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Abstract. Identifying the structure of unknown molecules is an impor-
tant activity in the pharmaceutical industry where it underpins the pro-
duction of new drugs and the analysis of complex biological samples. We
present here a new method for automatically identifying the structure of
an unknown molecule from its nuclear magnetic resonance (NMR) spec-
trum. In the technique, an ant colony optimization algorithm is used
to search iteratively the highly-constrained space of feasible molecular
structures, evaluating each one by reference to NMR information on
known molecules stored (in a raw form) in a database. Unlike exist-
ing structure elucidation systems, ours: does not need prior training or
use spectrum prediction; does not rely on expert rules; and avoids enu-
meration of all possible candidate structures. We describe the important
elements of the system here and include results on a preliminary test set
of molecules. Whilst the results are currently too limited to allow param-
eter studies or comparison to other methods, they nevertheless indicate
the system is working acceptably and shows considerable promise.

1 Introduction

Analytical chemists exploit a variety of spectroscopic techniques in order to gain
an insight into the structure of unknown molecules. They use the molecule’s
exact mass, available from mass spectrometry, to reveal the empirical formula
(e.g. C4H8BrF), and then study the molecule’s spectral fingerprint to under-
stand something about how these atoms are arranged. With NMR spectroscopy,
patterns of chemical shifts can reveal information about local structures, from
which it is (theoretically) possible, often after considerable toil, to infer the global
molecular form.

Computer assistance for the task of structure elucidation has been available for
decades now, initially as a means of helping to enumerate parts of the structural
space so that chemists would be sure not to overlook any of the exponentially
many possible forms. More recently, various AI techniques have been employed to
automate the process further (see Section 5). For the most part, these techniques
work by enumerating possible structures and then predicting the spectra of each
one, which is then compared to the observed spectrum of the unknown molecule.
This approach requires training machine learning methods to perform spectrum
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prediction, a science which is developing but still far from a solved problem.
Moreover, the training process is intricate and time-consuming, and needs to
be targeted to the particular kinds of molecules of interest. The quantitative
comparison of observed and predicted spectra in these systems is also a nontrivial
task which represents a further area under development.

In this paper, we investigate whether it may be feasible to tackle the struc-
ture elucidation problem without the use of spectral prediction methods. The
approach we propose searches the space of possible structures iteratively using
ant colony optimization [1], and evaluates candidate structures more directly by
reference to a database of chemical shift patterns for known molecules. There
is no explicit training necessary in our proposed method (in the sense of super-
vised learning), which potentially makes our system easier to update and less
of a black box. From a machine learning perspective, the approach we use is
similar to lazy learning [2]: we store our ‘prior knowledge’ in a fairly raw and
uncompressed form and wait for a query before doing some work on the data to
answer the query.

At the core of the system is a search of the candidate molecule space; the
prior knowledge data is used mainly as an approximate evaluation function. Our
motivations for choosing ant colony optimization as the search method are two-
fold. First, there are many constraints involved in building the structures and
a constructive method such as ACO allows straightforward building of feasible
solutions. Secondly, much of the structural information in a candidate structure
relates to the order with which small modules (or substructures) are put together.
Thus, we can treat the problem as a pseudo-ordering problem. We know that
ACO is good at ordering problems from its successes in TSP, assignment, and
scheduling applications [1]. In addition, some local enumeration of molecular
structures is necessary to ensure all possibilities have been exhausted; and we
know that combinations of ACO and local search tend to perform well (e.g.,
see [3,4]).

The rest of the paper is organized as follows. Section 2 formulates the problem
that we tackle in this work, and relates it to other problems in machine learning
and optimization. The problem is addressed by the approach we set out in de-
tail in Section 3. Section 4 presents results from running the proposed method
on a number of real NMR spectrum-to-structure problems. We discuss related
literature on small molecule structure prediction from NMR in Section 5 and
in Section 6 we summarise the initial findings presented here and look ahead to
further developments.

2 The Spectrum to Structure Problem

The ‘Spectrum to Structure Problem (SSP)’ asks for the chemical structure of
a molecule, given the molecule’s spectral shift pattern and its empirical formula
(EF). In the version of the problem we consider here, we are concerned with
small organic molecules up to 500 molecular weight (MW) and the spectra are
13C NMR spectra. The EF given denotes only the constituent atoms in the
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molecule, not their arrangement. Different arrangements of the same constituent
atoms are known as isomers; for even relatively small molecules there can be
many isomeric forms, each giving rise to a slightly different NMR spectrum, e.g.
the hydrocarbon C9H16 has 1 902 isomeric forms. Furthermore, the number of
isomers grows exponentially with the number of constituent atoms.

An example of two isomers and their spectra is given in Figure 1. Notice,
we are concerned only with finding the 2D structure as represented by standard
stick and ball diagrams. These structures have a one-to-one correspondence with
the full chemical name of the molecule as given by the IUPAC nomenclature [5].
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Fig. 1. Two-dimensional representations of the two constitutional isomers of the em-
pirical formula C3H6 and their respective 13C NMR spectra. In propane (left), three
distinct shifts can be seen because each carbon atom’s electronic environment is dis-
tinct. In cyclopropane (right), only one shift is visible because the ‘view’ from each
carbon atom is identical.

In our version of the SSP, we assume that there is available some ‘prior knowl-
edge’ in the form of a dataset giving the known 2D chemical structures and
spectral shift values of organic molecules. Using this, we wish to infer the overall
structure of an unknown molecule by identifying its likely substructural compo-
nents — substructures that occur in molecules that exhibit similar NMR shifts
to our unknown molecule.

A number of alternative formal definitions of the resulting inference problem
could be given, based on measures such as 0-1 loss, or precision and recall (as used
in classification problems). However, we choose here to allow that the inference
method returns not one, but several attempts at inferring the structure. This
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is because the problem is hard and a single attempted structure is unlikely to
be correct, so measures of 0-1 loss would be unhelpful. Moreover, in practice,
chemists would be happier to receive a small number of candidate molecular
structures to investigate further, rather than one single answer that turns out
to be inaccurate.

What we thus measure is the position of the true structure in a ranking (by
internal fitness measure) of the candidate isomers generated by the inference
method. Because our inference method is based on ACO, a stochastic meta-
heuristic, we must run the algorithm several times to evaluate performance, so
to account for this, we report the overall rank of the true structure within a
list (sorted by fitness) of all the unique structures generated by the ACO over
the multiple runs performed. We also indicate the fraction of runs (out of those
performed) on which the true structure is generated.

3 Ant Colony Optimization Approach

The method that we propose for tackling the SSP has three main steps.

1. Data preparation: Identify all substructures up to a given size that ex-
ist in the database; construct a matrix recording the frequency with which
each substructure and spectral shift co-occur in the data. Split this ma-
trix into two, one pertaining to smaller substructures and one pertaining to
larger ones. (This whole step need only be done once for a given database
of molecules. And if new data becomes available, the matrices can be incre-
mentally updated by a trivial procedure.)

2. Set constraints based on the query: Once we have a query — an un-
known molecule to identify — use its empirical formula to remove from
consideration any substructures in the matrices that cannot be a part of
the final structure, i.e., those that contain an atom that is not part of the
given molecule and/or substructures that never produce any of the observed
spectral shifts.

3. Directed search: Search for complete structures that match the empirical
formula. Ants construct candidate structures from the smaller substructures
identified in Step 1. The candidate structures are evaluated with reference
to the larger-substructure frequency matrix from Step 1 via a maximum
weighted assignment algorithm (see Section 3.6).

The underlying ant algorithm that we use for the directed search part is based
on the MAX-MIN Ant System [6] (see Algorithm 1).

3.1 Data Preparation: Frequency Matrices

We are interested in building an approximate probability distribution over the
substructures contained within the database. To obtain this information, the
graph structure of each molecule can be decomposed into its subgraphs. Only
subgraphs of limited size need to be found, where the size refers to the number
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Algorithm 1. Ant colony optimization algorithm for structure elucidation
Input query: An empirical formula and its 13C NMR spectral shift pattern
Prior knowledge: small substructures freq. matrix, large substructures freq. matrix
Constrain the search: Delete incompatible rows in the frequency matrices
Global best fitness ← 0
while Termination conditions not satisfied do

for n = 1 to nants do
Construct an ordered list of small substructures compatible with the empir-

ical formula, using a pheromone matrix to guide choices
Make all structures that are chemically possible from the ordered list
for j = 1 to nstructures do

Evaluate jth structure using a maximum weight assignment algorithm
end for
Record best fitness for this ant

end for
Record best fitness for this iteration
Update global best fitness
Update pheromone matrix with best fitness structure of the iteration
if global best structure �= iteration best structure then

Update pheromone matrix with global best structure
end if

end while
Output: ranked list of candidate isomers and their estimated fitness values

of carbon atoms in the substructure. (All the non-carbon atoms bound to these
carbons are also included). We use an algorithm that enumerates all valid sub-
structures of sizes 2-carbon, 3-carbon and 4-carbon. Once this has been done
for every molecule in the database, we are able to correlate substructures with
spectral shifts. This is done by populating a matrix, which has rows representing
substructures and columns representing shift frequencies (suitably binned into
small value ranges) so that each element of the matrix records the number of
co-occurrences of a substructure and a particular spectral shift. It is thus a rep-
resentation of the joint probability of substructures and shifts (when correctly
normalized).

We use this data in two ways in the ACO algorithm. We make one frequency
matrix containing all 2- and 3-carbon substructures. These substructures are
used as the solution components out of which the ants will construct full solu-
tions. We make a second frequency matrix containing all the 4-carbon substruc-
tures only. This matrix is used to evaluate solutions (see Section 3.6).

3.2 Construction Graph Structure

The solution directly constructed by an ant is an ordered set of 2- and 3-carbon
substructures, s = 〈s1, s2, . . . , sk〉, having a variable number of elements k. An
ant begins with a partial solution sp = ∅ and selects s1 from the pool of available
small substructures (with replacement) and adds it to sp. The ant then makes
the choice of s2 adds it to sp, and so on. The pool of available substructures is
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updated after each choice to relect the constraint given by the empirical formula.
The construction of a solution s is completed if the ant successfully completes a
structure with the required empirical formula. It may also terminate construc-
tion, in the event that it is no longer possible to complete the empirical formula,
which can occur if the addition of any substructure would result in exceeding the
empirical formula in at least one atom type. In the case of terminating a solution
without successfully completing it, the ant returns to the start of construction,
setting sp = ∅ and with the pool of available structures reset. An ant continues
constructing solutions until it is successful.

The choice of substructure an ant makes at each step is mediated by both
pheromone and heuristic information. Both of these sources of information help
the ants to avoid making choices that lead to constructions ending in incomplete
termination. A standard arc selection method is used [1], with the probability
of selecting component cij , i = 1, . . . , k, j = 1 . . . , |Di| being given by

p(cij |sp) =
τα
ij · ηβ

ij
∑

cil∈N(sp) τα
il · ηβ

il

, ∀cij ∈ N(sp)

where Di is the domain of the decision variable (the set of substructures available
to go in position i), τij and ηij represent the pheromone and heuristic informa-
tion, respectively, and α and β are used to set the influence of these; N(sp)
represents the feasible neighbours of the partial solution sp.

3.3 Local Search: Translating Ant Solutions to Full Structures

The ordered list of substructures generated by an ant does not uniquely define
an isomeric structure. This is because the substructures could be joined to each
other in numerous ways. The ordering of the substructures is, however, intended
to encode at least partially the preferred way in which the substructures should
be joined. Thus, the solution encoded by an ant is interpreted as an instruction
to join s2 to s1, then s3 to s2, and so on. But there are still numerous chemically
valid ways in which this can be done that lead to different structural forms. These
structural forms can be enumerated, given the ant solution. Therefore, an ant’s
construction is regarded as defining an ensemble of possible structures and the
later evaluation of the ant solutions is done with respect to the best solution in
the ensemble. Explicit details of the procedure for performing this enumeration
of structures are given in [7]; space limitations prevent us from giving them here.

3.4 The Pheromone Matrix and Its Initialization

The pheromone matrix has m rows and kmax columns, where m is the number
of substructures in the pool initially (after constraining), and kmax is the maxi-
mum possible number of substructures that could be needed to construct a valid
isomer. It is simple to see that kmax is upper bounded by the number of carbon
atoms in the empirical formula divided by two, since each substructure that we
use to construct solutions has at least two C atoms.
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An ant choosing substructural element sj looks in the jth column of the
pheromone matrix. The pheromone is thus on the nodes of the construction
graph, and represents the relative desirability of selecting a particular substruc-
ture at a particular position in an ant solution (which as stated above represents
an ordering of selected substructures). The pheromone matrix is initialized here
with the maximum value τmax , following Max-Min Ant System.

3.5 Heuristic Information

The heuristic information ηij is given by

ηij = max(1, I(cij completes EF) · 1000) ·
∏

a∈A

ha
ij ,

where A is the set of different atom types in the target empirical formula,

ha
ij =

∑
cil∈N(sp) 1

∑
cil∈N(sp) I(cil contains atom type a)

and I(.) is the indicator function, which has value 1 if its argument is true, and
zero otherwise. Thus, ηij rewards a substructure cij if it contains an atom type
a which is in the target empirical formula and if this atom is rare (or infrequent)
in other available substructures. This encourages the picking of substructures
containing rare atoms early on in solution construction, which helps prevent
building candidate solutions that cannot be completed. The heuristic value of a
substructure is further rewarded (by a factor of 1000) if its selection would com-
plete the target empirical formula; this prevents making poor decisions towards
the end of solution construction.

3.6 Evaluation Using the Maximum Weighted Assignment

To evaluate a candidate isomer, it is first mined for all its constituent 4-carbon
substructures. A match between these larger substructures and those in the fre-
quency matrix that co-occur frequently at similar spectral shifts would indicate
a credible structure.

To assess the overall quality of these matches, we find the best assignment
of shifts to substructures possible, and evaluate this assignment. Specifically, we
have a set M of mined 4-C substructures and a set of observed shifts F . We have
a weight matrix W : M × F → R that stores the number of co-occurrences of
each m ∈ M and each shift f ∈ F within the frequency matrix.

We would like to assign each shift precisely one carbon atom, but the sub-
structures contain 4 carbons each. Therefore, we can allow each substructure to
be matched with up to 4 shifts. To facilitate solving this as a standard bipartite
graph matching problem, we can just copy each element of M four times to ob-
tain an expanded set Q and expand our weight function to be W : Q×F → R, by
simply repeating the weights four times. We now seek an assignment g : F → Q
such that ∑

f∈F

W (f, g(f))
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is maximized. This is a bipartite maximum weighted matching problem (or as-
signment problem) and can be solved by various methods including the Hungar-
ian algorithm [8], though we used a restart hillclimbing method.

The solution to this problem here gives the most favourable interpretation
of whether the set of substructures within the isomer could explain the shift
pattern seen.

3.7 Pheromone Update

The elements in the pheromone matrix that appear in a solution to be re-
warded (an iteration best ant or elite ant) are updated according to the following
equation:

τi,j(t + 1) = (1 − ρ) · τi,j(t) + Δτbest
ij

where Δτbest
ij = 0 if cij is not a component used in the best ant, and is oth-

erwise the raw score derived from the weighted assignment problem described
above.

Pheromones are forced to remain within the ranges set by τmin and τmax ,
by setting values below (respectively above) these to the respective bounding
value.

4 Preliminary Experimental Results

Our experiments were conducted with the parameters of the ACO set as shown
in Table 1(i). The basis of our experiments was a database of molecules compiled
by us, as described in Table 1(ii).

The performance of the structure elucidation method is evaluated in two ways
here. First, we examine if it can recover the structure of a molecule that is in
the prior knowledge data itself. This is already a hard problem (and is NOT
equivalent to testing on the training set in a classification/supervised learn-
ing task, because the space of possible structures that we search is still very
large — much larger than our whole database of known structures, so we are
not just learning class labels). These results are reported in Table 2.

Table 1. (i) Parameters of the ACO algorithm; (ii) Details of the database of known
molecules

(i) (ii)

Parameter value

nants 5
max iterations 80

τmin 0.5
τmax 10

ρ 0.01
α 1.0
β 1.0

Training set info

Number of molecules 2 873
Maximum MW 500
Minimum MW 50

Total number of atom types 16
Number of 2C and 3C substructures mined 2 881

Number of 4C substructures mined 5 926
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Secondly, we verify the performance on molecules not in the initial knowledge-
base. This is achieved here by ‘holding out’ certain molecules we wish to test from
contributing to the frequency matrices. Due to some limitations of our data-sets,
we can only do this for two molecules at present (see Table 2, bottom).

Table 2. Test results on a range of small organic molecules. The target molecule is
found in all cases and in almost all runs. Often the approximate fitness of the true
structure means that it is ranked highly amongst the other candidates. Bottom: results
on hold-out data.

No.
of
carbon
atoms

Molecule name (IUPAC
convention)

Empirical
formula

No. of
isomers
as enu-
merated
by [9]

Rank by
fitness
(total no.
of unique
isomers
gnrtd.)

Number
of runs
target
gnrtd.
/ total
runs

4 1-bromo-2-fluorobutane C4H8BrF 12 1st (2) 27/27
4-aminobutanenitrile C4H8N2 633 1st (27) 17/17
1-methoxypropan-2-ol C4H10O2 28 1st (12) 18/18

5 (1E)-1,2-diiodopent-1-ene C5H8I2 88 3rd (8) 14/14
6 1-(allyloxy)propan-2-ol C6H12O2 1313 17th (396) 10/11

1-propoxypropan-2-ol C6H1402 179 6th (127) 8/8
1,1’-dithiodipropane C6H12S2 timeout 1st (66) 15/15

7 1-butoxypropan-2-ol C7H16O2 463 15th (292) 20/20

Hold-out data results:
6 1-propoxypropan-2-ol C6H1402 179 2nd=

(127)
5/5

7 1-butoxypropan-2-ol C7H16O2 463 10th (292) 4/4

The results reported in Table 2 are currently limited by a couple of factors
that have prevented a larger study. These are that: (i) our system of joining
substructures cannot currently generate ring structures, which means that a
significant fraction of structures cannot be tested yet; and (ii) at several points,
our code calls proprietary software to convert between different representations
of chemical structures (namely, SMILES strings and MOL files), which creates
a substantial computational bottleneck that prevents us from testing the larger
structures in our database. We are working to overcome both of these factors,
which are certainly not inherent problems of the system.

Despite the limitations, the results are positive on the cases we have tested,
with true structures being correctly recovered in all cases, and often ranked
highly by the assignment method compared with other structures generated.
On the hold-out data, the ACO system worked at least equally well when these
isomers were removed from the prior knowledge database as when they were in
it. Much more testing is required to understand the effect of the distribution
of isomers stored in the database on performance; but this initial test indicates
that it is not necessary to have seen the molecule before to predict its structure
using our system.
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5 Related Work on Structure Elucidation

In comparison to the number of applications available for spectrum prediction,
the field of structure elucidation is relatively small and immature. Most attempts
to address this issue are built upon an expert system with an inherent rule base.

A common feature is the requirement for an empirical formula. From this,
all possible isomers are generated and a spectrum is predicted for each one, al-
lowing for similarity ranking against the original query spectrum. Although this
significantly narrows the search space, typically thousands of isomeric forms may
remain. If there are significant distinctions between the spectra, the structure
corresponding to the top ranking spectrum can be taken as the structure caus-
ing the experimental spectra. However, if several top-most ranking spectra are
very similar, further analysis may be required. It should be noted at this point
that the both the accuracy of spectrum prediction and similarity ranking are
of primary importance in structure elucidation, because the larger the margin
of error in these, the more likely it will be that the predicted structure will be
incorrect.

There are several factors to be taken into account during ranking, including
matching the number of nuclei visible in the spectrum, chemical shifts values and
scalar couplings. It can be difficult to determine corresponding shifts between
predicted and experimental spectra, especially where multiple shifts occur within
a small separation. A study has highlighted how matrices can be used to de-
tect optimal matches between experimental and predicted spectra [10]. The first
two expert systems developed for this area, CONGEN [11] and GENOA [12],
generated isomeric forms, from which a specialist would select a likely struc-
ture. Both systems required considerable human interaction in forming lists of
favoured or unlikely fragments, but GENOA allowed fragment overlap within
the isomers constructed.

A more modern trend in structure elucidation applications is to utilize several
different spectral types in order to perform elucidation, for example multiple
dimensions, element types or analytical techniques. This rapidly reduces the
chemical search space and facilitates ranking. Programs such as CHEMICS[13],
X-PERT [14], and StrucEluc [15] use such supplementary data to determine
specific libraries and rules which should be accessed in order to improve search
results.

A more unusual approach is taken by the program Genius [16], which uses a
genetic algorithm for structure generation. A neural network is used to categorise
the electronic environment of each carbon in an isomer and then to predict its
spectrum. Using a GA for structure generation means not all isomers need be
initially generated, potentially narrowing the search space. The level of similar-
ity to the query spectrum determines which chromosomes are allowed to mate
and reproduce into the next generation. Runs can be stopped either by correct
structure determination (matching chemical shifts), time limits (after a set num-
ber of generations), or accuracy limits (when chemical shifts lower than those in
the experimental spectrum are achieved).
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6 Summary and Future Work

A system for tackling the spectrum-to-structure problem based on ACO has
been presented. The system does not use expert rules, nor does it rely on pre-
dicting spectra from structures; instead, iterative heuristic search is combined
with the use of a knowledge-base of identified structures and their characteristic
spectra. On the data used to test the system here, it produced sets of proposed
structures that contained the true structure in all cases, even when the space of
possible isomers was large (i.e. containing over a thousand feasible structures).
On several occasions, the true structure was the isomer ranked highest by the
system. Moreover, the set of structures that a chemist may regard as likely can-
didates can potentially be reduced further, by taking account of the pheromone
trail information, rather than considering every structure generated. Testing has
obviously been very limited to date so it is not possible to draw any more than
preliminary conclusions from this. However, we are encouraged by these results
to continue further investigations.

The system now needs to be extended to tackle different molecular forms,
such as rings, which it is currently incapable of identifying (see [7] for more
details). We need to test the system further and compare it with alternative
approaches, including existing spectrum-to-structure methods and simple base-
line approaches. Such testing will require us to gather more high-quality NMR
spectral data for similar and larger molecules, to allow much larger studies to be
done, with more quantitative reporting of success rates as well as computation
times.

The spectrum-to-structure problem will continue to be an important one in
the pharmaceutical and systems biology arena. There is a growing need for fast
identification of molecules that have been manufactured artificially, such as can-
didates for active pharmaceuticals (drugs), or naturally-occurring molecules that
have never been characterized before, such as many of the metabolic products of
biological cells [17,18]. The work started here may eventually allow us to build
systems that are more scalable — requiring less human input and expertise and
less time-consuming training — than currently available ones.
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