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Abstract

Studies of social behavior generally focus on interactions between two or more individual animals.

However, these interactions are not simply between whole animals, but also occur between

molecules that were produced by the interacting individuals. Such “molecular social interactions”

can both influence and be influenced by the organismal-level social interactions. We illustrate this

by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions

between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by

males and transferred to females during mating, are involved in inherently social interactions with

female-derived molecules, and they influence social interactions between males and females and

between a female’s past and potential future mates. Here, we explore four examples of molecular

social interactions involving D. melanogaster Sfps: processes that influence mating, sperm

storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players

involved in each interaction and the consequences of their interplay for the reproductive success of

both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be

shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.

While studies of social behavior generally focus on observable interactions between

individuals, additional “hidden” social interactions occur on the molecular level. These

molecular interactions can be considered social in two ways. First, observable social

interactions are influenced by molecular interactions (Ellison & Gray 2009). Second,

molecules from different individuals can interact in what we call here “molecular social

interactions”. The molecular biology of social behavior has thus far been focused primarily

on the former: molecular interactions within an animal that either induce or result from

social interactions. This approach has successfully identified molecular interactors in rodent

and avian affiliative behavior (e.g., reviewed in Keverne and Curley 2004; Adkins-Regan

2009), nematode feeding behavior (e.g., reviewed in de Bono and Maricq 2005), eusocial

behavior (e.g., Smith et al. 2008), and Drosophila courtship (e.g., reviewed in Villela and

Hall 2008; Dickson 2008). However, a complete molecular understanding of social behavior

necessitates an understanding not just of how molecules interact within a social animal, but

also how “social molecules” interact among animals. Here, we present a case study of such

“molecular social interactions” that involves D. melanogaster seminal fluid proteins (Sfps)

that are produced in the male reproductive tract, and transferred to the female along with

sperm during mating. In the case of Drosophila melanogaster Sfps, the molecular social

interactions are extensive, as gene products in seminal fluid induce short- and long-term

changes in females’ behavior, physiology, and gene expression, and these changes require

interactions of Sfps with female-derived molecules and physiology (e.g., muscle,

circulatory, and neural systems). Thus, the male- and female-derived molecules are involved
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in an inherently social interaction—that is an interaction between two individuals of the

same species. Molecular social interactions affect the outcome of individual matings and

occur directly between males and between males and females, and indirectly between

multiple males that have mated with a given female. As we will discuss, molecular social

interactions both shape, and are shaped by, observable behavioral interactions between

conspecifics to affect lifetime reproductive success.

Following mating, female D. melanogaster display a number of behavioral and

physiological changes that impact both male and female reproductive success. For example,

after mating, females increase their rates of oogenesis, ovulation, egg laying, and food intake

(e.g., reviewed in Chapman 2001; Chapman & Davies 2004; Wolfner 2009). Sperm from the

male are stored in specialized sperm storage organs (Fig. 1), and this process may be

facilitated by changes in uterine shape beginning at the onset of mating (Adams & Wolfner

2007; Avila & Wolfner, in press). For several days, mated females are less likely to accept

suitors, actively fleeing or kicking any persistent male (Spieth & Ringo 1983; Ringo 1996).

Within hours after mating, the female increases expression of several known anti-microbial

peptide genes (Lawniczak and Begun 2004; McGraw et al. 2004; Peng et al. 2005b; Mack et
al. 2006; Kapelnikov et al. 2008b), yet the realized immune response that protects the

female from infections is reduced (Fedorka et al. 2007). The lifespan of Drosophila females

is also reduced by mating (Fowler & Partridge 1989; Chapman et al. 1995; Civetta & Clark

2000b; Wigby & Chapman 2005; Barnes et al. 2008).

These changes in behavior, physiology, and gene expression may be brought about by the

behavioral act of mating, by the transfer of sperm, or by other contents of the seminal fluid.

Since males that do not produce sperm still elicit post-mating responses in their partners

(albeit, weaker and more short-term; Manning 1962, 1967; Kalb et al. 1993; Xue & Noll

2000), non-sperm components of the seminal fluid must be involved in the induction of

these responses. In fact, males that transfer sperm but do not transfer Sfps produced in their

accessory glands (Fig. 1) fail to elicit most post- mating responses in females (Kalb et al.
1993, Xue & Noll 2000). It is known that the ejaculatory duct and ejaculatory bulb also

produce secreted proteins that constitute part of seminal fluid, and that some of these

proteins are necessary for post-mating responses (e.g., Gilbert et al. 1981; Meikle et al.
1990; Ludwig et al. 1991; Samakovlis et al. 1991; Lung & Wolfner 2001; Lung et al. 2001;

Iida & Cavener 2004; Bretman et al. submitted). These results together demonstrate that

sperm and Sfps are both required to induce long-term post mating responses in females

(Manning 1962, 1967; Kalb et al. 1993; Heifetz et al. 2001; Kubli 2003).

Sfps comprise an elaborate intraspecific signaling system. Of the more than 180 predicted

extracellular proteins present in the reproductive secretory glands of male D. melanogaster,

over 100 have been confirmed to be transferred to the female along with sperm (e.g.,

reviewed in Ravi Ram & Wolfner 2007a and Chapman 2008; see also Walker et al. 2006;

Chintapalli et al. 2007; Findlay et al. 2008, 2009; Takemori & Yamamoto 2009). Many of

the transferred proteins fall into conserved protein classes found in the seminal fluid of most

animals studied to date and include proteases, protease inhibitors, acid lipases, cysteine rich

secretory proteins (CRISPs), and lectins (Mueller et al. 2004; Ravi Ram & Wolfner 2007a).

Other, less-expected, classes of Sfps such as odorant binding proteins suggest a possible role

for small molecules in inducing female post-mating responses (Findlay et al. 2008). Odorant

binding proteins are known to shuttle pheromones or other small molecules to odorant

receptors in the olfactory system (e.g., reviewed in Pelosi et al. 2005). Presence of predicted

odorant-binding proteins in the seminal fluids suggests that they may play a similar shuttling

role for molecules once within the female reproductive tract. The wide variety of protein

classes present in the seminal fluid suggests that Sfps take part in a complex series of

interactions within the mated female and do not just fulfill a single simple role.
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Upon transfer to females, Sfps target to specific tissues which are likely to relate to their

function within the mated female (e.g., Meikle et al. 1990; Betram et al. 1996; Lung &

Wolfner 1999; Heifetz et al. 2000; Peng et al. 2005a; Ravi Ram et al. 2005; Fig. 1). For

example, proteins associated with sperm storage and retention have been detected in the

female sperm storage organs, and ovulin, which stimulates ovulation, targets to the base of

the ovaries (Heifetz et al. 2000; Ravi Ram et al. 2005). Several Sfps, including ovulin, have

also been detected in the circulatory system of mated females from where they can gain

access to the brain and/or endocrine systems (Meikle et al. 1990; Lung & Wolfner 1999;

Ravi Ram et al. 2005; Pilpel et al. 2008) and thus, potentially, affect female behavior.

Further studies of the targets of Sfps may help to uncover their functions in the mated

female.

Drosophila melanogaster Sfps provide an excellent model system in which to investigate

molecular social interactions, due to the powerful tools available in this species. Mutant or

transgenic males in which Sfps are increased, decreased, or eliminated can be used to dissect

the effect(s) of particular Sfps on female post-mating responses (e.g., Gilbert et al. 1981;

Herndon et al. 1995; Neubaum & Wolfner 1999; Chapman et al. 2003; Liu & Kubli 2003;

Iida & Cavener 2004; Ravi Ram et al. 2006; Ravi Ram & Wolfner 2007b; Mueller et al.
2008; Wong et al. 2008a, Bretman et al., submitted). A large collection of freely available

genomic databases (e.g., FlyBase; Fly atlas, Chintapalli et al. 2007) facilitate rapid progress

as well. These techniques and tools, along with studies associating allelic variation in Sfps

with variation in their effects, have led to a greater understanding of the molecular social

interactions taking place between all of the players involved in Drosophila mating (e.g.,

reviewed in Wolfner 2009). Furthermore, studies of D. melanogaster Sfps are likely to

provide insights into the molecular social interactions of other species given that Sfps impact

female post-mating responses across a wide taxonomic range (e.g., reviewed in Gillott 2003;

Poiani 2006).

We will use two particularly well-studied Sfps, the sex peptide (SP) and ovulin, as examples

in the following sections to illustrate the way in which Sfps act as molecular mediators for

social interactions. SP is a small peptide that affects female response to male courtship,

oogenesis, ovulation, immune response, feeding, and juvenile hormone production

(Moshitzky et al. 1996; Chapman et al 2003; Kubli 2003; Liu & Kubli et al. 2003; Carvalho

et al. 2006; Domanitskaya et al. 2007). Ovulin is a large pro-hormone that increases

ovulation during the first 24 hours after mating. Further details of both these proteins, as

well as the social context in which they exert their functions, are discussed herein.

While over 180 known or putative D. melanogaster Sfps have been identified, only one

female receptor to an Sfp is known: the sex peptide receptor, a G protein-coupled receptor

expressed in the female reproductive tract and nervous system (Yapici et al. 2008).

However, we expect that many Sfps interact with female-derived proteins. Some female-

derived proteins that play a role in female post-mating behavior and physiology have been

identified and will be discussed in this review, but their interactions with Sfps remain

speculative at this time.

Several approaches have been used to identify genes in females whose products mediate

response to, are regulated by, or otherwise interact with, Sfps. Proteins produced in the

female sperm storage organs have been identified and have the potential to interact with

Sfps (Lawniczak & Begun 2007; Allen & Spradling 2008; Prokupek et al. 2008, 2009).

Microarray data from whole flies, heads, or reproductive tract tissues have shown that

different aspects of mating, including Sfps, cause a transcriptional response in the female

after mating (McGraw et al. 2004, 2008, 2009; Lawniczak & Begun 2004, 2007; Peng et al.
2005b; Mack et al. 2006; Kapelnikov et al. 2008b; Innocenti & Morrow 2009), though it is
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not likely that most post-mating responses are due to mating-induced transcription.

Transcriptional changes of the largest magnitude are seen by about 6 to 8 hours after mating,

a time by which most Sfps are no longer detectable in the female. Therefore, Sfps may set

into motion the transcriptional modification of the female, but the genes regulated by these

modifications are less likely to encode Sfp-interacting proteins than the genes expressed by

the female prior to mating. Nevertheless, these mating-regulated genes likely are players in

the next steps of the molecular social interactions. To fully understand the molecular social

interactions in which Sfps are involved, we must identify female interactors, their functions,

and how they have co-evolved with their male-derived partners.

Drosophila seminal fluid proteins and molecular social interactions: An

interplay in four acts

In this section, we present four examples of molecular social interactions in the format of

acts in a play involving D. melanogaster Sfps and those molecules with which they interact,

derived from different actors (a female and her past, present, and potential future mates),

that occur at different times (before, during, and after copulation), in different settings

(outside and inside the female’s body, within the female reproductive tract, nervous and

circulatory systems), and on different time scales (immediately and over the course of

evolution). We also discuss the potential influences of each of these interactions on male and

female reproductive success. For many of the processes that we describe, there are other

known molecular actors, but they are not known to interact with Sfps and therefore are not

included in this review for simplicity. The curtain is rising.

Setting the stage: Transfer and fate of sperm and seminal fluid proteins

Copulation duration—Copulation duration is generally ~ 20 min in D. melanogaster
(Gilchrist & Partridge 2000) and is influenced by several factors that include: female

cuticular hydrocarbons (Marcillac & Ferveur 2004), female mating history (Friberg 2006;

Singh& Singh 2004), male and female body size (LeFranc & Bundgaard 2000), and the

social environment before and during copulation (see below; Bretman et al. 2009; Wigby et
al. 2009). Copulation duration in D. melanogaster is generally longer than necessary for

sperm transfer and may be subject to sexual conflict (Gilchrist & Partridge 2000; Mazzi et
al. 2009).

Mating plug—Shortly after the start of mating, Sfps from the male’s ejaculatory bulb

begin to form a mating plug in the female’s uterus (Ludwig et al. 1991; Bretman et al.,
submitted). By the end of mating, Sfps from the male accessory glands will have completed

the mating plug (Lung & Wolfner 2001). The purpose of the mating plug is unknown: it is

unlikely that it physically and permanently blocks subsequent inseminations of the female as

it is only present for a few hours, yet recent evidence suggests that an Sfp in the mating plug

may prevent females from re-mating shortly after their initial mating (Bretman et al.,
submitted). The mating plug may also be a way to assist with sperm storage, including

potentially to protect the male’s ejaculate from being expelled by the female before sperm

have been stored.

Sperm—The time of sperm transfer varies between individual matings and between

different fly strains (Fowler 1973), but appears to be complete by eight minutes after the

start of mating (Fowler 1973; Lung & Wolfner 2001; Gilchrist & Partridge 2000). Sperm

transfer itself takes only about 1 minute to complete (Gilchrist & Partridge 2000). Upon

transfer to the female, sperm move through the uterus and into specialized sperm storage

organs, the paired spermathecae and the seminal receptacle. The sperm storage process

begins during mating and continues for a few hours (Bloch Qazi et al. 2003). Sperm can
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remain viable in the female’s sperm storage organs for approximately two weeks (Kaufmann

& Demerec 1942; Lefevre & Jonsson 1962). Sperm from multiple males can co-occur in the

sperm storage organs of females because D. melanogaster females, as in other animal

species, commonly mate with multiple males in nature (e.g., see Boorman & Parker 1979;

Birkhead & Møller 1998; Harshman & Clark 1998; Imhof et al. 1998; Simmons 2001).

When two males mate successively with the same female, there is an opportunity for sperm

competition as the gametes of the different males compete to fertilize the female’s eggs.

Act 1: To mate or not to mate

Setting: The mating arena

Time: Before copulation

Organismal actors: Male, female, female’s previous mate (in absentia)

Known molecular actors: SP and SPR, four supporting Sfps (cuticular and

ejaculatory bulb pheromones which also participate in this Act will not be

discussed; for review see e.g., Hall 1994; Ferveur 1997; Greenspan & Ferveur

2000; Markow & O’Grady 2005; Dickson 2008; Villella & Hall 2008).

Effect: Sfps received from one mate affect the outcome of subsequent intersexual

interactions

When a male and female D. melanogaster encounter each other, the outcome is often a

series of courtship steps (Hall 1994; Greenspan & Ferveur 2000) followed by copulation.

But, what factors determine whether a male will court and attempt to copulate and how a

female responds to the solicitations by males? In D. melanogaster, the decision by males to

court and the response of females to male courtship depends, in part, on female mating

status: males that have previously courted mated females are less likely subsequently to

court a mated female than an unmated female, and mated females are less likely than

unmated females to copulate with a courting male. The difference in male courtship

behavior in response to female mating status is due, in part, to molecular social interactions

between the male, the female, and the female’s previous mates (e.g. Tompkins et al. 1983;

Scott 1986; Ferveur 1997; Greenspan & Ferveur 2000; Markow & O’Grady 2005; Ejima et
al. 2007; Dickson 2008; Villella & Hall 2008; Yew et al. 2009), but male courtship intensity

does not depend on whether a female received Sfps from her previous mate (Tram &

Wolfner 1998).

Mating-dependent changes in female responses to male courtship (i.e., whether the female

copulates or not) have also been attributed to molecular social interactions. For example,

females that received the Sfp SP during mating were much more likely to exhibit rejection

behaviors (e.g., extrude ovipositor; Fig. 2) and less likely to copulate with a courting male

than females that did not receive SP (Chen et al. 1988; Aigaki et al. 1991; Chapman et al.
2003; Liu & Kubli 2003; Soller et al. 2006; Yapici et al. 2008). Recently, another protein,

PebII, has been found to reduce female receptivity immediately after mating (Bretman et al.,
submitted). SP interacts with a G protein-coupled receptor (sex peptide receptor or SPR) in

the female nervous system to effect female response to male courtship (Yapici et al. 2008).

SP and SPR act through approximately 6–8 fruitless- and pickpocket-expressing

multidentritic sensory neurons (Hasemeyer et al. 2009; Yang et al. 2009) located along the

reproductive tract. Without SPR, females do not show the SP-induced post-mating changes

in egg-laying or in rejection behavior, indicating the primary role for this molecule in these

aspects of the female’s post-mating responses (Yapici et al. 2008).

The effects of SP are long-lasting because SP is maintained in the mated female’s sperm

storage organs for days after mating and is gradually released (Peng et al. 2005a). SP binds
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to sperm, which apparently stabilizes the peptide. As long as the female contains sperm with

bound SP, she is likely to display rejection behavior in response to mating attempts by other

males. This long-term effect of SP allows a male to affect social interactions, in absentia, for

several days after mating has ended (Chapman et al. 2003; Liu & Kubli 2003). At least four

additional Sfps are necessary for this facet of SP function. These Sfps, the predicted cysteine

rich secretory protein CG17575, the predicted protease CG9997 and the gene duplicate

lectins CG1652 and CG1656 work in an interdependent network to localize SP to the sperm

storage organs of the females and/or bound to sperm (Ravi Ram & Wolfner 2009). In

contrast to the SP, these four Sfps do not persist in females for days. Rather, they exert their

effects soon after mating and then disappear. It is the persistence of SP that maintains the

female’s post-mating responses of egg-laying and re-mating rejection. If SP, or any of the

network Sfps, is not transferred to a female, she resumes being willing to mate with a

subsequent courting male within a day of her first mating (Ravi Ram & Wolfner 2007b).

Whether, when, and how frequently a female D. melanogaster re-mates affects not only the

reproductive success of her previous and potential subsequent mates but also her own

reproductive success. On the male side, it is generally in a female’s previous mate(s)’

interest that she either delays or forgoes re-mating (so that his sperm will not be displaced),

while it is in her current suitor’s interest that she does re-mate (so that he can sire offspring).

On the female side, as in other species, repeated mating can be costly in terms of lifetime

reproductive success (Fowler & Partridge 1989; Arnqvist & Nilsson 2000; Chapman et al.
1995, 2000), but repeated matings can also increase the reproductive success of a female’s

daughters (Priest et al. 2008a) or benefit the female in other ways (e.g., avoiding infertile

matings or genetic incompatibility; Arnqvist & Nilsson 2000). Because matings can be

costly to females (Fowler & Partridge, 1989), there is the potential for intersexual conflict

between females and their suitors over re-mating (Arnqvist & Rowe 2005).

The example described in Act 1 demonstrates that the transfer of molecules during mating

serves as a means of interaction between a female and her mate, between a female and the

subsequent males she encounters, and between the female’s multiple mating partners. Thus,

the outcome of an encounter between male and female can be said to be influenced by both

inter- and intrasexual molecular social interactions and can potentially result in both intra-

and intersexual conflict over female re-mating.

Act 2: Should sperm stay or should they go?

Setting: The female reproductive tract

Time: During and after copulation

Organismal/cellular actors: Female, sperm

Known molecular actors: Acp36DE and other Sfps, proteins from the female

sperm storage organs

Effect: Sfps affect conformation of uterus, sperm storage, and success in sperm

competition

Once copulation begins, a series of molecular social interactions unfolds within the female’s

reproductive tract. A subset of these interactions determines the fate of sperm in the female

reproductive tract and, thereby, influences male reproductive success in two ways: (i)

storage and subsequent release of sperm from storage determine which male’s sperm

fertilize a female’s eggs and (ii) sperm storage is necessary for the persistence of post-

mating changes in female behavior (e.g., by serving as a source of SP; see Act 1 above;

Manning 1962, 1967; Peng et al. 2005a; Bloch Qazi et al. 2003 for review). Thus, getting

sperm into storage is of vital importance to males, and male contributions appear to play an
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active role in making sure this happens. Time is also of the essence: sperm that remain

unstored in the female’s uterus when she lays her first egg post-mating may be expelled

from the female (Fowler 1973; Gilbert 1981), creating a potential tradeoff between the

timing of sperm storage and egg output.

The mechanism by which sperm move through the female reproductive tract presents some

unusual considerations. Unlike mammalian sperm, D. melanogaster sperm are extremely

long relative to the female’s body size (roughly half the length of the entire female; Pitnick

et al. 1995) and thus may be constrained from propelling through the female reproductive

tract. Molecular social interactions appear to play a role in solving this conundrum. Recent

evidence suggests that sperm movement through the female reproductive tract is mediated

by uterine conformational changes that themselves are mediated by Sfps (Adams & Wolfner

2007; Avila & Wolfner, In press). Before mating, the female reproductive tract is in a

“closed” conformation: the lumen is tightly compacted and folded into an S-shape and the

entrance to the sperm storage organs is physically blocked by a flap of the uterine wall

(Adams & Wolfner 2007). Within the first few minutes of mating, the posterior uterus

begins to open up and eventually the entrance to the sperm storage organs becomes

unblocked, with these changes continuing for approximately 45 minutes after the start of

mating until the entire uterine lumen is open. During this time, the sperm mass is moved up

the reproductive tract (perhaps as a result of the conformational changes) and the sperm

mass becomes situated at the site from which sperm can enter storage.

The changes in uterine conformation are not simply the result of the mechanics of mating,

nor do they require sperm to take place (Adams & Wolfner 2007). Sfps, and not sperm, are

required for these conformational changes to occur (Adams & Wolfner 2007). One

particular Sfp, the glycoprotein Acp36DE, is needed for the reproductive tract to proceed

past the mid-stages (Avila & Wolfner, in press). In the absence of Acp36DE, the female

tract only opens part way, retaining a constriction near the anterior end of the uterus, which

appears to prevent the majority of sperm from being actively stored. Consistent with this

hypothesis, Acp36DE is also required for efficient and complete sperm storage, with only

10–50% of the sperm stored in a wild-type mating being stored when females mate to

Acp36DE null males (Neubaum & Wolfner 1999; Bloch Qazi & Wolfner 2003). Presumably

as a result of its effects on sperm storage, Acp36DE also impacts a male’s ability to compete

for fertilizations (Chapman et al. 2000).

The female molecules and physiology involved in the uterine conformational changes are

currently unknown. One plausible mechanism by which Sfps effect uterine conformational

changes is by stimulating the female’s nervous system to control the release of

neuromodulators that induce muscle contraction or relaxation. The uterus is surrounded by

both circular and longitudinal muscles (Heifetz & Wolfner 2004; Middleton et al. 2006;

Adams & Wolfner 2007). Mating enhances muscle differentiation and innervation in the

female reproductive tract and causes vesicle release from nerve termini that innervate the

female reproductive tract (Heifetz & Wolfner, 2004: Kapelnikov et al. 2008a). Sfps,

especially Acp36DE, should be tested for a role in inducing such vesicle release.

Uterine conformational changes are not the only way in which male and female molecules

may impact sperm storage. For example, glucose dehydrogenase, a protein produced in the

reproductive tracts of both males and females, affects both the number and distribution of

sperm stored in the paired spermathecae (Iida & Cavener 2004). Another Sfp, Esterase-6,

influences the timing and rate of sperm storage (Gilbert et al. 1981). Sperm proteins, such as

a polycystin-2 like protein found on the flagella, are also necessary for the storage of sperm

that have been transferred to the female (Gao et al. 2003; Watnick et al. 2003).
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The influence of molecular social interactions on sperm use patterns does not end with

sperm entry into storage. Sperm must be maintained in storage and then released at an

appropriate time to fertilize eggs that are released from the ovary into the oviducts and

uterus (see Act 3 below). Females must receive Sfps to use sperm from a male. Females that

do not receive Sfps during mating will store a small number of sperm, but those sperm will

not be used to fertilize eggs (Hihara 1981; Xue & Noll 2000). Interestingly, Sfps received by

a female in a previous or subsequent mating can partially restore the fertilizing ability of

another mate’s sperm (Xue & Noll 2000; Chapman et al. 2000). In in vitro assays, D.
melanogaster seminal fluid also helps to maintain sperm viability over a short-time scale

(1hr, Holman 2009), but it is not known whether this is also the case within the mated

female. We do not yet know the male and female molecules involved in maintaining sperm

viability in the female but secretions from the spermathecae appear to be necessary for

prolonged sperm viability (Anderson 1945; Boulétreau-Merle 1977; Allen & Spradling

2008). For example, sperm release from storage depends, in part, on spermathecal proteins

(Iida & Cavener 2004) and on the presence of eggs in the female reproductive tract: the

transition from sperm storage to sperm release is delayed in egg-less females (Bloch Qazi &

Wolfner 2003). Retention and release of stored sperm also depends, in part, on Sfps. Six

Sfps have been identified that are necessary for retention or release of sperm from the

female sperm storage organs (Gilbert et al. 1981; Ravi Ram & Wolfner 2007b; Wong et al.
2008a). Interestingly, four of the Sfps that affect sperm release are the same proteins

described in Act 1 that are needed to get SP into the female’s sperm storage organs (Ravi

Ram & Wolfner 2009). Mechanistic connections (if any) between the multiple roles of these

proteins are not yet known. Furthermore, the interactions between male- and female-derived

molecules that influence sperm release have yet to be explored.

The storage, maintenance, and timely release of sperm in the female’s sperm storage organs

have important consequences for both male and female reproductive success. Clearly, a

male will have the opportunity to fertilize a female’s eggs only if his sperm are stored,

maintained, and released when appropriate. For a female, storing sperm allows her eggs to

be fertilized for at least two weeks (the duration of sperm storage) even if she does not

encounter a male (Kaufmann & Demerec 1942; Lefevre & Jonsson 1962). Sperm storage

also allows a female to delay egg-laying until she finds suitable environmental conditions

for offspring development. Females can also benefit by storing sperm of multiple males,

which provides opportunities for both sperm competition (Boorman & Parker 1979;

Simmons 2001) and cryptic female choice (Eberhard 1996).

Act 3: Pas de deux

Setting: The female reproductive tract

Time: During and after copulation

Organismal/cellular actors: Eggs, neurons, muscles

Known molecular actor: Ovulin and Supporting Sfps, Octopamine, OAMB

Effect: Processing of an ovulation-stimulating Sfp requires both male and female

contributions

In insects, ovulation behavior is especially sensitive to male-female interactions, as

ovulation dramatically increases after mating. Unmated D. melanogaster females will lay a

few unfertilized eggs per day (~2), whereas a mated female will lay several dozen eggs

within the first day after mating (~50). This change in number of eggs laid is due to changes

in both oogenesis and ovulation and both of these processes are influenced by Sfps (Prout &

Clark 2000; Chapman 2001). The stimulation of oogenesis appears to result, in part, from an

SP-induced increase in juvenile hormone levels and from oogenesis progressing past an
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arrest point; these will not be discussed further here (Moshitzky et al. 1996; Soller et al.
1999). The changes in ovulation rate are influenced by a different Sfp, ovulin, and are

discussed below.

During ovulation, mature oocytes are released from the ovary and pass through the oviduct

via muscle contractions requiring coordination among the nervous system, muscle, and

epithelium of the female reproductive tract (Middleton et al. 2006; Rodríguez-Valentín et al.
2006; Lange 2009). This coordination ultimately results in oviposition on the food substrate

(Yang et al. 2008). Female molecules necessary for the movement of eggs through the

female reproductive tract have been identified. For example, the biogenic amine octopamine

and one of its receptors (OAMB) are required for ovulation (Monastirioti 1996, 2003; Lee et
al. 2003, 2009; Cole et al. 2005). Neurons producing neuromodulators (e.g., octopamine)

and neuropeptides (e.g., ILP7) innervate the muscles and epithelium of the female

reproductive tract (Monastirioti 2003; Middleton et al. 2006; Rodríguez-Valentín et al.
2006; Lee et al. 2009; Yang et al. 2009). Sfps modulate release of vesicles from nerve

termini in the female reproductive tract (Heifetz & Wolfner 2004), which may include levels

of octopamine release. Thus, Sfps may regulate ovulation by modulating the octopamine

system. Furthermore, vesicle transport proteins in the p24 family, are necessary for

oviposition in females. In female D. melanogaster mutant for these genes, failure to oviposit

results in eggs remaining lodged in the uterus, with further mature eggs backing up in the

upper reproductive tract (Carney & Taylor 2003; Bartoszewski et al. 2004; Boltz et al.
2007). Whether and how these proteins interact with Sfps is currently unknown.

On the male side, the transfer of sperm and Sfps is required to trigger the full response of

increased egg-laying (Heifetz et al 2001). Ovulin contributes to the dramatic increase in egg-

laying rates observed within 24 hours after mating (Herndon & Wolfner 1995; Heifetz et al.
2000). Specifically, as described in the introduction, ovulin increases ovulation rate (Heifetz

et al. 2000). Ovulin’s mechanism of action is currently an area of active study. After mating,

most of the transferred ovulin remains in the reproductive tract, and targets to the base of the

ovaries (Monsma et al. 1990; Heifetz et al. 2000). However, a substantial amount (about

10% of the ovulin that the female receives) crosses a special transiently-permeable region of

the reproductive tract wall to enter the circulatory system (Lung & Wolfner 1999; Monsma

et al. 1990). In principle, ovulin could act from either place to stimulate ovulation. From its

site at the base of the ovary it might directly stimulate muscle contraction or release or

action of neuromodulators such as octopamine (Lee et al. 2003, 2009; Monastirioti 2003);

from the circulatory system, it could act from the outside of the musculature to effect

changes in contraction or could act indirectly by binding to neural or endocrine targets

removed from the reproductive system and causing activity in those that then affect the

reproductive tract.

Ovulin is the object of a particularly interesting molecular social interaction that may affect

ovulation. This interaction appears to be a pas de deux between male and female molecules

resulting in the systematic processing of ovulin into smaller pieces (Monsma & Wolfner

1988; Park & Wolfner 1995). Upon transfer, ovulin within the female reproductive tract is

processed into several cleavage products (as are several other Sfps; Bertram et al. 1996;

Ravi Ram et al. 2006; Fig. 3). It is unknown what role processing of ovulin plays in its

effect on ovulation, but indirect evidence suggests that, as with prohormones in other species

(e.g., Hook et al. 1994; Chen & Raikhel 1996; Garden et al. 1998), processing may increase

ovulin’s activity: expression of ovulin’s cleavage products in unmated females stimulates a

higher rate of ovulation than does expression of full-length ovulin (Heifetz et al. 2005). One

of these bioactive cleavage products contains regions with sequence similarities to the egg-

laying hormone of the mollusk Aplysia (Monsma & Wolfner 1988). The different ovulin

cleavage products appear in the same pattern and over approximately the same time scale in
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matings between wild-type flies, beginning ~10 minutes after the start of mating and ending

about 2 hours later, by which time ovulin is fully processed (Park & Wolfner 1995). Thus,

this time-dependent processing of ovulin could potentially provide a mechanism by which

ovulation rate is regulated.

Ovulin cleavage requires male contributions but only occurs after ovulin has been

transferred to the female (Park & Wolfner 1995), suggesting that female contributions or

infrastructure are necessary for processing to occur. One molecule necessary for ovulin’s

cleavage is the male-derived Sfp CG11864 (Ravi Ram et al. 2006). This protein is a

predicted metalloprotease that itself is cleaved from a predicted inactive form to the

predicted active form while in transit to the female, by one or more other Sfps (Ravi Ram,

LaFlamme, Wolfner, unpubl. data). Though CG11864 is thought to be active while still in

the male, there is no evidence that it can cleave ovulin before it is in the female’s

reproductive tract. As yet unidentified female-derived factors may also be required for

ovulin’s cleavage. This processing represents a fascinating example of a highly coordinated

molecular social interaction (and biochemical pathway) that begins in the male, ends within

the female, and may impact both male and female reproductive success. But, our knowledge

of ovulin processing also raises more questions. Why is this process so tightly regulated?

Are the contributions of males and female to ovulin processing acting in conflict or in

cooperation? How does this molecular social interaction affect the reproductive success of

both sexes?

Before we can fully understand the molecular social interactions that occur during the

proteolytic processing of ovulin, we must identify the female factors that regulate this

processing. The most promising molecular candidates for ovulin processing are proteolysis

regulators. Several studies of female reproductive tract proteins have discovered female-

secreted proteases and protease inhibitors that are regulated in response to mating

(Arbeitman et al. 2002; Swanson et al. 2004; Lawniczak & Begun 2004, 2007; McGraw et
al. 2004; Mack et al. 2006; Chintapalli et al. 2007; Kapelnikov et al. 2008b). It is likely that

some of these are involved in proteolytic pathways that begin in the male and end in the

female, such as that for the processing of ovulin, and these proteins are currently under

investigation. Other female-derived influences on ovulin processing could potentially

include small molecules and the physiological environment of the female reproductive tract

(e.g., pH and other ionic conditions).

Irrespective of the specific molecular actors involved, it is clear that both females and their

mates influence the female’s rate of ovulation shortly after mating. Thus, it is not surprising

that ovulation rate at this time has important consequences for both sexes. At this point, it is

important to recall from Act 2 that the first egg that moves through the uterus after mating

appears to push out sperm that have not moved into storage. Therefore, ovulation shortly

after mating influences not only progeny production but also subsequent male fertilization

success. In a female’s first mating, the interest of the sexes in relation to ovulation rate may

be congruent, as ovulation shortly after mating appears to clear stale eggs from the uterus,

stimulate oogenesis, and coordinate egg production and sperm storage (Chapman et al.
2001). However, in subsequent matings, ovulation rate shortly after mating could be the

subject of intersexual conflict. Males may benefit by temporarily delaying ovulation to

maximize sperm storage, whereas females may benefit by adjusting the timing of ovulation

to influence the subsequent fertilization success of her mate (e.g., by ovulating quickly to

eject a male’s sperm or delaying ovulation to maximize sperm storage). Thus far, ovulation

rate has only been examined after a female’s first mating. Future research should test for

evidence of cryptic female choice (Eberhard 1996) and sexual conflict (Arnqvist & Rowe

2005) over ovulation rate in subsequent matings. Certainly, the fact that the proportion of

unfertilized eggs laid increases after a female’s subsequent mating (Prout & Clark 2000)
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suggests that coordination of the release of sperm and eggs is being modulated by the

female, the male, or both.

Act 4: Two is company, three is a crowd

Setting: The mating arena

Time: During and after copulation

Organismal actors: Entire cast!

Known molecular actors: SP, SPR, ovulin, probably other Sfps and female-

derived molecules

Effect: Social environment and female mating status affect mating duration,

amount of Sfps transferred, and male competitive reproductive success

Although D. melanogaster copulations may look very much the same to the outside

observer, copulations can vary substantially in the amount of Sfps transferred (Sirot et al.
2009). The causes and consequences of this variation have only recently begun to be

explored in D. melanogaster, where the social environment influences the amount of Sfps

transferred (Friberg 2006; Linklater et al. 2007; Bretman et al. 2009; Wigby et al. 2009). In

particular, the quantity of Sfps transferred by a male depends on whether other males are

present before and during copulation: males transfer more of the two Sfps tested (SP and

ovulin; Fig. 4) when they are in the presence of another male before and during copulation

than when they are alone with the female (Wigby et al. 2009). Thus, males can adjust the

amount of Sfps they transfer in response to the potential level of sperm competition. Males

also appear to adjust Sfp allocation in response to another metric of sperm competition level:

whether the male perceives that the female has previously mated or not (Friberg 2006). Such

“strategic allocation” of Sfps is predicted by theory (Cameron et al. 2007) and has also been

demonstrated for the sperm component of the ejaculate in many species (reviewed in Wedell

et al. 2002). The influences of other social environmental variables (e.g., operational sex

ratio, female and male density) on Sfp transfer have yet to be systematically explored, but

some of the variation in Sfp transfer by males results from depletion with successive

matings and replenishment thereafter (DiBenedetto et al. 1990; Sirot et al. 2009).

Variation in Sfp transfer appears to result in corresponding variation in female post-mating

responses. In the extreme situation in which females receive no Sfps during mating, females

show little or no changes in post-mating behavior and males fertilize no eggs (Xue & Noll

2000). In less extreme cases, for example when males transfer more Sfps in response to

potential sperm competition (Bretman et al. 2009; Wigby et al. 2009) or selection for large

accessory gland size (Wigby et al. 2009), female post-mating responses are more

pronounced (e.g., higher egg production, longer delay in re-mating) and males sire more

offspring. Similarly, females that receive lower-than-normal amounts of Sfps because their

mates had recently mated show less pronounced post-mating responses than females mated

to unmated males (Hihara 1981).

The consequences of variation in Sfp transfer for male reproductive success appear clear:

males experience higher competitive reproductive success when they transfer more Sfps

(Wigby et al. 2009). The consequences of variation in Sfp transfer for females are more

complex. Lifetime offspring production of females that repeatedly receive SP is lower than

that of females that mate but do not receive SP (Wigby & Chapman 2005). However,

females that receive the full suite of Sfps produce daughters with higher lifetime offspring

production than females that mate but do not receive Sfps (Priest et al. 2008b; but see also

Long et al. 2009; Priest et al. 2009). More research is needed to determine how subtle
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variation in amount of Sfps received affects female offspring and grand-offspring

production.

Finally, it is important to point out that, since Sfp production appears to be both costly

(Wigby et al. 2009) and limiting (Hihara et al. 1981; Sirot et al. 2009), male investment in

individual ejaculates may be greater than previously appreciated (Cordts & Partridge 1996).

These costs, together with the costs of courtship (Cordts & Partridge 1996), may help to

explain the benefits to males of selectively pursuing (or not pursuing) certain females based

on phenotype or mating status (e.g., Byrne & Rice 2006) and relates to the question posed in

Act 1: to mate or not to mate.

Behind the scenes: Evolutionary Dynamics

Behind the scenes of the main mating arena, a number of important factors have been setting

the stage. Some of these are developmental genes that determine the sex of the fly, such as

Sxl (e.g., reviewed in Cline & Meyer 1996; Christiansen, et al. 2002; Manoli, et al. 2006 )

or its downstream effectors, such as dsf and fru, that are needed for sex-specific behavior

and neural development (e.g., reviewed in Manoli, et al. 2006, Shirangi & McKeown 2006;

Yamamoto 2007; Dickson 2008). Other genes are required for proper development of the

genital tract and fertility; examples include: HR39 (Allen & Spradling 2008) or lz (Anderson

1945) in females, and a late function of prd (Xue & Noll 2002) in males. Though the actions

of these genes are thus ultimately important in mating interactions of Drosophila, they have

a limited role in the types of molecular social interactions we have discussed and will not be

discussed further here. On the other hand, evolutionary processes shape all genes in the

genome and have a specific role in affecting mating behavior and related social interactions

in Drosophila. These are discussed further, below.

Molecular social interactions, such as those discussed earlier, influence not only the

individual interacting flies but also the evolution of the interacting molecules. Over time,

evolutionary responses to the interactions between Sfps and female molecules may leave

signatures on the genes’ sequences themselves (some examples in Drosophila include: Clark

2002; Begun & Lindfors 2005; Mueller, et al. 2005; Clark, et al. 2006; Schully & Hellberg

2006; Haerty, et al. 2007; Kelleher, et al. 2007; Wong, et al. 2008b; see Swanson &

Vacquier 2002, Panhuis, et al. 2006 for reviews). Genes encoding Drosophila Sfps, like

reproduction-related genes across a wide range of taxa, are more likely to show evidence of

positive selection than are most other groups of genes, with the notable exception of

immunity-related genes (Swanson, et al. 2001; Clark 2002; Begun and Lindfors 2005;

Mueller et al. 2005; Schully & Hellberg 2006; Haerty et al. 2007; Kelleher, et al. 2007;

Wong, et al. 2008b; Dean et al. 2008; See Clark et al. 2006; Swanson & Vacquier 2002;

Panhuis, et al. 2006 for review). It has been suggested that rapid evolution of these genes

may result from sexual selection (e.g., cryptic female choice, sperm competition) and/or

sexual conflict (reviewed in Swanson & Vacquier 2002).

An example of the interplay between mechanisms of action and evolutionary dynamics is

ovulin. Earlier, we presented ovulin processing as an example of a highly coordinated

process between the sexes that begins in the male and ends in the female. Thus, ovulin’s

action to increase ovulation soon after mating would appear to benefit both sexes, but further

consideration raises some questions. Is ovulin a mechanism by which the male controls the

female’s physiology, or does the female take advantage of the male’s ovulin contribution for

her own benefit? Has ovulin’s evolution been driven by sexual conflict? Or, is ovulin’s

function truly beneficial to both sexes? Though we currently cannot answer many of the

important questions about ovulin, such as why it is processed or how processing of this
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protein affects its function, we may be able to gain some clues from the evolutionary history

of the protein.

Consistent with its important function in reproduction, ovulin contains short regions that are

highly-conserved between Drosophila species (Wong et al. 2006, and submitted), with its C-

terminus in particular containing several conserved motifs. Genetic and biochemical studies

indicate that these motifs mediate self-association of ovulin molecules, evidenced by

observations of ovulin multimers in vivo in D. melanogaster, as well as in vitro between

ovulin molecules from different species that contain these motifs (Wong et al. 2006 and

submitted). These self-association domains are within a portion of ovulin that has ovulation-

inducing activity, although it is as yet unknown whether self-association is needed for

ovulin’s function.

Interspersed around the highly-conserved backbone of ovulin are rapidly-evolving regions.

In fact, ovulin is one of the most rapidly-evolving proteins in the Drosophila genome

(Aguadé et al. 1992; Aguadé 1998; Tsaur and Wu 1997; Tsaur, et al. 1998). Amino acid

divergence between ovulin from D. melanogaster and its close relative, D. simulans, is

about 15%, compared to a 1–2% average for all other genes (Kern et al. 2004; Andolfatto

2005; Tamura, et al. 2004). There is evidence that some of ovulin’s amino acid divergence

results from positive selection, but the selective forces have not been identified (Aguadé et
al. 1992; Aguadé 1998; Tsaur & Wu 1997; Tsaur, et al. 1998; Fay & Wu 2000). The ovulin-

type pattern of highly divergent protein regions on an otherwise conserved backbone may be

the result of sexual conflict, resulting from sexual selection, acting on proteins required for

essential biological processes, such as those discussed in Acts 2 and 3.

Given the importance of Sfp genes to reproductive success, positive selection should drive

the most advantageous alleles to fixation. We would therefore expect any variation in genes

under positive selection to be transient. However, in contrast to this prediction, nucleotide

variation is maintained in some Sfps, like ovulin (Aguadé, et al. 1992; Tsaur, et al. 1998),

and in Sfp-mediated traits, like sperm competition (Clark, et al. 1995; Clark et al. 2000;

Chapman 2001 for review). Why is so much polymorphism maintained?

The answer may be that there is no single “most advantageous” allele for a particular Sfp.

What is “best” may depend on the genotypes of the individuals involved in the interaction.

Using sperm competition as an example, within the mated female a male’s sperm must

compete for fertilizations with sperm from other males with whom the female had mated or

will mate. In the case of three different genotypes (A, B, and C), Male A may outcompete

male B, and male B may outcompete male C, but this does not mean that male A will

outcompete male C (A>B, B>C, but C>A), when female genotype is held constant. This

property of sperm competition, known as nontransitivity (Clark, et al. 2000), tells us that the

outcome of a sperm competition interaction depends on the particular Sfp alleles of the

competing males. Antagonistic pleiotropy may also lead to maintenance of polymorphism

among Sfp genes (Fiumera, et al. 2005, 2007). For example, a polymorphism in the Sfp

CG17331 is associated both with offensive sperm competitive ability and female

refactoriness. When males carry the “C” allele, they are better able to prevent their mates

from re-mating, but are poorer at displacing a previous mate’s sperm (Fiumera, et al. 2005).

The dependence of female post-mating behavior on the specific genotypic combinations of

her multiple mates makes it difficult for one Sfp gene allele to “win”.

The female’s genotype, along with the interaction between male and female genotypes, also

determines the outcome of sperm competition (Figure 5; Clark & Begun 1998; Clark et al.
1999). Complicating matters further, there is no genetic correlation between male-derived

and female-derived effects on sperm competition (Civetta & Clark 2000a). When the
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genotypes of competing males are held constant, a change in female genotype can determine

which male is the “winner”. The complex interactions between the genotypes of competing

males and between male and female genotypes would make it nearly impossible for a

particular male genotype to persevere in sperm competition. In fact, artificial selection even

fails in the face of this complexity (Bjork et al. 2007).

Males must compete against each other for fertilization success and against the female’s

sometimes conflicting interests. For example, one might expect males to benefit from

inhibiting females from remating, whereas females may benefit from receiving the sperm of

multiple males. It is also likely, given the differing magnitudes of investment in progeny

production between males and females, that they have different optima for the level of post-

mating effects (such as ovulation rate) (Chippindale, et al. 2001). Conflict between the sexes

due to these different optima has been interpreted to suggest a kind of evolutionary “arms

race” (Figure 6). First, male-male competition selects for alleles conferring higher male

competitive reproductive success. These alleles may lower a female’s lifetime progeny

production for unknown reasons, resulting in selection for females to counter-adapt to

overcome harmful male alleles (Rice 2000; Chippindale, et al. 2001; Gavrilets, et al. 2001;

Civetta & Singh 2003). At any given time in a population, this scenario of adaptation and

counter-adaptation would occur simultaneously for many traits, leading to high levels of

allelic polymorphism at the loci involved. Consistent with this prediction, we see that

maintenance of variation in male-derived proteins depends on female genotype (reviewed in

Chapman 2001). Furthermore, variation in Sfp-mediated female post-mating traits, such as

female sperm usage patterns (determined by sperm competition experiments), is also

dependent on female genotype (Clark et al. 1999; Clark 2002; Lawniczak & Begun 2005;

McGraw et al. 2009).

Experimental evolution studies support the hypothesis that evolution of Sfps is driven, in

part, by sexual selection. When monogamy is enforced on D. melanogaster for multiple

generations, males become less harmful and females become less resistant to harm than

polygamous controls (Holland & Rice 1999). In D. pseuodobscura populations selected

under monogamy, normal levels of promiscuity, or elevated levels of promiscuity, males

differed in their ability to prevent remating of their mates (Crudgington, et al. 2005).

Counterintuitively, D. pseuodobscura males selected under monogamy induced greater

refactory periods in females, suggesting that the males selected under promiscuous female

conditions invested more in pre-copulatory competition than in post-copulatory competition.

In another experiment, when female D. melanogaster were prevented from co-evolving with

a male population that was allowed to adapt to the static female genome, these males were

able to induce higher remating rates in females and were better at the “defense” component

of sperm competition (Rice 1996). Though we do not know for certain whether any of these

results are due to changes in Sfps (either at the sequence or expression levels), the Wigby et
al. (2009) study described in Act 4 suggests that Sfps are involved in these types of

adaptations because in that study changes in levels of transferred Sfps correlated with

changes in post-copulatory traits in females (see also Bretman et al. 2009).

Female contribution to molecular social interactions

Since many Sfps are rapidly evolving, we might expect parallel patterns of evolution for the

many female proteins (yet to be identified, with the exception of SPR) with which they

interact. In line with this prediction, there are rapidly-evolving genes expressed in the female

reproductive tract (Swanson, et al. 2004; Lawniczak & Begun 2007; Prokupek, et al. 2008),

although this group as a class is not enriched for rapidly-evolving genes (Haerty, et al.
2007). However, molecular evidence for the type of “arms race” between the sexes,

mediated by Sfp-female interactor pairs, is lacking. The only female interactor of an Sfp that
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has been identified, the G-coupled protein receptor SPR, has not undergone rapid evolution;

in fact, it is strikingly conserved across evolutionarily distant lineages (Yapici, et al. 2008).

Studies that have identified rapidly-evolving female reproductive tract proteins found that

they are enriched for serine proteases, not receptors as might have been predicted (e.g.

Swanson et al. 2001, Clark et al. 2009), though several rapidly evolving female genes also

have unknown functions. Some serine proteases expressed in female reproductive tracts are

differentially expressed in response to mating (Lawniczak & Begun 2007; Prokupek, et al.
2009), suggesting a possible direct or indirect interaction with Sfps.

Much work needs to be done to determine whether SPR is the norm in Drosophila, or an

exception. Examples can be found from many other species where, unlike SP and SPR,

variation in a male or female molecule seems to drive rapid evolution at its partner from the

opposite sex. For instance, the abalone sperm lysin protein has undergone rapid

diversification which is thought to be a response to sequence changes in its receptor on the

egg (Swanson & Vacquier 1998; Swanson, et al. 2001; Clark, et al. 2009). Before we can

test the prediction that changes in male reproductive proteins cause changes to female

molecules (or vice versa) and downstream behaviors, more male/female molecule pairs must

be identified. Transcriptional profiling studies of females after mating (McGraw, et al. 2004,

2008; Mack, et al. 2006; Kapelnikov, et al. 2008b), in conjunction with evolutionary studies

will likely lead to identification of further promising candidates.

Discussion and Future Directions

We now know a great deal about how Sfps affect social interactions related to mating in D.
melanogaster. However, the current body of research on Sfps is only the tip of the iceberg

when it comes to understanding how the social interactions themselves affect Sfp usage and

evolution. Future experiments can explore new social contexts in D. melanogaster for their

effect on the overall amount of Sfps transferred, the effect on specific Sfps, and the ultimate

reproductive consequences for each individual involved. Experimental evolution studies

may test for changes in Sfp production or mating-induced transcriptional responses in

response to altered population dynamics.

One of the greatest challenges to elucidating the relationship between organismal level

interactions and individual Sfps (and their female counterparts) is the difficulty in

performing experiments under “natural” conditions. Advantageous reproductive traits no

doubt depend on environmental conditions. For example, the larval environment (McGraw,

et al. 2007) and adult male nutrition (Fricke, et al. 2008) have been shown to affect post-

mating traits in D. melanogaster. In the lab, there are no predators and flies do not

experience the dangers they might in nature, such as depletion of food supply, extreme

temperatures, or desiccation. Simulating as wide an array of conditions as possible will

provide valuable information on which social interactions are really important in nature, and

how these interactions affect Sfp dynamics and post-mating traits.

Several studies have considered at least one of the important conditions experienced in

nature: genetic variation among individuals. While most mechanistic studies of Sfps have

been carried out using standard lab strains, variation in sperm competition and other post-

mating traits have been linked to variation in male and female genotypes (Clark, et al. 1995;

Prout & Clark 1996; Clark, et al. 1999; Fiumera, et al. 2006; Fiumera, et al. 2007; McGraw,

et al. 2009). Currently, the genomes of nearly 200 inbred strains derived from wild-caught

D. melanogaster are being sequenced (Mackay, et al. 2008). This unprecedented genomic

tool will provide a means for identifying the genetic basis of any number of complex traits,

including behaviors affected by Sfps. Future experiments will be able to tease apart the

effects of different genotypic combinations on social interactions such as receptivity to
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mating and sperm competition. From here, we can finally start to understand how females,

not just males, act to control their reproductive success and to affect the reproductive

success of their mates. Only then will we be able to comprehend how all levels of mating

interactions come together to affect the complex molecular social interactions between

Drosophila individuals.
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Figure 1.
Female Drosophila melanogaster reproductive tract. During mating, the ejaculate is

transferred into the uterus. From there, different components of the ejaculate move to

different locations within the female reproductive tract. Some seminal fluid proteins also

move out of the reproductive tract and into circulation. SR: seminal receptacle; ST:

spermatheca. Drawing by J. Sitnik; for clarity, some parts have been simplified in the figure.
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Figure 2.
Mating attempt by male and (insets) position of female abdomen when she is receptive (A)

and unreceptive (B; ovipositor extruded) to the mating attempt. Drawing by J. Sitnik.
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Figure 3.
Ovulin processing. Western blot showing intact ovulin in the male and ovulin processing

products over time after the start of mating (ASM) in the female reproductive tract.

Schematic of ovulin processing is on right (schematic adapted from Park & Wolfner 1995;

37kDa is the size of intact ovulin; in some places on the blot, bands are broad due to

glycosylation variants that are not shown in the schematic).
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Figure 4.
Male D. melanogaster transfer more sex peptide and ovulin when they are in the presence of

another male before and during copulation than when they are alone. Data figure adapted

from Wigby et al. 2009. Drawing by J. Sitnik; for clarity, some body parts have been

simplified in the figure.
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Figure 5.
Male and female genotypes affect outcome of sperm competition experiments. The

genotypes of the particular male and female involved in a mating affect the defensive

component of sperm defense, P1. P1 measures the proportion of offspring sired by the first

male after the female has remated. In this hypothetical example, male A has a much higher

P1 than male B when either of them mates with a female of genotype 1. However, when

these same males mate a female of genotype 2, male B now has the advantage. Here, the

second male to mate in each competition experiment does not vary. These interactions

become even more complex when the genotype of the second male to mate is taken into

consideration.
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Figure 6.
Sexual conflict may maintain polymorphisms in the population. Competition among males

for mates/fertilizations drives selection for new alleles that confer a competitive advantage

to males for some reproductive trait. For example, males with this allele may induce a higher

rate of ovulation in females by way of a particular Sfp. This higher ovulation rate may be

harmful to females due to higher energy costs, driving selection for alleles that allow

females to resist the effects of the harmful male allele. This cycle continues, with males

developing new competitive strategies, each with a potential female cost associated with

them. As a result of this process occurring simultaneously at many loci, polymorphisms are

maintained in the population. Adapted from Arnqvist & Rowe 2005.
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