langevin equation for generating dynami-
cal observables. In a complementary function, we also
have a contribution [84] on how to optimise the sam-
pling by an appropriate choice of the damping coeffi-
cients in Langevin dynamics.

Beyond the issues highlighted above, new challenges
are already arising in the design of numerical solvers.
As new software and hardware paradigms continue to
transform the landscape of molecular dynamics calcu-
lations, integrators, particularly MTS integrators, will
need to keep up with these advances, which will present
interesting challenges going forward. For example, the
use of accelerators such as graphical processing units
(GPUs), used either as the principal computational
engine or in conjunction with CPUs, changes the bal-
ance in computation time between different force com-
ponents, which could affect the performance of MTS
integrators. In addition, potential energy models based
on machine learning of quantum chemical calculations
do not readily present ways to be decomposed based
on time-scales. Therefore, new strategies for working
with such potential models within the MTS frame-
work will be needed, as the computational overhead
of machine learning potentials is still significant com-
pared to commonly used empirical potential models.
Advances such as these will inevitably drive the design
of next-generation algorithms for molecular dynamics
simulations.

3.6 Quantum dynamics

For classical many-body systems, we can rely on Molec-
ular Dynamics or Monte Carlo methods to study the
model behavior. The dimensionality is important, but
at the same time, it is in no way limiting the possibility
to study in depth the statistical mechanics of our mod-
els. Essentially, there are no restrictions on the clas-
sical models that can be treated in this manner [61].
Also, in the Born-Oppenheimer approximation, assum-
ing no breaking of the adiabatic separation hypothesis,
the interactions between the particles can be obtained
on the flight from quantum mechanics (normally time-
independent density functional theory) without ruining
the validity of the scheme [62].

The situation is still palatable with time-independent
statistical properties of bosonic quantum systems
thanks to the path-integral formulation of quantum sta-
tistical mechanics in imaginary time by Feynman and
its (partial) isomorphism with a model of classical poly-
mers [63]. Unfortunately, for the dynamics of quantum
systems, in particular fermionic, the situation is not as
good as in the classical case. From the computational
point of view, which is our focus here, the complica-
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tion arises from the fact that quantum mechanics is a
theory that is formulated in terms of operators (to us,
matrices, but that does not improve the situation) that
generally do not commute. This complication, for the
dynamics and for fermionic systems, has dramatic con-
sequences, since it makes construction and justification
of algorithms for molecular simulation an extremely dif-
ficult task. It is a legitimate statement to say that, still
at present, there is no simulation method for quantum
dynamics that has power and applicability comparable
to that of the techniques developed for classical sys-
tems [64,65]. Consequently, still now, the real challenge
is to try to improve the existing quantum simulation
methods (normally applicable only to systems of low
dimensionality) or to invent new ones.

Molecular-level phenomena are often, intrinsically,
of quantum mechanical character and involve tun-
neling, non-Born—Oppenheimer effects, and quantum-
mechanical phase coherence. Many, sometimes ad-hoc,
techniques have been developed and applied to study
small molecular species or at the expense of the realism
of the model when referring to complex molecular sys-
tems. Much hopes were put, e.g., in semiclassical meth-
ods [66]. However, in spite of the ingenious ideas and
skilled algorithms used, the approach could not really
afford the level needed for truly condensed matter appli-
cations. Therefore, these approaches fall somehow out-
side of the scope of our specific subject, the simulation
of statistical aggregates of molecules, and will not find
here an appropriate treatment.

It is worth recalling, though, the efforts devoted
to solve quantum dynamics in condensed phases by
approaches mixing quantum (for a small subsystem)
and classical (for the large remaining part, the environ-
ment) dynamics. The starting point for these
approaches, still much in use, is the celebrated surface-
hopping method whose foundation though has remained
essentially intuitive [67]. Attempts to put it on a more
rigorous basis, be them originated by the approximation
called quantum-classical Liouville dynamics or by the
iterative linearised density matrix propagation scheme
[68], have only in part succeeded, so that, until now, the
progress has remained cumulative and even the funda-
mental question of the possibility of a consistent non-
adiabatic quantum-classical statistical mechanics has
been raised with some ground [69].

All in all, the situation remains open but a real
breakthrough is not yet available or even in sight. Very
recently, some more fundamental approaches devoted to
discover new perspectives and algorithms to treat the
full quantum dynamics problem in statistical mechan-
ics systems have emerged. That is the main motiva-
tion for us to include a couple of papers characterizing
this new promising trend: the so-called exact factor-
ization approach aiming from the scratch to go beyond
the Born—Oppenheimer approximation [86] and an evo-
lution of the time-honored, but until now numerically
unsuccessful, standard path-integral approach to quan-
tum dynamics which has been recently successfully
revived [87].
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3.7 New addressable complex phenomena

The history of MS (see Sect. 2) is not only that of
the tools and techniques that constitute its theoreti-
cal body; it is also the history of the problems that
became tractable thanks to those techniques, and that
motivated their development in the first place. Indeed,
it is the drive to answer new questions concerning ever
more complex phenomena that provides the main moti-
vation for the continuing development of new theoret-
ical tools and algorithms in MS. In the last section of
this Topical Issue, we have collected contributions that
aim to illustrate the kinds of systems that can be con-
sidered nowadays, the questions that can be asked (and
answered) about them, and the methodological devel-
opments that make this possible.

It is obvious that biological systems continue to pose
a great challenge to MS, making stringent require-
ments on both models and algorithms. Over the years,
a number of methods have been put forward to speed-
up sampling of configuration space, such as transition-
path determination (nudged-elastic band [25] or string
[26] methods), stochastic-Markov modelling, etc. The
paper by Thomas and Roux [88] discusses how such
methodologies apply and can be combined with data-
driven Machine-Learning techniques in the context of
biomolecules. How such systems respond to external
perturbations (e.g., changing ambient conditions, elec-
tromagnetic fields, etc.) is also an important problem
that can be addressed with the dynamical approach to
non-equilibrium MD (D-NEMD), as discussed in the
paper by Oliveira [89].

Coarse graining has been frequently used to reduce
the complexity of modelled systems. The paper by Zhou
and Glotzer [90] discusses a strategy for the inverse
design of potentials for colloidal nanoparticles having
a predefined ground state structure. In the paper by
Cortes-Huerto et al. [91], the authors discuss how to
cope with the boundary between two regions employing
different levels of description, while Kidder and cowork-
ers [92] focus on questions of design of coarse-grained
models, with the requirement of reproducing energetic
and entropic properties of the reference (atomistic)
model. Finally, Menichetti et al. [93] introduce a met-
ric to analyse and quantify the relative merits of differ-
ent coarse grained representations of a given reference
atomistic system.

An illustration of how MS can complement and aid
experimental efforts is provided by the work of Bernetti
and Bussi [95], who employ MS-generated biomolecular
configurations to predict small-angle X-ray scattering
(SAXS) spectra, an experimental tool used to probe
the structure of biomolecules in solution.

Finally, we consider another problem of great fun-
damental and technological relevance: that of adsorp-
tion/desorption of liquids in nanoscaled pores and cav-
ities, discussed in the paper by Giacomello [94]. Con-
finement at the nanoscale level affects wetting, evapora-
tion, transport phenomena, etc. To harness the poten-
tial technological applications of nanoporous materi-



Eur. Phys. J. B (2022) 95:3

als, a microscopic understanding of these phenomena
is essential.

So far, we have concentrated our attention to prob-
lems which can be, if not solved completely, at least
properly addressed by MS. Let us now try to exemplify
something still waiting to be properly addressed. Non-
equilibrium has been applied to cases in which time
evolution can be followed by standard, stationary or
even time-dependent molecular dynamics. Instead, how
to deal with those in which the non-equilibrium time
evolution of a system is hampered by the presence of
an energy barrier is still a question that remains to be
properly formulated. This surely represents an inter-
esting not yet fully formalized situation in which non-
equilibrium is inextricably coupled to rare event tech-
niques. Something can be already done with selected
methods, e.g., transition-path sampling [70,71] or for-
ward flux sampling [48]. However, this is a more general
new situation that, so far, has received limited atten-
tion.

4 Content of the issue

4.1 Machine Learning (ML) meets MD

4.1.1 Potentials

J. Behler, G. Csényi, Machine learning potentials for
extended systems: a perspective [72]

J. Kofinger, G. Hummer, Empirical optimization of
molecular simulation force fields by Bayesian inference
(73]

4.1.2 Enhanced Sampling

M. Chen, Collective variable-based enhanced sampling
and machine learning [74]

4.2 Recent progress in rare events

4.2.1 Reaction Coordinates

J. Rogal, Reaction coordinates in complex systems - a
perspective [75]

4.2.2 Markov State MC & beyond

A. Bittracher, J. Moschner, B. Koksch, R. Netz, C.
Schiitte, Exploring the locking stage of NFGAILS amy-
loid fibrillation via transition manifold analysis [76]

4.2.3 Nested Sampling

L. B. Pértay, G. Csanyi, N. Bernstein, Nested sampling
for materials [77]
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4.2.4 Max-Entropy to combine Exp & Sim

P. G. Bolhuis, Z. Faidon Brotzakis, M. Vendruscolo, A
maximum caliber approach for continuum path ensem-

bles [78]

4.3 NEMD
4.3.1 Problems to be solved

S. Ramirez-Hinestrosa, D. Frenkel, Challenges in mod-
elling diffusiophoretic transport [79]

4.3.2 Progress in transport by Kubo approach

F. Grasselli, S. Baroni, Invariance principles in the the-
ory and computation of transport coefficients [80]

4.3.3 Transport & Large deviations

D. T. Limmer, C. Y. Gao, A. R. Poggioli, A large devi-
ation theory perspective on nanoscale transport phe-
nomena [81]

4.4 Adiabatic separation, dynamics and statistics

D. D. Girardier, A. Coretti, G. Ciccotti, S. Bonella,
Mass-Zero constrained dynamics and statistics for the
shell model in magnetic field [82]

A. M. N. Niklasson, Extended Lagrangian Born-
Oppenheimer molecular dynamics: from density func-
tional theory to charge relaxation models [83]

4.5 Integrators, deterministic & stochastic
4.5.1 General/Mathematical

R. D. Skeel, C. Hartmann, Choice of damping coeffi-
cient in Langevin dynamics [84]
Resonance free multitime stepping

C.R. A. Abreu, M. E. Tuckerman, Multiple timescale
molecular dynamics with very large time steps: avoid-
ance of resonances [85]

4.6 Quantum Dynamics
4.6.1 Exact factorization with trajectories

F. Agostini, E. K. U. Gross, Ultrafast dynamics with
the exact factorization [86]
Path Integral dynamics

S. C. Althorpe, Path-integral approximations to
quantum dynamics [87]
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4.7 New addressable complex phenomenologies
4.7.1 New trends in biological simulations

T. Thomas, B. Roux, Tyrosine kinases: complex molec-
ular systems challenging computational methodologies
(88]

A. S. F. Oliveira, G. Ciccotti, S. Haider, A. J. Mul-
holland, Dynamical nonequilibrium molecular dynam-
ics reveals the structural basis for allostery and signal
propagation in biomolecular systems [89]

4.7.2 Colloids & active matter

P. Zhou, S. C. Glotzer, Inverse design of isotropic
pair potentials using digital alchemy with a generalized
Fourier potential [90]

4.7.3 Adaptive Resolution MD

R. Cortes-Huerto, M. Praprotnik, K. Kremer, L. Delle
Site, From adaptive resolution to molecular dynamics
of open systems [91]

4.7.4 Coarse grained dynamics

K. M. Kidder, R. J. Szukalo, W. G. Noid, Energetic and
entropic considerations for coarse-graining [92]

R. Menichetti, M. Giulini, R. Potestio, A journey
through mapping space: characterising the statistical
and metric properties of reduced representations of
macromolecules [93]

4.7.5 Cavitation and all that

A. Giacomello, C. M. Casciola, Y. Grosu, S. Meloni,
Liquid intrusion in and extrusion from non-wettable
nanopores for technological applications [94]

4.7.6 Developments in the study of RNA

M. Bernetti, G. Bussi, Comparing state-of-the-art
approaches to back-calculate SAXS spectra from atom-
istic molecular dynamics simulations [95].
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