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Abstract: Molecular classifications for urothelial bladder cancer appear to be promising in disease
prognostication and prediction. This study investigated the novel molecular subtypes of muscle
invasive bladder cancer (MIBC). Tumor samples and normal tissues of MIBC patients were submitted
for transcriptome sequencing. Expression profiles were clustered using K-means clustering and
principal component analysis. The molecular subtypes were also applied to The Cancer Genome
Atlas (TCGA) dataset and analyzed for clinical outcome correlation. Three molecular subtypes of
MIBC were discovered, clusters A, B, and C. The most differentially upregulated genes in cluster
A were BDKRB1, EDNRA, AVPR1A, PDGFRB, and TNC, while the most upregulated genes in
cluster C were collagen-related genes, PDGFRB, and PRKG1. For cluster B, COL6A3, COL1A2,
COL6A2, tenascin C, and fibroblast growth factor 2 were statistically suppressed. When the centroids
of clustering on PCA were applied to TCGA data, the clustering significantly predicted survival
outcomes. Cluster B had the best overall survival (OS), and cluster C was associated with poor OS but
exhibited the best response to perioperative chemotherapy. Among all groups, cluster B had a better
pathologic response to neoadjuvant chemotherapy (40%). Based on the results of the present study,
the novel clusters of subtype MIBC appear potentially suitable for integration into clinical practice.

Keywords: molecular subtypes; muscle-invasive bladder cancer; the cancer genome atlas (TCGA);
transcriptomic analysis

1. Introduction

Bladder cancer (BC) is ranked as the ninth most frequently diagnosed cancer world-
wide. It is mainly represented by bladder urothelial carcinoma, which accounts for 90% of
BC [1]. Current standard treatments for BC mainly include surgical resection, followed by
chemotherapy; however, due to the high incidence of distant metastasis and recurrence
after treatment, the five-year overall survival rate remains at 15–20% [2]. High morbidity,
mortality, and healthcare costs associated with muscle-invasive bladder cancer (MIBC)
draw a need for personalized patient care [3]. Recent advances in molecular profiling have
been proposed in individualizing treatment for MIBC patients [4]. While the divergent
but interrelated two-molecular-pathway model for the development of low-grade and
high-grade BC is well-established, molecular profiling has revealed heterogeneity in the
genetic landscape within MIBC, which also reflects its diversity in clinical outcomes [5–7].

Transcriptome profiling studies from different institutions, including The Cancer
Genome Atlas (TCGA) research network, have identified distinct molecular subtypes
within MIBC [8–11]. Different studies have proposed varying MIBC subtyping schemes
such as the TCGA clusters, Lund Taxonomy, mRNA expression-based molecular subtypes
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(TCGA-2017), and the consensus subtypes produced by the Bladder Cancer Molecular
Taxonomy Group (Consensus) [9–16]. At the highest level of hierarchy, MIBC can be
divided into two major subtypes—“basal” (BL) and “luminal” (LU). The BL subtype shares
an expression profile with the basal cells of the urothelium and is usually associated with a
poor prognosis. The LU subtype shares molecular profiles with differentiated urothelial
cells and generally predicts better prognosis [7,9,10,13,14]. In the original Lund Taxonomy
classification from 2012, the best cancer-specific survival (CSS) was associated with the
“UroA” subtype (now “Urothelial-like”), which represented low-grade non-MIBC with
a signature similar to the LU subtype [17]. Intra-tumor and intra-patient co-existence of
basal and luminal tumor regions has been reported in MIBC patients, and there were also
non-MIBC tumors that exhibited expression profiles similar to MIBC subtypes [13,18]. In
addition, intratumoral heterogeneity which may be enhanced following neoadjuvant and
adjuvant treatment can be responsible for the fluidity of molecular profiling patterns [18,19].

The primary focus of this study was to develop and validate a subtyping that could be
readily applied to our patient cohort for predicting clinical outcome. We initially subtyped
our institutional MIBC cohort using an unsupervised clustering of transcriptomic expression
profiling. The clusters were validated with TCGA dataset of MIBC [4,11,12,14,20–22].

2. Materials and Methods
2.1. Sample Selection and RNA Isolation

Frozen tissue samples from 30 consecutive MIBC patients who underwent radical
cystectomy at Songklanagarind Hospital, Thailand, from 2015 to 2020, and 7 normal
bladder mucosa tissue samples from patients with hematuria but without bladder cancer
were studied. Representative sections from all specimens were re-evaluated for their
histopathology by a pathologist (K.K.). Regarding specimen collection and storage, tissues
were collected at the time of surgical resection, snapped into the size of around 0.5 cm,
stored in a cryotube with stabilization solution (RNAlater, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA), and kept frozen in liquid nitrogen until RNA extraction. Seven
samples of non-tumorous urinary bladder wall obtained during a cystectomy were used as
controls. Informed consent was obtained from all patients, and the study was approved
by the Ethical Committee of Songklanagarind Hospital, Prince of Songkla University, in
accordance with the Declaration of Helsinki (REC 61-222-10-1).

RNA was isolated from all samples with the DNA/RNA AllPrep kit (QIAGEN).
Extracted RNA was assessed for quantity using Nanodrop 1000 (Nanodrop) or Qubit
(Thermo Fisher Scientific, Waltham, MA, USA). Digital quality control (QC) analysis for the
integrity of total RNA was performed using the 2100 Bioanalyzer (Agilent Technologies,
Quebec City, QC, Canada), following the manufacturer’s instructions.

2.2. Gene Expression Study

From each RNA sample, 3 ug of total RNA was used for strand-specific library prepa-
ration. Illumina Stranded mRNA preparation kit (Illumina) was used to generate the
sequencing libraries according to the manufacturer’s protocol. cDNA was prepared with
random hexamer primer. The Illumina NovaSeq 6000 platform was used for transcriptome
sequencing following the manufacturer’s instructions.

Paired-end raw data in FASTQ format from the sequencing machine were checked
for read quality, size, and GC content using the FASTQC program. Reads were aligned
to the reference genome using STAR version 2.7.8. The total mapping rate and mapped
read number were analyzed using HTSeq version 0.13.5. The total number of mapped
reads and fragments per kilobase of exon model per million mapped reads (FPKM) were
calculated for each annotated gene. DESeq2 package (R program) was used to capture the
DEG. The differentially expressed genes (DEGs) for 30 BC samples and 7 non-tumorous
bladder tissue samples were analyzed with the DESeq2 package, and |log2FC| > 2 and
p < 0.05 were set as the cutoff for DEGs.
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2.3. Clustering and Differential Expression Analysis

The transcriptomic data from MIBC samples were then clustered by K-means cluster-
ing and the principal component analysis method. Differentially expressed genes among
clusters were performed and shown as a Venn diagram. Differentially expressed genes
among clusters were analyzed for signaling pathway enrichment in each cluster using
KEGG (Kyoto Encyclopedia of Genes and Genomes) term enrichment analysis, using a
cutoff p-value of 0.05. Genes that showed different expression levels in all clusters were
evaluated for their diagnostic performance by using Receiver Operating Curve (ROC)
analysis to evaluate the performance of expression levels in predicting the cluster of MIBC.

2.4. Validation with TCGA Dataset

The selection of TCGA data used the keyword “muscle invasive bladder cancer”.
Clinicopathological data on the cohort and mRNA data were downloaded from the open
access portal, cBioPortal (https://www.cbioportal.org, accessed on 24 March 2022). Patients
with an unknown tumor stage (Tx) or T < 2 were excluded from analysis, yielding a final
study population of 231 TCGA patients. Statistical analyses were performed using R
program version 4.1.10. Association between subtype and clinical outcome was analyzed
by univariate (single parameter logistic regression) analysis. ROC curves were used to
compute sensitivity and specificity. Mean, median, and 95% confidence interval (CI) of
sensitivity and specificity were calculated.

Association between subtypes and time to metastasis, recurrence-free survival, cancer-
specific survival, or OS was determined while adjusting for demographic and clinical
covariates using the Cox proportional hazard model with a stepwise selection procedure.
Kaplan–Meier plots with log-rank statistics determined if subtypes classified MIBC patients
into risk categories based on survival outcome. Chi-square tests were used to compare
clinicopathologic data of patients for different amplicon definitions. Comparisons included
age, gender, tumor stage, lymph node status, and molecular subtype. Kaplan–Meier plots
with log-rank statistics categorized MIBC patients into outcome risk categories. Molecular
subtypes and age were compared. The Bonferroni adjustment was employed to correct for
multiple testing. The significance of univariable Kaplan–Meier regressions was assessed
using the log-rank and Wilcoxon tests. Multivariable analyses were conducted using Cox
proportional hazard regression. For results from the univariable analysis, a p-value cutoff
of <0.2 was chosen to include relevant clinical or pathological parameters that would have
been missed with a more restrictive p-value of <0.05. Contingency analyses of nominal
variables were performed with Pearson’s chi-squared test. Variables for the multivariable
analysis included significant (p < 0.2) clinicopathological characteristics on univariable
analysis (pT-Stage, pN-Stage, age, gender) and genes. Statistical analyses of numeric
continuous variables were performed with non-parametric tests (Wilcoxon rank-sum test,
Kruskal–Wallis test).

3. Results
3.1. Patient Information and Clinical Characteristics

All 30 tissue samples were from patients recruited at Songklanagarind Hospital,
Songkhla, Thailand. These included tumor tissue from 26 males and 4 females with ages
between 52 and 92 years. Clinical data are provided in Table 1. The data of 231 MIBC
cohorts retrieved from The Cancer Genome Atlas (TCGA) are also shown in Table 1 and
include the clinical information from 169 males and 42 females between the ages of 46
and 90 years old. It should be noted that there is a quite difference in the proportion of T
stages and N stages between data from tissue samples and the TCGA cohort. Moreover, no
metastasis was found in our MIBC patients.

https://www.cbioportal.org
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Table 1. Clinical data summary of studied MIBC datasets.

Thai Patient Dataset Percentage TCGA Dataset Percentage

Samples 30 231

Average age (range) 67.5 (52–92) 69 (46–90)

Gender
Male

Female
26
4

86.2
13.8

169
62

73.16
26.64

ECOG
0
1

21
9

70
30

158
73

68.5
31.5

T stage
T 2
T 3
T 4

24
6
0

80
20
0

75
123
33

32.47
53.25
14.28

N stage
N 0
N 1
N 2
N 3
N x

22
7
1
0
0

73.3
23.3
3.3
0
0

143
28
42
4

14

58.01
10.68
18.2
1.94
6.06

M stage
M 0
M 1

Not available

30
0
0

100
0
0

116
5

110

50.22
2.16

47.62

3.2. Transcriptome Profiling and Classification of Thai MIBC

The transcriptome sequencing of all tissue samples was performed based on the
strand-specific library preparation to identify the expression levels of all genes. Differential
expression analysis and a volcano plot demonstrated that 544 genes were found to be
upregulated and downregulated in MIBC (Figure 1A and Table S1). According to their
ontology, the 30 most significantly changed genes included phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) signaling molecules (fibronectin 1 (FN1), collagen type VI
alpha 2 chain (COL6A2), and collagen type I alpha 2 chain (COL1A2)), mitogen-activated
protein kinase (MAPK) pathway-related molecules (transforming growth factor-beta 1
(TGFB1) and MDS1 and EVI1 complex locus (MECOM)), mitochondrial biogenesis regu-
lators (metallothionein 1A (MT1A) and MT2A), exosomal proteins (tubulin beta 6 class
V (TUBB6), TUBB3, galectin 1 (LGALS1), and interferon-induced transmembrane protein
3 (IFITM3)), biomolecule metabolism (cytidine deaminase (CDA), sphingosine kinase 1
(SPHK1), monoamine oxidase A (MAOA), and microsomal glutathione S-transferase 1
(MGST1)), and others. To identify the optimal number of clusters based on transcriptomic
classification, Elbow plot analysis was applied for Thai MIBC transcriptome data. The
results show that the three clusters were found to be optimal, as demonstrated in Figure 1B.
The transcriptomic data of all MIBC tissue samples were then subjected to the classification
of the MIBC groups by using principal component analysis by K-means clustering.
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Figure 1. (A) Volcano plot analysis demonstrated that more than 100 genes were found to be
upregulated and downregulated in MIBC. (B) Elbow plot analysis was applied for Thai MIBC
transcriptome data. The results show that the three clusters were found to be optimal. (C) The
transcriptomic data of all MIBC tissue samples were then subjected to the classification of the MIBC
groups by using principal component analysis by K-means clustering. The genes were ranked by
adjusted p-value.

In addition to the enrichment study, the data from differential gene expression (DEG)
analysis also revealed the number of genes that were expressed differently between two
clusters, as displayed in the Venn diagram (Figure 2A). These included the genes related to
the calcium signaling pathway (bradykinin receptor B1 (BDKRB1), endothelin receptor type
A (EDNRA), arginine vasopressin receptor 1A (AVPR1A), prostaglandin E receptor 3 (PT-
GER3), prostaglandin F receptor (PTGFR), neurotrophic receptor tyrosine kinase 3 (NTRK3),
purinergic receptor P2X 1 (P2RX1, etc.), PI3K-Akt signaling pathway (COL6A2, COL1A2,
integrin subunit alpha 8 (ITGA8), CAMP responsive element binding protein 5 (CREB5),
COL6A3), MAPK signaling pathway (fibroblast growth factor 7 (FGF7), nerve growth
factor (NGF), hepatocyte growth factor (HGF), angiopoietin 1 (ANGPT1)), or cyclic GMP-
dependent protein kinase (cGMP-PKG) signaling pathway (potassium calcium-activated
channel subfamily M regulatory beta subunit 1 (KCNMB1), KCNMA1, adrenoceptor alpha
2A (ADRA2A), ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), adenosine A1 re-
ceptor (ADORA1), protein kinase cGMP-dependent 1 (PRKG1)). The expression levels of
each gene were demonstrated as volcano plots for each cluster (Figure 2B–D). Interestingly,
all 37 genes were significantly upregulated in clusters A and C, but downregulated in
cluster B. The most significantly expressed genes in cluster A included BDKRB1, EDNRA,
AVPR1A, platelet-derived growth factor receptor beta (PDGFRB), and tenascin C (TNC),
while COL6A3, COL1A1, COL6A2, PDGFRB, and PRKG1 were found to be the top five
genes highly expressed in cluster C. For cluster B, the collagen-related genes (COL6A3,
COL1A2, COL6A2), TNC, and fibroblast growth factor 2 (FGF2) were the statistically
suppressed transcripts.



Biomedicines 2023, 11, 69 6 of 14

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 15 
 

genes (COL6A3, COL1A2, COL6A2), TNC, and fibroblast growth factor 2 (FGF2) were the 

statistically suppressed transcripts. 

 

Figure 2. (A) The data from differential gene expression (DEG) analysis also revealed the number 

of genes that expressed differently between two clusters, as displayed in the Venn diagram. The 

expression levels of each gene are demonstrated as volcano plots for clusters A (B), B (C), and C (D). 

3.3. ROC Analysis of 37 Differentially Expressed Genes Found in MIBC Tissues 

To evaluate the specificity and sensitivity of the genes expressed differently for each 

MIBC cluster, ROC curve analysis was performed for all 37 genes and all clusters.  

Interestingly, the corresponding areas under the ROC curve (AUCs) with values 

more than 0.8, 0.9, and 0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B 

(Table 2 and Figure S1). The AUC values above 0.9 were observed only in five genes for 

cluster C; none could be found for cluster A. The highest AUC value of cluster B was 0.988 

for PDGFRB and COL6A2 genes; meanwhile, the lowest AUC was 0.72 for the ITGA8 gene 

(Table 2 and Figure S1). KCNMB1 is the gene that presented the highest AUC with the 

value of 0.936 in cluster C while ITGA11 showed the lowest AUC with 0.67. Cluster A 

displayed the lowest value of mean AUC; the range of AUC values of differentially ex-

pressed genes in this cluster was between 0.52 and 0.869, with the ryanodine receptor 3 

(RYR3) gene showing the lowest and COL1A1 the highest AUC. 

  

Figure 2. (A) The data from differential gene expression (DEG) analysis also revealed the number
of genes that expressed differently between two clusters, as displayed in the Venn diagram. The
expression levels of each gene are demonstrated as volcano plots for clusters A (B), B (C), and C (D).

3.3. ROC Analysis of 37 Differentially Expressed Genes Found in MIBC Tissues

To evaluate the specificity and sensitivity of the genes expressed differently for each
MIBC cluster, ROC curve analysis was performed for all 37 genes and all clusters.

Interestingly, the corresponding areas under the ROC curve (AUCs) with values more
than 0.8, 0.9, and 0.95 were found in 33, 25, and 14 genes from 37 genes for cluster B (Table 2
and Figure S1). The AUC values above 0.9 were observed only in five genes for cluster
C; none could be found for cluster A. The highest AUC value of cluster B was 0.988 for
PDGFRB and COL6A2 genes; meanwhile, the lowest AUC was 0.72 for the ITGA8 gene
(Table 2 and Figure S1). KCNMB1 is the gene that presented the highest AUC with the value
of 0.936 in cluster C while ITGA11 showed the lowest AUC with 0.67. Cluster A displayed
the lowest value of mean AUC; the range of AUC values of differentially expressed genes
in this cluster was between 0.52 and 0.869, with the ryanodine receptor 3 (RYR3) gene
showing the lowest and COL1A1 the highest AUC.

Table 2. The area under the curve (AUC) from specificity and sensitivity of the gene expression level
to define each MIBC cluster.

Genes Cluster A Cluster B Cluster C

CCL2 (C-C Motif Chemokine Ligand 2) 0.7680 0.941 0.859

FGF2 (Fibroblast growth factor 2) 0.6940 0.947 0.886

RYR3 (Ryanodine receptor 3) 0.5200 0.721 0.735

MYLK (Myosin light chain kinase) 0.8040 0.955 0.914

EDNRA (Endothelin receptor type A) 0.8110 0.951 0.833

FGF7 (Fibroblast growth factor 7) 0.7890 0.976 0.927

BDKRB1 (Bradykinin receptor B1) 0.7030 0.872 0.727
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Table 2. Cont.

Genes Cluster A Cluster B Cluster C

PDGFRB (Platelet-derived growth factor receptor beta) 0.8380 0.988 0.838

HGF (Hepatocyte Growth Factor) 0.7310 0.945 0.867

AVPR1A (Arginine vasopressin receptor 1A) 0.6200 0.774 0.708

NGF (Nerve growth factor) 0.6650 0.893 0.783

PTGFR (Prostaglandin F receptor) 0.7230 0.947 0.912

PDE1A (Phosphodiesterase 1A) 0.6170 0.916 0.86

PTGER3 (Prostaglandin E receptor 3) 0.7790 0.951 0.821

CAMK2A (Calcium/calmodulin-dependent protein
kinase 2 Alpha) 0.8200 0.971 0.862

NTRK3 (Neurotrophic receptor tyrosine kinase 3) 0.5380 0.828 0.831

P2RX1 (Purinergic receptor P2X 1) 0.7710 0.96 0.907

TNC (Tenascin C) 0.8530 0.947 0.746

COL4A4 (Collagen type IV alpha 4 chain) 0.5890 0.852 0.785

COL6A2 (Collagen type VI alpha 2 Chain) 0.8640 0.988 0.886

ITGA8 (Integrin subunit alpha 8) 0.6030 0.72 0.799

COL6A3 (Collagen type VI alpha 3 chain) 0.8430 0.979 0.849

CREB5 (CAMP-responsive element binding protein 5) 0.8200 0.946 0.79

TNXB (Tenascin XB) 0.6460 0.875 0.815

ANGPT1 (Angiopoietin 1) 0.6820 0.826 0.686

IGF1 (Insulin-like growth factor 1) 0.689 0.919 0.879

COL1A1 (Collagen type I alpha 1 chain) 0.869 0.95 0.736

COL1A2 (Collagen type I alpha 2 chain) 0.857 0.967 0.787

ITGA11 (Integrin subunit alpha 11) 0.824 0.915 0.67

NPR1 (Natriuretic peptide receptor 1) 0.628 0.885 0.808

KCNMB1 (Potassium calcium-activated channel
subfamily M regulatory beta subunit 1) 0.749 0.957 0.936

ADORA1 (Adenosine A1 receptor) 0.761 0.89 0.762

PRKG1 (Protein kinase cGMP-dependent 1) 0.777 0.964 0.889

ATP1B2 (ATPase Na+/K+ transporting subunit beta 2) 0.542 0.743 0.751

ADRA2A (Adrenoceptor alpha 2A) 0.582 0.915 0.845

KCNMA1 (Potassium calcium-activated channel
subfamily M alpha 1) 0.799 0.954 0.88

GNAO1 (G Protein subunit alpha O1) 0.739 0.939 0.85

3.4. Clinical Characteristics and Molecular Subtypes of MIBC Associated with Treatment Outcome
and the Response of Perioperative Chemotherapy

To identify factors associated with MIBC, logistic regression analysis was performed,
including prognostic scores, patient characteristics, and tumor characteristics (Table 1).
Univariate analysis identified tumor stage and nodal status as significant predictors of
overall survival. The multivariate logistic regression model identified the tumor stage
(hazard ratio (HR), 25.64; 95% confidence interval (CI), 2.31–284.04; p = 0.006) as an inde-
pendent predictor of overall survival. Cluster C exhibited a higher hazard ratio without
being statistically significant (HR, 2.63; 95% CI, 0.44–15.79; p = 0.291) (Table 3).
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Table 3. Univariate and multivariate survival association studies by Cox hazard analysis of our
MIBC patients.

Variables Univariate Analysis Multivariate Analysis

HR 95% Cl p Value HR 95% Cl p Value

T stage
2 Ref

3–4 6.62 1.09–40.1 0.041 25.64 2.31–284.04 0.006
N stage

0 Ref 0.036
1 4.05 0.45–5.46
2 6.46 0.35–6.86

Age (years)
≤65 Ref
>65 2.42 0.27–21.67 0.392

Lymph node metastasis
negative Ref
positive 2.39 1.29–4.41 0.01
LVI

negative Ref
positive 1.08 0.18–6.5 0.929

Ureteric margin
negative Ref
positive 5.32 0.59–48.17 0.212

Cluster
Cluster A Ref
Cluster B 0 1.6–4.94 0.108
Cluster C 2.63 0.44–15.79 0.291

Univariate analysis showed no significant differences in survival in our patients be-
tween the molecular subtypes (p = 0.108). Pairwise comparisons using log-rank tests also
showed that the overall survival did not differ significantly between each molecular sub-
type, with patients with the cluster B subtype experiencing the longest survival, followed
by those with the cluster A subtype. The poorest survival was observed among patients
with the cluster C subtype (Figure 3A).

We applied molecular subtype classification to tumors from 30 patients treated with
preoperative chemotherapy and analyzed the response to neoadjuvant chemotherapy.
Among these patients, cluster C had a better pathologic response to neoadjuvant chemother-
apy (40%) (Figure 3B). Moreover, MIBC in cluster C also exhibited better outcomes after
adjuvant chemotherapy for progression or metastatic-free survival (Figure 3C).

3.5. The Transcriptomic Classification Using PCA Analysis of Tissue Samples with the TCGA Data
Provided a Significant Prognostic Value of MIBC Overall Survival

To increase the number of samples used in this study, we included 231 transcriptomic
data from TCGA database for classification by using PCA analysis and unsupervised K-
means clustering. We decided to apply the centroid derived from MIBC tissue samples to
separate PCA coordinates of the TCGA cohort into three clusters according to MIBC tissues
(Figure 4A). We also determined the relationship between each cluster and survival data.
The Kaplan–Meier analysis demonstrated that cluster B displayed the highest probability of
survival within 1800 days of follow-up while cluster C showed the lowest value (p = 0.028;
Figure 4B). Clinical characteristics of MIBC from TCGA in each cluster are shown in
Table S2.
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data. The Kaplan–Meier analysis demonstrated that cluster B displayed the highest prob-

ability of survival within 1800 days of follow-up while cluster C showed the lowest value 

(p = 0.028; Figure 4B). Clinical characteristics of MIBC from TCGA in each cluster are 

shown in Table S2. 

Figure 3. (A) The Kaplan–Meier analysis demonstrated that cluster B displayed the highest probability
of survival within 48 months of follow-up while cluster C showed the lowest value. (B) RNA-based
molecular subtypes are associated with pathologic response to neoadjuvant chemotherapy. (C)
RNA-based molecular subtypes are associated with pathologic response to adjuvant chemotherapy.

Figure 4. (A) The centroid was derived from MIBC tissue samples to separate PCA coordinates
of the TCGA cohort into three clusters according to MIBC tissues. (B) The Kaplan–Meier analysis
demonstrated that cluster B displayed the highest probability of survival within 1800 days of follow-
up, while cluster C showed the lowest value.

3.6. Certain Signaling Pathways Were Associated with Each Type of MIBC Cluster

To identify the signaling pathways enriched in each cluster, the transcriptomic data
were used with KEGG (Kyoto Encyclopedia of Genes and Genomes) term enrichment analy-
sis. The metabolic pathways or signal transduction pathways associated with differentially
expressed genes, comparing the whole genome background with the KEGG terms and
p-adj < 0.05, are justified as significant enrichment. The top 10 significantly enriched terms
in the KEGG enrichment analysis are displayed for each cluster (Table 4). The calcium
signaling pathway was found to be a generally significant process in all clusters. However,
the chemokine signaling pathway was observed significantly only in clusters A and B.
Interestingly, the immune signal transduction pathways, including Janus kinase-signal
transducer and activator of transcription (JAK-STAT), B cell receptor signaling, and T cell
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receptor signaling pathways, were marked as the key mechanisms in cluster A of MIBC
specifically, while advanced glycation end product-receptor for AGE (AGE-RAGE) and
Ras-associated protein-1 (Rap1) signaling pathways were found as significantly enriched
molecular processes in cluster B. For cluster C, cGMP-PKG, oxytocin, MAPK, and Relaxin
signaling pathways were observed to be unique in this cluster.

Table 4. The top 10 significantly enriched terms in the KEGG enrichment analysis in each cluster.

No. Term Overlap p-Value Adjusted p-Value

Cluster A

1 Chemokine signaling pathway 44/192 2.24 × 10−10 9.16 × 10−9

2 Calcium signaling pathway 49/240 1.50 × 10−9 5.38 × 10−8

3 JAK-STAT signaling pathway 32/162 2.14 × 10−6 4.08 × 10−5

4 PI3K-Akt signaling pathway 55/354 2.45 × 10−6 4.38 × 10−5

5 B cell receptor signaling pathway 18/81 7.13 × 10−5 7.03 × 10−4

6 Ras signaling pathway 35/232 2.80 × 10−4 2.28 × 10−3

7 T cell receptor signaling pathway 19/104 6.66 × 10−4 4.76 × 10−3

8 cGMP-PKG signaling pathway 26/167 1.00 × 10−3 6.85 × 10−3

9 Rap1 signaling pathway 29/210 3.48 × 10−3 2.16 × 10−2

10 NF-kappa B signaling pathway 17/04 4.24 × 10−3 2.58 × 10−2

Cluster B

1 Calcium signaling pathway 94/240 2.89 × 10−16 1.73 × 10−14

2 PI3K-Akt signaling pathway 112/354 1.09 × 10−11 4.11 × 10−10

3 Chemokine signaling pathway 71/192 2.95 × 10−8 9.77 × 10−10

4 cGMP-PKG signaling pathway 57/167 6.91 × 10−8 9.45 × 10−6

5 AGE-RAGE signaling pathway in diabetic complications 39/100 1.58 × 10−7 1.98 × 10−6

6 Rap1 signaling pathway 62/210 5.47 × 10−6 4.71 × 10−5

7 cAMP signaling pathway 63/126 7.13 × 10−6 5.80 × 10−5

8 Ras signaling pathway 65/232 2.14 × 10−5 1.61 × 10−4

9 Apelin signaling pathway 41/137 1.43 × 10−4 9.18 × 10−4

10 Phospholipase D signaling pathway 43/148 2.08 × 10−4 1.31 × 10−3

Cluster C

1 cGMP-PKG signaling pathway 32/167 2.30 × 10−9 1.25 × 10−7

2 Calcium signaling pathway 38/240 1.96 × 10−8 5.92 × 10−7

3 PI3K-Akt signaling pathway 46/354 3.13 × 10−4 8.52 × 10−6

4 Oxytocin signaling pathway 21/154 2.53 × 10−4 4.06 × 10−3

5 MAPK signaling pathway 33/294 2.54 × 10−4 4.06 × 10−3

6 cAMP signaling pathway 26/216 3.81 × 10−4 5.46 × 10−3

7 Apelin signaling pathway 18/137 1.05 × 10−3 1.25 × 10−2

8 Relaxin signaling pathway 17/129 1.39 × 10−3 1.53 × 10−2

9 AGE-RAGE signaling pathway in diabetic complications 14/100 2.00 × 10−3 2.01 × 10−2

10 Ras signaling pathway 25/232 2.37 × 10−3 2.22 × 10−2
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4. Discussion

MIBC is deadly but curable if treated properly. Therefore, precise classification of
molecular subtypes responsible for treatment outcomes is important. Nowadays, many
studies have reported the MIBC subtype according to next-generation sequencing (NGS)
profiling, such as the TCGA clusters, Lund Taxonomy, mRNA expression-based molecular
subtypes (TCGA-2017), and the consensus subtypes produced by the Bladder Cancer
Molecular Taxonomy Group [9–16]. However, molecular classification in MIBC still has
heterogeneity because of diversity in the genetic background, clinical treatment, and clinical
outcome [5–7].

In addition, most available clustering schemes are based on cDNA microarray data,
and the current high-throughput molecular techniques have migrated to the next-generation
sequencing platform.

To our knowledge, our study is the first report of a single institutional MIBC subtyping
cohort using unsupervised clustering based on transcriptomic data. The primary finding
of this study is that the locations of MIBC clusters on the principal components identified
from transcriptome data can be predicted from an understanding of the average coalescent
differential genes for tissue samples. This analysis transformed the high-dimensional
data into an orthogonal basis which represents the variants of mRNA expression profile
in each sample. Unsupervised clustering revealed the three clusters of MIBC with the
37 genes expressed differently in all clusters. Interestingly, all these genes are related to the
signaling pathway associated with cancers. For example, the calcium signaling pathway
was found to be increased in colon cancer [23], breast cancer [24], and liver cancer [25].
PI3K-Akt activation was also found in breast cancer [26], gastric cancer [27], and thyroid
carcinoma [28]. The ubiquitous signal transduction MAPK pathway is also associated with
cancer cell proliferation and survival and an inflammatory environment [29]. Although all
these signal transductions are in cancers, the dominant pathway in the cancer cell depends
on the genetic background, the mutation status, or type of cancer [30], determining the
aggressive behavior, the progression rate, and drug response of cancer.

Surprisingly, most of the genes are not related to the markers used for sub-typing
in the previous reports [4,9–16]. When compared to the original report that used data
from the Dana-Faber Cancer Institute as a training set, only two markers in our study
(MT2A, uniquely expressed in cluster A, and HMGCS2, uniquely expressed in the cluster
B) overlapped with the BASE47 panels of that work [9]. The difference in molecular
patterns that defined sub-types might be explained by the difference in the expression
study technique, as our study used transcriptomic profiling by RNA sequencing rather
than cDNA microarray. Among the 37 genes that were significantly less differentially
expressed in our cluster B, 13 had differential expression levels in that study, and all 13
were overexpressed in their Basal subtype, which means that our cluster B corresponded
to the Luminal subtype. Consistent with other studies in which the Basal subtype had
poorer prognosis, our cluster B had higher overall survival probability, which was also
validated by TCGA data. Apart from transcriptomic profiling, other studies evaluated
the association of other biological factors such as lncRNA, miRNA, protein expression, or
DNA methylation [9–16], while we focused only on transcriptomic profiles and determined
the sensitivity and specificity of the genes instead. ROC curve analysis revealed that
most of the genes showed a high correlation of sensitivity and specificity only for cluster
B, which may be used as expression markers for good prognosis in Thai MIBC patients.
Our transcriptomic clustering provided three clusters of MIBC tissue which expressed
the specific pattern of mRNA profiling. In addition to our MIBC transcriptomic study
from patients, we used the information from TCGA dataset for validation. However, PCA
analysis with the comparison between two cohorts demonstrated the obviously different
PC coordinates between data from our MIBC tissue samples and TCGA dataset. The
variation in the genetic background of the different populations studied may be the factor
that caused the difference in the PCA data plot [31]. By using the initial cluster centroids
of the MIBC tissue data, we applied the distance of tissue PCA coordinated with mRNA
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expression profile to TCGA data for transcriptomic clustering of the TCGA cohort. This
confirmed the influence of distinct expression scenarios on other populations. The three
clusters obtained from this method were related to the significant difference in the overall
survival of MIBC patients, meaning that the classification based on transcriptomic data of
MIBC tissue may be an alternative way to predict the survival outcome.

Historically, molecular classification of bladder tumors has identified two divergent
pathways with distinct genetic hallmarks characterizing low-grade and high-grade tumors.
Molecular subtyping classifications have provided insight into the biology of bladder
tumors. It was reported that MIBC subtypes may predict patient response to chemotherapy
and could be used to develop targeted therapies. Since gene expression patterns change
over the course of treatment, subtype drifting or switching due to tumor evolution and
reaction to therapy should be concerned. Therefore, there is a need for systematic biological
studies to better stratify BC based on genetic drivers of treatment response rather than
subtyping based on expression profiling alone [10,32].

The present study demonstrates that subtyping by an unsupervised differential gene
expression based on RNA-Seq is possibly useful in predicting survival outcomes. Fur-
thermore, regardless of subtyping classification, only clinical parameters such as N-stage
and LVI were independent predictors of prognosis in multivariate analyses. In any co-
hort, subtypes by any classification may provide suboptimal efficacy to predict the clinical
outcome if not used together with clinical parameters. The limitation of our study was
the relatively low number of BC samples used in the transcriptomic analysis. In addition,
most clustering to date uses multi-omics platforms which combine genome variants with
expression data [33]. In the present study, although the clustering could be validated with
the TCGA dataset, the method should be further evaluated in an adequate number of
Thai MIBC to narrow down the representative markers for clinical application. Recent
translational research focused on using non-invasive biomolecular markers such as urinary
biomarkers or blood profiles in the diagnosis and classification of BC [34–36]. In combina-
tion with transcriptomic profiling data, more precise stratification of patient care in BC can
be expected in the near future.

5. Conclusions

Molecular subtyping classifications have provided insight into the biology of bladder
tumors, especially regarding the relationship between tumor heterogeneity and prognosis.
Results from multiple cohorts and our classification systems revealed that subtypes are
strongly associated with histopathologic grade and are consistent with clinical parameters
to predict BC patient outcomes. Cluster B in our study had a significantly higher survival
probability with the current standard treatment. However, a disparity in subtyping consen-
sus between studies exists and needs verification by modern high-throughput genotyping
techniques. Further investigation is needed to find the clinical applicability of molecular
subtypes before their incorporation into the personalized care of MIBC patients.
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