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Abstract In this work, we systemically investigate the

molecular states from theΣ
(∗)
c D̄(∗)−Λc D̄(∗) interaction with

the help of the Lagrangians with heavy quark and chiral sym-

metries in a quasipotential Bethe–Salpeter equation (qBSE)

approach. The molecular states are produced from isodou-

blet (I=1/2) Σc D̄ interaction with spin parity J P = 1/2−

and Σc D̄∗ interaction with 1/2− and 3/2−. Their masses

and widths are consistent with the Pc(4312), Pc(4440)

and Pc(4457) observed at LHCb. The states, Σ∗
c D̄∗(1/2−),

Σ∗
c D̄∗(3/2−) and Σ∗

c D̄(3/2−), are also produced with the

same parameters. The isodoublet Σ∗
c D̄∗ interaction with

5/2−, as well as the isoquartet (I=3/2) Σc D̄∗ interactions

with 1/2− and 3/2−, Σ∗
c D̄∗ interaction with 3/2− and 5/2−,

are also attractive while very large cutoff is required to pro-

duce a molecular state. We also investigate the origin of the

widths of these molecular states in the same qBSE frame.

The ΛD̄∗ channel is dominant in the decays of the states,

Σc D̄∗(1/2−), Σc D̄∗(3/2−), Σ∗
c D̄(3/2−), and Σc D̄(1/2−).

The Σ∗
c D̄∗(1/2−) state has large coupling to Σc D̄ channel

while the Σc D̄∗, Σ∗
c D̄ and Λc D̄∗ channels provide similar

contributions to the width of the Σ∗
c D̄∗(3/2−) state. These

results will be helpful to understand the current LHCb exper-

imental results, and the three predicted states and the decay

pattern of these hidden-charmed molecular pentaquarks can

be checked in future experiments.

1 Introduction

The study of exotic hadrons is an important topic in under-

standing how quarks combine to a hadron. One type of the

exotic hadrons is the molecular state, which is a shallow

bound state of two and more hadrons. Though it is not so

fancy as a compact multiquark, it seems easier to be pro-

duced because its constituent hadrons are realistic. In the

side of experiment, many XYZ particles were observed near

a e-mail: junhe@njnu.edu.cn

the threshold of charmed-anticharmed or bottom-antibottom

mesons. For example, the X (3872)/Zc(3900), Zc(4020),

Zb(10610) and Zb(10650) are very close to the DD̄∗, D∗ D̄∗,

B B̄∗ and B∗ B̄∗ thresholds, respectively. It suggests that

such particles are from the interactions of the corresponding

hadrons. It also makes the molecular state picture become a

popular interpretation of the XYZ particles.

Recently, the LHCb Collaboration updated their observa-

tion of pentaquark candidates [1]. The upper one, Pc(4450),

resolves into two resonances, Pc(4440) and Pc(4457), and

a new pentaquark, Pc(4312), was observed near the Σc D̄

threshold. The Pc(4380) reported in the previous observa-

tion [2] is suspended to wait construction of new ampli-

tude model. The four pentaquarks, Pc(4457), Pc(4440),

Pc(4380), and Pc(4312), construct a good pattern for all S-

wave molecular states from Σc D̄∗, Σ∗
c D̄, and Σc D̄ interac-

tions, which has been predicted partly in the literature [3–6].

After the LHCb results released, many theoretical interpre-

tations in the molecular state picture were proposed [7–20].

To further confirm the molecular state interpretation of the

Pc states, it is very helpful to make a prediction of more states

with the relevant interactions. The four Pc states observed

at LHCb are all from the Σ
(∗)
c D̄(∗) interaction. If we only

consider the S-wave states, there should be seven possible

molecular states. The states from the Σc D̄, Σ∗
c D̄, and Σc D̄∗

interactions have been filled by the experimental observed

Pc(4312), Pc(4380), Pc(4440), and Pc(4457). It is interest-

ing to find out if there exist three S-wave Σ∗ D̄∗ molecular

states. In Refs. [21–23], such states has been studied in a

parameterized model, and the authors suggested the exis-

tence of three Σ∗ D̄∗ states with the observed Pc states as

input.

Theoretically, a state usually exhibits different decay

behaviors in different theoretical pictures. The decay pat-

tern of the pentaquarks is another way to check their internal

structure. In the literature, the decays of the Pc states have

been studied by many authors [24–26]. In Ref. [25], it was

suggested that the Λc D̄∗ channel is very important in the
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decays of the Pc states. The mass and the decay pattern of

a molecular state is often studied separately in the litera-

ture. If the Pc states are molecular states from the Σ
(∗)
c D̄(∗)

interaction, the decays to these channels can be obtained as

a coproduct after the coupled-channel effect is included. A

bound state will acquire a width, and exhibits itself as a pole

in the complex plane after adding another interaction chan-

nel below the production channel to make a coupled-channel

calculation. Hence, it is interesting to study the production of

the molecular states produced from the interaction and their

decay behaviors in the same theoretical frame.

In our previous work [27], we studied the Σ
(∗)
c D̄(∗) inter-

action and focused on the molecular states which can be

related to the three pentaquarks observed at LHCb. A cal-

culation in a quasipotential Bethe–Salpeter equation (qBSE)

approach suggests that the Pc(4457), Pc(4440) and Pc(4312)

can be explained as two Σc D̄∗ molecular states with 3/2−

and 1/2− and a Σc D̄ molecular state with 1/2−. An enhance-

ment was also found near the Σ∗
c D̄ threshold with 3/2−.

It is naturally to extend the calculation to study all possi-

ble S-wave isodoublet (I = 1/2) molecular states from the

Σ
(∗)
c D̄(∗) interaction and their isoquartet (I = 3/2) partners.

The previous calculation suggests that the coupled-channel

effect between different channels is small for the molecular

states related to the Pc(4312), Pc(440), and Pc(4457), which

leads to very small widths if only Σ
(∗)
c D̄(∗) interaction con-

sidered. The widths of those states are possible from the cou-

pling to Λc D̄∗ channel as suggested in Ref. [25]. Hence, in

the current work, we will make a systemically calculation of

the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction in the qBSE approach to

find out all possible S-wave molecular states and to study the

couplings of these channels in the same frame.

This work is organized as follows. After introduction, the

detail of the dynamical study of coupled-channel Σ
(∗)
c D̄(∗)−

Λc D̄(∗) interactions will be presented, which includes rele-

vant effective Lagrangians, reduction of potential kernel and

a brief introduction of the qBSE. Then, the results of shingle-

channel calculation are given in Sect. 3 to present the possible

bound states produced form the Σ
(∗)
c D̄(∗) −Λc D̄(∗) interac-

tion. The coupled-channel results are presented in Sect. 4.

The bound states obtained in Sect. 3 become poles in com-

plex plane, which will be compared with the experimental

results. The poles of the molecular states from full coupled-

channel and two-channel calculations will be presented also,

which can be related to their decay widths. Finally, summary

and discussion will be given in the last section.

2 Theoretical frame

To study the bound states from the Σ
(∗)
c D̄(∗) −Λc D̄(∗) inter-

action and the couplings between different channels, we

need to construct the coupled-channel potential kernel. In

the current work, we adopt the one-boson-exchange model

to describe the interaction between the charmed baryon and

anticharmed meson. The exchanges by peseudoscalar P, vec-

tor V and σ mesons will be considered. Hence, the effective

Lagrangians depicting the couplings of light mesons and anti-

charmed mesons or charmed baryons are required and will

be presented in the below.

2.1 Relevant Lagrangians

First, we consider the couplings of light mesons to heavy-

light anticharmed mesons P̃ = (D̄0, D−, D−
s ). In terms of

heavy quark limit and chiral symmetry, the Lagrangians have

been constructed in the literature as [28–31],

LH HP = ig1〈H̄ Q̄
a γμ A

μ
baγ5 H

Q̄
b 〉,

LH HV = −iβ〈H̄ Q̄
a vμ(V

μ
ab − V

μ
ab)H

Q̄
b 〉

+ iλ〈H̄
Q̄
b σμν Fμν(ρ)H̄ Q̄

a 〉,

LH Hσ = gs〈H̄ Q̄
a σ H̄ Q̄

a 〉, (1)

where the axial current is Aμ = 1
2
(ξ†∂μξ − ξ∂μξ†) =

i
fπ

∂μP + · · · with ξ = exp(iP/ fπ ) and fπ = 132 MeV.

Vμ = i
2
[ξ†(∂μξ) + (∂μξ)ξ†] = 0. V

μ
ba = igVV

μ
ba/

√
2, and

Fμν(ρ) = ∂μVν − ∂νVμ + [ρμ, ρν]. The P and V are the

pseudoscalar and vector matrices as

P =

⎛

⎜

⎝

1√
2
π0 + η√

6
π+ K +

π− − 1√
2
π0 + η√

6
K 0

K − K̄ 0 − 2η√
6

⎞

⎟

⎠
,

V =

⎛

⎜

⎜

⎝

ρ0
√

2
+ ω√

2
ρ+ K ∗+

ρ− − ρ0
√

2
+ ω√

2
K ∗0

K ∗− K̄ ∗0 φ

⎞

⎟

⎟

⎠

. (2)

The H
Q̄
a = [P̃∗μ

a γμ − P̃aγ5] 1−/v
2

and H̄ = γ0 H†γ0 with

v = (1, 0). The P̃ and P̃∗ satisfy the normalization relations

〈0|P̃|Q̄q(0−)〉 =
√

MP and 〈0|P̃∗
μ|Q̄q(1−)〉 = ǫμ

√
MP∗ .

The Lagrangians can be further expanded as follows,

L
P̃∗P̃P

= i
2g

√
m

P̃
m

P̃∗

fπ
(−P̃

∗†
aλP̃b + P̃

†
a P̃

∗
bλ)∂

λ
Pab,

L
P̃∗P̃∗P

= −
g

fπ
ǫαμνλP̃

∗μ†
a

←→
∂ α

P̃
∗λ
b ∂ν

Pba,

L
P̃∗P̃V

=
√

2λgV ελαβμ(−P̃
∗μ†
a

←→
∂ λ

P̃b

+P̃
†
a

←→
∂ λ

P̃
∗μ
b )(∂α

V
β)ab,

L
P̃P̃V

= −i
βgV√

2
P̃

†
a

←→
∂ μP̃bV

μ
ab,

L
P̃∗P̃∗V

= −i
βgV√

2
P̃

∗†
a

←→
∂ μP̃

∗
b V

μ
ab

− i2
√

2λgV m
P̃∗P̃

∗μ†
a P̃

∗ν
b (∂μVν − ∂νVμ)ab,

123



Eur. Phys. J. C (2019) 79 :887 Page 3 of 10 887

L
P̃P̃σ

= −2gsm
P̃

P̃
†
a P̃aσ,

L
P̃∗P̃∗σ = 2gsm

P̃∗P̃
∗†
a P̃

∗
a σ, (3)

where the v is replaced by i
←→
∂ /

√
mi m f with the mi, f is for

the initial or final D̄(∗) meson.

The Lagrangians for the couplings between the charmed

baryon and light mesons can also be constructed in the heavy

quark limit and under chiral symmetry as,

LS = −
3

2
g1(vκ)ǫμνλκ tr[S̄μ Aν Sλ]

+iβS tr[S̄μvα(Vα − V α)Sμ]
+ λS tr[S̄μFμν Sν] + ℓS tr[S̄μσ Sμ], (4)

LB3̄
= iβB tr[B̄3̄vμ(Vμ − V μ)B3̄] + ℓB tr[B̄3̄σ B3̄], (5)

Lint = ig4tr[S̄μ Aμ B3̄] + iλI ǫ
μνλκvμtr[S̄ν Fλκ B3̄] + h.c.,

(6)

where S
μ
ab is composed of Dirac spinor operators,

Sab
μ = −

√

1

3
(γμ + vμ)γ 5 Bab + B∗ab

μ ≡ Bab
0μ + Bab

1μ,

S̄ab
μ =

√

1

3
B̄abγ 5(γμ + vμ) + B̄∗ab

μ ≡ B̄ab
0μ + B̄ab

1μ, (7)

and the the charmed baryon matrices are defined as

B3̄ =

⎛

⎝

0 Λ+
c Ξ+

c

−Λ+
c 0 Ξ0

c

−Ξ+
c −Ξ0

c 0

⎞

⎠ ,

B =

⎛

⎜

⎝

Σ++
c

1√
2
Σ+

c
1√
2
Ξ ′+

c

1√
2
Σ+

c Σ0
c

1√
2
Ξ ′0

c

1√
2
Ξ ′+

c
1√
2
Ξ ′0

c Ω0
c

⎞

⎟

⎠
. (8)

The explicit forms of the Lagrangians can be written as,

LB BP = i
3g1

2 fπ
√

m B̄m B

ǫμνλκ∂ν
P

∑

i=0,1

B̄iμ
←→
∂ κ B jλ,

LB BV = −
βSgV

√

2m B̄m B

V
ν

∑

i=0,1

B̄
μ
i

←→
∂ ν B jμ

−
λSgV√

2
(∂μVν − ∂νVμ)

∑

i=0,1

B̄
μ
i Bν

j ,

LB Bσ = ℓSσ
∑

i=0,1

B̄
μ
i B jμ,

LB3̄ B3̄V = −
gV βB

√

2m B̄3̄
m B3̄

V
μ B̄3̄

←→
∂ μ B3̄,

LB3̄ B3̄σ
= iℓBσ B̄3̄ B3̄,

LB B3̄P = −i
g4

fπ

∑

i

B̄
μ
i ∂μPB3̄ + H.c.,

LB B3̄V =
√

2

m B̄m B3̄

gVλI ǫ
μνλκ∂λVκ

∑

i

B̄iν
←→
∂ μ B3̄ + H.c..

(9)

The coupling constants involve in the above Lagrangians

should be determined to constrain the Lagrangians. In

Table 1, we list the values of these coupling constants used

in the calculation, which are cited from the literature [14,33–

35].

In the calculation, the masses of particles are chosen as

suggested values in the review of particle physics (PDG)

[32]. The mass difference from the charge is neglected, and

average mass is adopted. For example, the mass of the D̄

meson is chosen as (m D̄0 +m D−)/2. The effect of such treat-

ment is negligible on the result and conclusion of this work.

For the broad σ/ f0(500) meson, only a range of the pole,

(400 − 550) − i(200 − 350), is provided in PDG. Here, we

adopt a mass of 500 MeV. The different choices of the mass

of σ meson from 400 to 550 MeV will effect the result a

little, and can be smeared by a small variation of the cutoff.

2.2 Potential of Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction

The potential of the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction can

be constructed with the help of the vertices for the heavy

meson/baryon and the exchanged light meson, which can be

easily obtained from the above Lagrangians. Besides the ver-

tices, the propagators of the exchanged light mesons are also

needed, which read,

PP(q2) =
i

q2 − m2
P

fi (q
2),

P
μν

V
(q2) = i

−gμν + qμqν/m2
V

q2 − m2
V

fi (q
2),

Pσ (q2) =
i

q2 − m2
σ

fi (q
2), (10)

where the form factor fi (q
2) is adopted to compensate the

off-shell effect of exchanged meson. In this work, we intro-

duce four types of from factors to check the effect of the form

factor on the results, which are in forms of

f1(q
2) =

Λ2
e − m2

e

Λ2
e − q2

, (11)

f2(q
2) =

Λ4
e

(m2
e − q2)2 + Λ4

, (12)

f3(q
2) = e−(m2

e−q2)2/Λ2
e , (13)

f4(q
2) =

Λ4
e + (q2

t − m2
e)

2/4

[q2 − (q2
t + m2

e)/2]2 + Λ4
e

, (14)

where me and q are the mass and momentum of the

exchanged light meson. The q2
t denotes the value of q2 at

the kinematical threshold. The cutoff is rewritten as a form

of Λe = m + αe 0.22 GeV. In the calculation we also con-

sider the propagators without a form factor, we remark it as

f0(q
2) = 1.
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Table 1 The parameters and

coupling constants adopted in

our calculation. The λ and λS,I

are in the unit of GeV−1. Others

are in the unit of 1

β g gV λ gs

0.9 0.59 5.9 0.56 0.76

βS ℓS g1 λS βB ℓB g4 λI

−1.74 6.2 −0.94 −3.31 −βS/2 −ℓS/2 g1/
2
√

2
3

−λS/
√

8

Table 2 The flavor factors for certain meson exchanges of certain inter-

action. The values in bracket are for the case of I = 3/2 if the values

are different from these of I = 1/2

π η ρ ω σ

D̄(∗)Σ (∗)
c → D̄(∗)Σ (∗)

c −1[ 1
2
] 1

6
[ 1

6
] −1[ 1

2
] 1

2
[ 1

2
] 1

D̄(∗)Λc → D̄(∗)Λc 0 0 0 1 2

D̄(∗)Λc → D̄(∗)Σ
(∗)
c

√
6

2
0

√
6

2
0 0

Because six channels are considered in the current work,

it is tedious and fallible to give the explicit of 36 potential

elements for the potential of the coupled-channel interaction

and input them into the code. Instead, in this work, we input

the vertices Γ and the above propagators P into the code

directly and the potential can be obtained as

VP,σ = f I Γ1Γ2 PP,σ (q2), VV = f I Γ1μΓ2ν P
μν

V
(q2). (15)

Hence, the explicit forms of the potentials are not given here.

The f I is the flavor factor for certain meson exchange of

certain interaction. It can be derived with the Lagrangians

in Eqs. (3) and (9) and the matrices in Eqs. (2) and (8). The

explicit values are listed in Table 2.

2.3 The qBSE approach

The scattering amplitude can be calculated with the help

of the potential of the interaction obtained in the above.

The Bethe–Salpeter equation is widely used to treat two-

body scattering. With a quasi potential approximation, the

4-dimensional Bethe–Salpeter equation can be reduced to a

3-dimensional equation and the unitary is kept. As our pre-

vious works [11,36–40], a spectator approximation, which

was explained explicitly in the appendices of Ref. [37], will

be adopted in this work to search the possible bound states.

A bound state from the interaction corresponds to a pole of

the scattering amplitude M.

After partial-wave decomposition, the 3-dimensional Bethe-

Saltpeter equation after spectator quasipotential approxima-

tion can be reduced further to a 1-dimensional equation with

fixed spin-parity J P as [37],

iMJ P

λ′λ(p
′, p) = iV J P

λ′,λ(p
′, p) +

∑

λ′′

∫

p′′2dp′′

(2π)3

· iV J P

λ′λ′′(p
′, p′′)G0(p

′′)iMJ P

λ′′λ(p
′′, p), (16)

where the sum extends only over nonnegative helicity λ′′.
Here, the reduced propagator with the spectator approxima-

tion can be written down in the center-of-mass frame with

P = (W, 0) as

G0 =
δ+(p′′ 2

h − m2
h)

p′′ 2
l − m2

l

=
δ+(p′′0

h − Eh(p′′))

2Eh(p′′)[(W − Eh(p′′))2 − E2
l (p′′)]

. (17)

Here, as required by the spectator approximation, the heav-

ier particle (remarked with h) is on shell, which satisfies

p′′0
h = Eh(p′′) =

√

m 2
h + p′′2. The p′′0

l for the lighter parti-

cle (remarked as l) is then W − Eh(p′′). Here and hereafter,

a definition p = | p| will be adopted.

The partial wave potential is defined with the potential of

the interaction obtained in the above as

V
J P

λ′λ(p′, p) = 2π

∫

d cos θ

[

d J
λλ′(θ)Vλ′λ( p′, p)

+ ηd J
−λλ′(θ)Vλ′−λ( p′, p)

]

, (18)

where η = P P1 P2(−1)J−J1−J2 with P and J being parity

and spin for system, D̄(∗) meson or Σ
(∗)
c baryon. The ini-

tial and final relative momenta are chosen as p = (0, 0, p)

and p′ = (p′ sin θ, 0, p′ cos θ). The d J
λλ′(θ) is the Wigner

d-matrix.

One may note that we make the partial wave decompo-

sition on the spin parity J P , and the explicit orbital angular

momentum L is not involved here. It is consistent with rela-

tivistic treatment adopted in the qBSE approach because the

L is not a good quantum number in a relativistic theoreti-

cal frame. With such treatment, the contributions form all

partial waves based on orbital angular momentum L related

to a certain J P considered have been included already. It is

an advantage of our method because the experiment result is

usually provided with spin parity J P . Hence, in this work, the

S-wave state means that a state can couple to two constituent

particles, the Σ
(∗)
c D̄(∗) − Λc D̄(∗) here, in S wave while all

other possible higher partial waves on L are included natu-

rally.

Now we need treat an integral equation, to avoid diver-

gence, a regularization is usually introduced. For example,

a cutoff in momentum is introduced as one way to do the

123
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regularization in the chiral unitary approach [41], which is

related to the dimensional regularization [42]. In the qBSE

approach, we usually adopt an exponential regularization by

introducing a form factor into the propagator as

G0(p) → G0(p)
[

e−(k2
l −m2

l )2/Λ4
r

]2
, (19)

where kl and ml are the momentum and mass of the lighter

one of meson and baryon. The interested reader is referred to

Ref. [37] for further information about the regularization. In

Ref. [22], the authors warned that the π exchange provides

excessive short-range interaction. In the current work, the

relation of the cutoff Λr = m + αr 0.22 GeV with m being

the mass of the exchanged meson is also introduced into

the regularization form factor as in those for the exchanged

mesons. Such treatment will suppress the large-momentum,

i.e., the short-range contribution of the π exchange.

The one-dimensional integral equation can be easily trans-

formed into a matrix equation. The pole of scattering ampli-

tude M can be searched by variation of z to satisfy |1 −
V (z)G(z)| = 0 with z = W + iΓ/2 equaling to the system

energy W at the real axis [37].

3 Single-channel results

The coupled-channel effect should be included into physical

scattering. However, for the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction

considered in the current work, the coupled-channel effect

should be small because the experimental pentaquarks are

close to the thresholds. Our previous work [27] also supports

such judgement. Moreover, the coupled-channel effect will

make the results complex, which makes it difficult to show

the property of bound states from each channels. Here, we

will first present the results of a single-channel calculation.

3.1 Isodoublet bound states with I = 1/2

Now, we consider the isodoublet bound states from single-

channel interaction. In the current work, we have two free

parameters, cutoff parameters αr and αe for the regularization

and the exchanged meson, respectively. In single-channel

calculation here, we take αr = αe = α for simplification.

Since the cutoff Λ should be about 1 GeV, we vary α in a

range from 0.5 to 8.5 to find the bound state from each chan-

nel, which exhibits as a pole in the real axis of the complex

plane of z. The obtained binding energies EBwith the vari-

ation of the α are illustrated in Fig. 1. Here, binding energy

is defined as EB = Mth − W with Mth and W being the

threshold and W of the pole.

In the current calculation, we consider ten interactions,

Σc D̄ with spin parity 1/2−, Σ∗
c D̄ with 3/2−, Σc D̄∗ with

1/2− and 3/2−, Σ∗
c D̄∗ with 1/2−, 3/2−, and 5/2−, Λc D̄∗
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Fig. 1 The binding energy EB with the variation of the α for isodoublet

bound states from the single-channel interaction. The thresholds Mth

for the Σc D̄, Σ∗
c D̄ and Σ∗

c D̄∗ channels are 4320.8, 4385.3, 4462.2 and

4526.7 MeV, respectively. The fi with i = 0, 1, 2, 3, 4 means the

results without form factor for exchanged meson or with form factor

fi (q
2) in Eqs. (11–14), respectively. The horizontal lines and the bands

are the experimental mass and uncertainties observed at LHCb [1]

with 1/2− and 3/2−, and Λc D̄ with 1/2−. With reasonable

parameters, no bound state can be produced from the Λc D̄∗

and Λc D̄ interactions. For other seven interactions, the bound

states are produced in the range of the α considered in the

current calculation. Here, the results with different types of

form factors for exchanged meson are presented in Fig. 1.

The results show that the different choices of the form factors

change the quantitive results but the qualitative conclusion

are not changed. Moreover, the order of the curves for dif-

ferent form factors are almost the same for the seven bound

states. It indicates that if appropriate cutoffs are adopted, the
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same conclusion can be reached with different choices of the

form factors.

The Σc D̄ bound state and two Σc D̄∗ bound states can

be related to the LHCb pentaquarks. Because there is only

one S-wave bound state, the Pc(4312) should be assigned

into the Σc D̄(1/2−) state in the molecular state picture. Two

pentaquarks, Pc(4457) and Pc(4440) were observed at LHCb

near the Σc D̄∗ threshold, which can be related to two bound

states with 1/2− and 3/2− from the Σc D̄∗ interaction. For

the Σc D̄∗(3/2−) state, the binding energy increases to about

20 MeV at α = 2 − 3 for form factor f(0,2,3,4) and α of

about 5 for f1. For the Σc D̄∗(1/2−) state, in a large range

of α, from 1 to about 6, the binding energy is smaller than

10 MeV. Such results suggest we should assign the 1/2− state

as Pc(4440) and the 3/2− state as Pc(4457) state. Compared

with experimental results, the α should be about 3 for f(2,3,4)

and about 5 for f1. With such choice, the Σc D̄(1/2−) state

has a binding energy about 10 MeV, which is quite consis-

tent with the experimental value. The results also suggest

that the form factor f(2,3,4) is more suitable to explain the

three LHCb pentaquarks in the molecular state picture in the

single-channel calculation.

Based on the above analysis, though the other four

bound states, Σ∗
c D̄(3/2−), Σ∗

c D̄∗(1/2−), Σ∗
c D̄∗(3/2−),

Σ∗
c D̄∗(5/2−), can be produced with variation of the cut-

off, the existence of the Σ∗
c D̄∗(5/2−) should be doubted

because an α larger than 5 is required to produce such state,

which is much larger the one to produce three LHCb pen-

taquarks with the experimental masses at the same time. If

we adopt α = 3 for the form factor f(2,3,4), the binding ener-

gies of Σ∗
c D̄∗(1/2−) and Σ∗

c D̄∗(3/2−) states are about 5

MeV, and the Σ∗
c D̄(3/2−) state should have a very small

binding energy.

3.2 Isoquartet bound states with I = 3/2

In the above, we present the isodoublet bound states. For

the same interaction with different isospins, the model and

parameters involved should be also the same. Hence, it is

straight forward to give the prediction about the isoquartet

bound states from the Σ
(∗)
c D̄(∗) and Λc D̄(∗) interactions. The

possible experimental observation about such bound states is

also a good check to the molecular state interpretation of the

LHCb pentaquarks and the results in this work. Here, we

make the calculation to search isoquartet bound states in the

same model as in the isodoulet case. The results are presented

in Fig. 2.

Here, we still vary the α to search for the bound states

from the interactions as in the isodoublet case. Generally

speaking, a larger α should be adopted to produce the bound

states. If we focus on the results with f(2,3,4), which is more

suitable to reproduce the LHCb pentaquarks, the α is at least

larger than 5 to produce a bound state from the interaction
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Fig. 2 The binding energy EB with the variation of the α for isoquartet

bound states. The other conventions are the same as in Fig. 1

considered here. With an α smaller than 12, no bound state

can be found for the Σc D̄(1/2−), the Σ∗
c D̄(3/2−), and the

Σ∗
c D̄∗(1/2−) interactions. For the Σc D̄∗(1/2−) interaction,

an α larger than eight is required to force the potential strong

enough to produce a bound state. For the Σc D̄∗(3/2−) and

Σ∗
c D̄∗(3/2−) interactions, the bound states are produced at

an α of about 6 GeV. The bound state from Σ∗ D̄∗(5/2−)

appears at an α of about five for f(2,3,4) and more larger for

f1. If we recall that the LHCb pentaquarks are reproduced at

an α of three for f(2,3,4) and five for f1 in the isodoublet case,

it is reasonable to doubt the existence of the four bound states

shown in Fig. 2 if the assignment of three LHCb pentaquarks

are right.

Usually, increase of the α can enhance the strength of

the interaction. The large α required here suggest that the

isoquaret interactions are much weaker than those with I =
1/2. It is easy to understand if we recall the flavor factors

listed in Table 2. The sign between the potentials by π and η

exchanges, and that between ρ and ω exchanges is different

for I = 1/2 and 3/2 cases. It results in the cancellation of

two contributions in the isoquaret case. Such cancellation

makes the interaction with I = 3/2 too weak to produce a

bound state with a small α.

4 Coupled-channel results

It is well known that the coupled-channel effect will affect

the binding energy of the bound state. Moreover, if a lower
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channel was considered, the bound state from the channel

with higher threshold will acquire a width. In the above

single-channel calculation, six bound states are produced

[the Σ∗
c D̄(5/2−) is not well supported because a large α is

required]. Those states are from three channels, which can be

coupled to each other by light meson exchange as the single-

channel interaction. With the Lagrangians in the heavy quark

limit and chiral symmetry, a coupled-channel calculation can

be preformed for the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction.

4.1 The poles from the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction

In single-channel calculation, the bound state is a pole at real

axis. After the coupled-channel effect are included, the pole

will leave the real axis and becomes a pole in the complex

plane as shown in Fig. 3. The poles from the Σ
(∗)
c D̄(∗) −

Λc D̄(∗) interaction with J P = 1/2− and 3/2− are presented

in the figure.

Here we take the f3 to show the coupled channel results.

The results with f(1,2,4) is qualitatively consistent with the

results with f3 if the cutoff is varies correspondingly. In

the single-channel calculation, the best value of α is found

about three to reproduce the experimental masses of three

LHCb pentaquarks. After including the coupled-channel

effect, besides the bound states have width and become reso-

nances, the masses of the resonances are also different from

the masses obtained from the single-channel calculation. If

we still adopt an α of three, the pole of the Σc D̄(1/2−) state

will move from 4311 to 4294 MeV, which is even below the

Λc D̄∗ threshold. Hence, we adopt a smaller value α of 2.5

to give the poles from the Σ
(∗)
c D̄(∗) − Λc D̄(∗) interaction.
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Fig. 3 The log |1−V (z)G(z)|with the variation of z for theΣ
(∗)
c D̄(∗)−

Λc D̄(∗) interaction with J P = 1/2− and 3/2− at α = 2.5. The color

means the value of log |1 − V (z)G(z)| as shown in the color box. The

form factor f3 is adopted in the calculation. The full square, diamond,

and circle are for the experimental data of the Pc(4312), Pc(4440) and

Pc(4457) at LHCb [1]

Six poles can be found in the complex plane with their con-

jugate partners. In the case with J P = 1/2−, there exist three

poles near the Σc D̄, Σc D̄∗ and Σ∗ D̄∗ thresholds, respec-

tively. In the case with J P = 3/2−, we also have three poles

near the Σ∗
c D̄, Σc D̄∗ and Σ∗ D̄∗ thresholds, respectively.

The pole near the Σc D̄ threshold is obviously related to

the Pc(4312). Compared with experimental values at LHCb,

M = 4311.9±0.7+6.8
−0.6 and Γ = 9.8±2.7+3.7

−4.5 MeV, the theo-

retical pole at 4304−4i MeV is a little lower but in the uncer-

tainties of the width [here we use the relation Γ = −2 Im(z)

]. Two poles appear near the Σc D̄∗ with 1/2− and 3/2−,

respectively. The pole in 3/2− fall in the experimental val-

ues with uncertainties quite well while the 1/2− pole is a little

higher in mass. Though the mass gap of these two states is

narrowed after the coupled-channel effect included, the order

of these two states still supports the assignment of two states

with 1/2− and 3/2− as Pc(4440) and Pc(4457), respec-

tively. The theoretical widths also support such assignment.

Hence, as the single-channel results, the coupled-channel

results support the assignment of the Pc(4457), Pc(4440)

and Pc(4312) as molecular states Σc D̄(1/2−), Σc D̄∗(1/2−)

and Σc D̄(3/2−), respectively.

It is interesting to observe a pole near the Σ∗ D̄ threshold,

which may be related to the Pc(4380) suggested in the old

LHCb article [2]. This pole is almost on the threshold, if the

physical strength of the interaction is a little weaker, it may

become a cusp on the threshold. Besides, it has a width about

40 MeV, which is much larger than three LHCb pentaquarks.

These properties of this state may be the reason why the

Pc(4380) is very broad and difficult to be observed in the

invariant mass spectrum.

Near the Σ∗ D̄∗ threshold, two poles can be found with

both 1/2− and 3/2−. The 1/2− pole is at 4521−2i and 3/2−

pole is at 4526−2i . These two poles are obviously shallower

than other poles. It indicates that the peaks corresponding of

these states may be smaller than other states.

4.2 The widths of the molecular states

From the above results, we can find that the widths of the Pc

states can be well reproduced in our model. It is interesting

to give the widths from each channel to show the strength

of the coupling between the molecular state and the corre-

sponding channel. In the current work, the pole of a molecular

in the complex plane can be obtained by a coupled-channel

calculation. Usually, the width of a state can be obtained as

Γ = −2Im(z) where the z is the position of the pole, that

is, the width can be related to the imaginary part of the pole.

In Table 3, we list the poles of the molecular states for full

coupled-channel calculation and two-channel calculation.

From the analysis in Secti. 4.1, one can find that the

coupled-channel effects between different channels will

effect the position of the poles but not very far. We can still
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Table 3 The positions and branching ratios of the molecular states. The

“CC” means the full coupled-channel calculaiton. The “pole” means

mass of corresponding threshold subtracted by the position of a pole,

Mth − z, in the unit of MeV and Br= Imi
∑

Imi
for i channel in the unit

of %. The αr is the cutoff in the exponential regularization in Eq. (19).

The explicit explanation can be found in the text

αr CC Σc D̄∗ Σ∗
c D̄ Σc D̄ Λc D̄∗ Λc D̄ Sum

pole pole Br pole Br pole Br pole Br pole Br
∑

Imi
ImCC
∑

Imi

Σ∗
c D̄∗(1/2−)

1.5 1.2 + 1.0i 1.8 + 0.1i 17 2.1 + 0.1i 17 1.2 + 0.3i 50 1.7 + 0.1i 17 1.9 + 0.0i 0 0.6 167

2.0 3.0 + 1.6i 3.7 + 0.2i 18 3.9 + 0.2i 18 2.9 + 0.5i 45 4.6 + 0.2i 18 3.7 + 0.0i 0 1.1 145

2.5 5.5 + 2.3i 6.1 + 0.3i 19 6.6 + 0.3i 19 5.3 + 0.7i 44 6.4 + 0.3i 19 6.4 + 0.0i 0 1.6 144

3.0 7.4 + 3.1i 8.8 + 0.4i 18 9.0 + 0.4i 18 7.1 + 1.0i 45 8.4 + 0.4i 10 9.2 + 0.0i 0 2.2 141

Σ∗
c D̄∗(3/2−)

2.0 0.0 + 4.2i 0.3 + 0.7i 28 0.5 + 0.7i 28 1.2 + 0.0i 0 0.0 + 0.9i 36 1.1 + 0.2i 8 2.5 168

2.5 0.0 + 5.8i 1.0 + 1.2i 32 1.1 + 0.8i 22 2.3 + 0.0i 0 0.0 + 1.5i 41 2.3 + 0.2i 5 3.7 158

3.0 0.0 + 6.8i 1.7 + 1.7i 37 1.6 + 1.0i 22 3.4 + 0.0i 0 0.0 + 1.7i 37 3.4 + 0.2i 4 4.6 148

3.5 0.0 + 7.5i 2.2 + 2.1i 41 2.0 + 1.1i 22 4.2 + 0.1i 2 0.0 + 1.5i 29 4.4 + 0.3i 6 5.1 147

Σc D̄∗(1/2−)

1.0 3.5 + 1.9i – – 3.0 + 0.0i 0 2.9 + 0.3i 20 3.3 + 1.2i 80 3.0 + 0.0i 0 1.5 127

2.0 8.2 + 4.8i – – 8.7 + 0.2i 5 8.0 + 0.5i 12 9.1 + 3.3i 80 8.7 + 0.1i 2 4.1 117

3.0 13.8 + 8.8i – – 15.2 + 0.9i 11 14.1 + 0.8i 9 15.5 + 6.3i 74 16.2 + 0.5i 6 8.5 104

4.0 17.7 + 14.7i – – 23.2 + 2.1i 15 19.0 + 1.5i 11 21.5 + 9.4i 66 22.1 + 1.2i 9 14.2 104

Σc D̄∗(3/2−)

1.0 2.7 + 1.0i – – 1.8 + 0.3i 19 1.6 + 0.0i 0 1.4 + 1.0i 63 1.6 + 0.3i 19 1.6 63

1.5 3.5 + 2.3i – – 2.1 + 0.4i 13 2.0 + 0.0i 0 0.9 + 2.4i 75 1.7 + 0.4i 13 3.2 72

2.0 3.4 + 3.6i – – 2.1 + 0.4i 9 2.1 + 0.1i 2 0.0 + 3.5i 78 1.6 + 0.5i 11 4.5 80

2.5 2.8 + 4.2i – – 2.1 + 0.4i 12 2.0 + 0.1i 3 0.0 + 2.4i 71 1.4 + 0.5i 15 3.4 81

3.0 2.6 + 4.5i – – 2.0 + 0.4i 13 2.0 + 0.1i 3 0.0 + 2.0i 65 1.4 + 0.6i 19 3.1 69

Σc
∗ D̄(3/2−)

2.5 0.0 + 19i – – – – 0.4 + 0i 0 0.0 + 16i 100 0.4 + 0i 0 16 119

3.0 0.0 + 24i – – – – 0.6 + 0i 0 0.0 + 19i 100 0.6 + 0i 0 19 126

3.5 0.0 + 28i – – – – 0.9 + 0i 0 0.0 + 22i 100 0.9 + 0i 0 22 127

4.0 0.0 + 30i – – – – 1.0 + 0i 0 0.0 + 25i 100 1.0 + 0i 0 25 120

Σc D̄(1/2−)

1.0 3.7 + 2.0i – – – – – – 3.4 + 2.1i 88 2.1 + 0.3i 13 2.4 83

1.5 8.1 + 2.9i – – – – – – 6.1 + 3.0i 88 3.3 + 0.4i 12 3.4 85

2.0 11.4 + 4.0i – – – – – – 9.4 + 4.0i 89 4.6 + 0.5i 11 4.5 89

2.5 17.8 + 4.6i – – – – – – 13.6 + 4.9i 87 5.9 + 0.7i 13 5.6 82

3.0 23.6 + 4.8i – – – – – – 18.4 + 5.1i 86 7.1 + 0.8i 14 5.9 81

identify the main contribution of a molecular state from its

mass. Here, we remark the states with their main origin, for

example, for the state near Σ∗
c D̄∗ thresholds with 1/2−, we

adopt a notation as Σ∗
c D̄∗(1/2−). In Table 3, the results

for six states Σ∗
c D̄∗(1/2−) Σ∗

c D̄∗(3/2−), Σc D̄∗(1/2−),

Σc D̄∗(3/2−), Σ∗
c D̄(3/2−) and Σc D̄(1/2−), which can be

produced with an α in a reasonable region where the LHCb

pentaquarks can be reproduced, are presented in order. The

positions of the these states with the full coupled-channel

calculation are listed in second column in Table 3. Here, to

emphasize the binding energy, we replace the real part of the

pole by the binding energy, that is, z → Mth − z with Mth

being the mass of the threshold.

In third to twelfth columns, we present the results from the

two-channel calculation. In such calculation, we only keep

the coupling between main channel and another channel to

study the effect of this channel on the bound state from the

main channel. Again, we take the Σ∗
c D̄∗(1/2−) given first

in Table 3 as example. For this case, the Σ∗
c D̄∗ is the main

channel. The Σ∗
c D̄∗(1/2−) state is mainly produced from

this interaction. If only Σ∗
c D̄∗ channel is considered, the pole

is at the real axis. After another channel, such as Σc D̄∗, is
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added, the pole will move to complex plane. Especially, the

imaginary part or width of this state is from the Σc D̄∗ channel

totally in such two-channel calculation. In Table 3, the results

for two-channel calculation from main channel and one of

the Σc D̄∗, Σ∗
c D̄, Σc D̄, Λc D̄∗, and Λc D̄ channels are given

from third to twelfth columns in order. Here, we introduce the

branching ratio Br to present the importance of corresponding

channel. It is defined as the imaginary part of the each channel

divided by the sum of the imaginary parts of all channels,

that is, Br = Imi
∑

Imi
. The results with different values of αr

are presented to show the stability of the branching ratios.

One can find that the sum of the imaginary parts of every

channels, listed in the thirteenth column, deviates from the

full coupled-channel result, which is shown in the last column

as ImCC
∑

Imi
. It is from the couplings between the channels except

the main channel Σ∗
c D̄∗. Such deviation is small in all cases.

Hence, the branching ratio here should be seen as the first

order approximation if the pole of the molecular state is not

far away from the threshold of the its main origin.

Two Σ∗
c D̄∗ states can decay into five channels consid-

ered in this work. In the full coupled-channel calculation,

the real and imaginary parts of the pole increase with the

increase of αr . Such behavior can be also found in the two-

channel results. However, the branching ratio of each channel

is not sensitive to the variation of the parameter. The Σc D̄ is

the most important decay channel of the Σ∗
c D̄∗(1/2−) state

with a branching about 50%, and the Σc D̄∗, Σ∗
c D̄ and Λc D̄∗

channels also have considerable contributions with branching

ratios a little smaller than 20%. The Λc D̄ channel has little

effect on the decay width of the Σ∗
c D̄∗(1/2−) state (here

and hereafter the 0.0i does not means forbidding but a very

small width in the current precision). For the Σ∗
c D̄∗(3/2−)

state, the Σc D̄∗, Σ∗
c D̄ and Λc D̄∗ channels provide consid-

erable widths with branching ratios about 20–30%, while its

couplings to the Σc D̄ and Λc D̄ channels are very small.

There exist two states near the Σc D̄∗ threshold in our

model, which can be related to the experimental Pc(4440)

and Pc(4457). The channel above the Σc D̄∗ channel, here

Σ∗
c D̄∗ channel, does not provide the width, that is, the the

pole near the Σc D̄∗ threshold from the two-channel calcu-

lation with Σ∗ D̄∗ channel is still on the real axis. It reflects

that a state Σ D̄∗ can not decay to Σ∗ D̄∗ which is beyond

its mass. Hence, there are only four channels listed. For both

Σc D̄∗ states, the ΛD̄∗ channel is dominant, with branch-

ing ratio about 70%. Other channels only have branching

ratios smaller than 20%. The dominance of the Λc D̄∗ is

also found in the Σ∗
c D̄(3/2−) and Σc D̄(1/2−) states, where

fewer channels are opened in the models considered in the

current work. The branching ratio of the Σ∗
c D̄(3/2−) state to

the Λc D̄ channel is 100% while the Λc D̄ channel provides

about 90% contribution to the Σc D̄(1/2−) state.

5 Summary and discussion

In this work, the Σ
(∗)
c D̄(∗) −Λc D̄(∗) interaction is studied in

the qBSE approach with the help of the Lagrangians in heavy

quark limit and with chiral symmetry. The single-channel

calculation shows that three LHCb pentaquarks, Pc(4312),

Pc(4440), and Pc(4457) can be well reproduced from the

Σc D̄ interaction with spin parity J P = 1/2− and Σc D̄∗

interaction with 1/2− and 3/2−, respectively. It is further

supported by the coupled-channel calculation, where the

bound states become poles in the complex plane, and acquire

widths in the uncertainties of the experimental values. Our

results also suggest that the Pc(4440) and Pc(4457) should

have large branching ratios in the Λc D̄∗ channel, and this

channel is also very important in the decay of the Pc(4312).

The Pc(4380), which is suggested by the first LHCb experi-

ment and suspended in the updated results, can be related to

the Σ∗
c D̄ state with 3/2−. This state is on the Σ∗

c D̄ threshold

and has a large width from ΛD̄∗ channel. It may be only a

cusp on the threshold. If so, the peak in the invariant mass

spectrum of this state will be broad and difficult to be distin-

guished in experiment.

Other possible molecular states from the Σ
(∗)
c D̄(∗) −

Λc D̄(∗) interaction are also predicted in the same model.

three Σ∗
c D̄∗ states can be produced with appropriate α

adopted. However, very large α are required to produce the

state with 5/2−. Such results are consistent with the Scenario

A of Ref. [23], where the binding energy of the state with

5/2− is the smallest. If we adopt a value of α which can repro-

duce three LHCb pentaquark, only two states, Σ∗
c D̄∗ with

1/2− and 3/2− are suggested by our results. The decay pat-

terns of this two states are also studied in the coupled-channel

calculation. The Σc D̄ channel is found important to the state

with 1/2− and three channels, Σc D̄∗, Σ∗ D̄, and Λc D̄ have

considerable contributions to the state with 3/2−. The iso-

quaret molecular states with I = 3/2 are also studied in the

same model. The results suggest that the interaction is very

weak. Only three states, Σc D̄(1/2−), Σ∗ D̄∗(3/2−), and

Σc D̄(5/2−) can be produced but very large α are required.
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