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In Europe, free-ranging wildlife has been linked to the emergence of several vector-borne

diseases such as rodents for Borrelia burgdorferi s.l. In particular, wild carnivorans are

one of the most important sources of emerging zoonotic pathogens worldwide, although

little information is available regarding the epidemiology of vector-borne parasites in these

animals. Thus, the aim of this paper was to investigate the prevalence of Babesia spp.,

Anaplasma spp., Ehrlichia spp., Hepatozoon spp. and Leishmania infantum in alpine

wild canids and mustelids from Italy. For this study, spleen samples of 157 foxes (Vulpes

vulpes), 45 badgers (Meles meles), and 33 wolves (Canis lupus) collected between

2009 and 2017 in Northwest Italy were examined by using conventional PCR. Logistic

regression was used to identify possible risk factors for pathogen infections. DNA of

any of the tested pathogens was found in more than 90% of the analyzed animals.

In particular, Babesia spp. showed significantly higher prevalence in foxes (89.7%)

and badgers (89.6%) than in wolves, while the latter were considerably more infected

with Hepatozoon canis (75.8%) than foxes (5.1%). None of the badger tested positive

for Hepatozoon spp., although they showed high prevalence of Leishmania infantum

(53.3%). Sequencing results revealed the presence, among others, of Babesia vulpes,

Babesia sp. isolate badger type A and B, and Anaplasma phagocytophilum. Moreover,

previously unreported pathogen/host associations were observed, such as Babesia

capreoli in wolves and badgers. The prevalence of vector-borne pathogens observed

in the present study is one of the highest reported so far, suggesting the importance of

free-ranging carnivorans in the epidemiology and maintenance of the sylvatic cycle of the

pathogens. Moreover, several of these pathogens are of particular importance regarding

human (A. phagocytophilum, L. infantum) and pet health (L. infantum, B. vulpes).

Keywords: Babesia, Hepatozoon, carnivores, Leishmania, zoonoses, wildlife, vector-borne pathogens

INTRODUCTION

More than 70% of zoonotic emerging infectious diseases are caused by pathogens with a wildlife
origin, and their impact on human health is increasing (1). In particular, the increased interactions
between humans, domestic animals andwildlife, resulting from human population growth, increase
of peri-urban sylvatic animals and habitat fragmentation, have been proposed as a leading cause of
pathogen emergence (2).

Carnivorans are well-adapted to urban and peri-urban environments, and among the most
important sources of zoonotic pathogens such as rabies (3, 4). In Europe, sylvatic carnivorans as
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the red fox (Vulpes vulpes) and the European badger (Meles
meles) are widely distributed across the continent, with stable
or growing populations in urban and suburban areas (5).
Furthermore, in recent years we assisted to the recovery of large
carnivores in Europe such as the wolf (Canis lupus), which has
shown to adapt well to human-dominated landscape (6).

The increase and urbanization of wildlife populations is
expected to influence the epidemiology of zoonotic pathogens,
as those transmitted by vectors (7). Tick-borne protozoa of the
genus Babesia are known to infect both domestic and sylvatic
carnivores worldwide (8, 9). In Europe, B. canis mainly infects
dogs, although it has been reported also in the wolf (10) and
the red fox (11). Moreover, foxes have been proposed as the
natural hosts of B. vulpes due to their high infection rate detected
and the absence of clinical signs in most of the cases (12).
Several genotypes of Babesia spp., phylogenetically related to B.
microti, have been observed in the European badger, such as
Babesia sp. Meles-HU 1 and Babesia sp. badger type A and B
(13, 14). Similar to Babesia, protozoa of the genus Hepatozoon
and bacteria of the genera Anaplasma and Ehrlichia are known
to infect domestic and sylvatic mammals, with H. canis, A.
phagocytophilum, A. platys and E. canis having a considerable
impact on carnivores (15, 16). Among wildlife, red fox is the most
investigated species, showing up to 16 and 90% of prevalence for
A. phagocytophilum (17) andH. canis (18), respectively. Domestic
dogs are themain reservoir host for Leishmania infantum, a sand-
fly transmitted pathogen, although investigations of a recent
human leishmaniasis outbreak in Spain have demonstrated the
essential role of the Iberian hare (Lepus granatensis) in the
maintenance of the sylvatic cycle of the parasite (19). Other
studies have focused on the detection of L. infantum in wild
canids, due to their close phylogenetic relationship with dogs,
although their role in the epidemiology of the parasite has not
been fully understood (20).

FIGURE 1 | Number of analyzed animals (green = foxes; blue = wolves; yellow = badgers) divided by years of sampling.

In Italy, scant information regarding the prevalence of vector-
borne pathogens in sylvatic carnivorans exist, mainly in the red
fox (21–23). Thus, the aim was to investigate the occurrence of
selected vector-borne pathogens (Babesia spp., Hepatozoon spp.,
Anaplasma spp., Ehrlichia spp. and L. infantum) in free-ranging
canids and mustelids in the alpine area of Northwest Italy.
Notably, these pathogens were chosen due to their significant
impact on human and/or animal health, and for their emergence
in the studied area (24, 25).

MATERIALS AND METHODS

Study Area
With more than 25,000 km2 of extension, Piedmont region
(Northwestern Italy) is one of the widest regions in Italy. Its
territory is predominantly mountainous and hilly, with plains
mainly distributed in the southern and eastern parts of the region.
At least a third of the land is covered by forest and natural areas,
of which 193,000 ha are protected. It is also highly populated,
with a mean density of 172 inhabitants/km2 that reach over 6,000
inhabitants/km2 in some urban areas. The sampling area ranged
from low-urbanized high mountains (up to 1,800m a.s.l.) to
highly-urbanized plains below 300 m a.s.l.

Sampling
For this study, 235 wild carnivorans (157 foxes, 45 badgers and
33 wolves) were collected in the period between 2009 and 2017
(Figure 1). All the animals were road-killed, with the exception
of red foxes that were culled during the official hunting seasons
as part of the culling program for fox population control, and
carcasses were brought to the Department of Veterinary Science,
University of Turin, for necropsy.

For each animal, information such as age (estimated by dental
conditions and body size measurements), sex and area of origin
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(mountain/flat/hill region) were recorded (Table 1). Spleen was
collected from each animal and individually stored at −20◦C
until further analysis.

Figure 2 shows the spatial distribution of the
sampled animals.

Molecular and Statistical Analysis
DNA was extracted from ≈10mg of tissue by using the
commercial kit GenElute Mammalian Genome DNA Miniprep
(Sigma-Aldrich, St. Louis, MO, USA).

For Babesia detection, a semi-nested PCR targeting the V4
hypervariable region of the 18S rRNA using primers RLB-F2 (5′-
GACACAGGGAGGTAGTGACAAG-3′), RLB-R2 (5′-CTAAG
AATTTCACCTCTGACAGT-3′) and RLB-FINT (5′-GACAA
GAAATAACAATACRGGGC-3′) was performed (21). Briefly,
the reactionmixture for the first step contained 1X of PCRMaster
Mix (Promega Corporation, WI, USA), 20 pmol of each primer
and 5 µl of DNA, in an overall volume of 25 µl. The thermal
cycler conditions used were an initial denaturation step at 95◦C
for 5min, followed by 25 cycles at 95◦C for 30 s, 50◦C for 45 s
and 72◦C for 90 s, and a final elongation step at 72◦C for 10min.
Amplicons from the first step (1µl) were used as templates for
the second step with internal primer RLB-FINT instead of RLB-
F2. Protocol and thermal cycler conditions were identical to the
first step except for the annealing temperature at 55◦C and for the
cycling number of 40.

For Hepatozoon detection, the 18S rRNA was targeted
by using primers HepF (5′-ATACATGAGCAAAATCTCAAC-
3′) and HepR (5′-CTTATTATTCCATGCTGCAG-3′) (26). The
reaction contained 12.5 µl of Taq PCR Master Mix (Qiagen,
Hilden, Germany), 50 pmol of each primer and 2µl of DNA, for

TABLE 1 | Analyzed species divided by age and sex.

Species Age No of animals Sex No of animals

Red fox (Vulpes vulpes) <1 year 2 M 1

F 1

1–2 years 53 M 13

F 40

>2 years 102 M 47

F 55

Wolf (Canis lupus) <1 year 9 M 2

F 7

1–2 years 13 M 6

F 7

>2 years 11 M 9

F 2

Badger (Meles meles) <1 year 0 M 0

F 0

1–2 years 14 M 12

F 8

>2 years 31 M 11

F 14

Total 235

an overall volume of 25µl. Thermal cycler conditions were 95◦C
for 5min, followed by 35 cycles at 94◦C for 1min, 53◦C for 30 s,
72◦C for 1min, and a final elongation step at 72◦C for 10min.
Anaplasmataceae were detected with conventional PCR by using
primers PER1 (5′-TTTATCGCTATTAGATGAGCCTATG-3′)
and PER2 (5′-CTCTACACTAGGAATTCCGCTAT-3′) targeting
the 16S rRNA of the bacteria (27). The PCR reaction mixture
contained 1X of PCR buffer, 25 pmol of each primer, 0.5mM of
MgCl2, 2.5U of HotStarTaq DNA Polymerase (Qiagen, Hilden,
Germany), 0.2mM of dNTPs mix (Sigma-Aldrich, St. Louis, MO,
USA) and 1µl of DNA, in a total volume of 25µl. The thermal
cycler conditions were an initial denaturation step at 95◦C for
15min, followed by 40 cycles at 94◦C for 1min, 52.4◦C for 45 s,
72◦C for 1min and a final elongation step at 72◦C for 10 min.

Leishmania infantum was detected by amplifying a fragment
of the highly reiterated minicircles of kDNA with primers
RV1 (5′-CTTTTCTGGTCCCGCGGGTAGG−3′) and RV2
(5′-CCACCTGGCCTATTTTACACCA−3′) (28). Briefly, the
reaction mixture contained 1X of PCR buffer, 22.5 pmol of

FIGURE 2 | Sampling sites for sylvatic animals analyzed in this study. Dots

represent the location in which animals were culled or found dead, whereas

different colors indicate the species (red = badger, blue = fox, yellow = wolf).

Background color ranging from gray to dark represent the elevation (meters

above the sea level m.a.s.l.) of the studied area, with darker color indicating

higher elevation.
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each primer, 2.5U of HotStarTaq DNA Polymerase (Qiagen,
Hilden, Germany), 0.2mM of dNTPs mix (Sigma-Aldrich, St.
Louis, MO, USA) and 2.5µl of DNA, in a total volume of 25 µl.
Thermal cycler conditions were 95◦C for 15min, 45 cycles of
94◦C for 1min, 62◦C for 1.5min and 72◦C for 1min, and a final
elongation step of 72◦C for 10 min.

For each PCR, positive and negative controls were processed
together with samples and all the precautions were taken to
minimize the risk of contamination.

Selected positive amplicons were purified using a commercial
kit (Nucleospin Extract II Kit, Macherey-Nagel, Düren,
Germany) and sequenced (Macrogen Europe, The Netherland).

Logistic regression was performed by using R software (3.5.1)
(29), to investigate possible risk factors for TBD infection
(age, sex, area of origin and year of sampling). Map showing
the distribution of sampled animals was performed by using
GIS (3.2) (30).

RESULTS

Prevalence of VBPs
DNA of at least one target pathogen was detected in 93.6%
[220/235] of the analyzed animals (Table 2). In particular, 94.9%
of the foxes [149/157], 84.8% [28/33] of the wolves and 95.6%
[43/45] of the badgers tested positive for any of the analyzed
vector-borne pathogen (VBP).

The prevalence of Babesia spp. was significantly higher
(p < 0.05) in foxes (89.7%, CI95% 83.63–93.63%) [130/145] and
badgers (91.1%, CI95% 79.27–96.49%) [41/45] than in wolves

(39.4%, CI95% 24.68–56.32%) [13/33], while Hepatozoon spp.
showed higher prevalence (p < 0.05) in wolves (75.76%, CI95%
58.98–87.17%) [25/33] than foxes (5.1%, CI95% 2.62–9.79%)
[8/156]. None of the badgers tested positive for Hepatozoon
spp., although they showed higher prevalence (p < 0.05)
of Anaplasmataceae infection (62.22%, CI95% 47.63–74.89%)
[28/45] and L. infantum DNA (53.33%, CI95% 39.08–67.06%)
[24/45] than in the other two species (see Table 2).

Sequencing Results
Results of the sequencing are listed in Table 3. Among the
positive samples, 115 amplicons were chosen for sequencing due
to the high quality of the PCR products.

In foxes, B. vulpes was the most prevalent species (10.34%,
CI95% 6.37–16.37%), with sequences showing 99–100% of
similarity with a sequence described by Duscher and colleagues
(31) in hunted foxes from Austria [GenBank: KM115977]. One
fox tested positive for Babesia sp. DO23163 (0.69%, CI95%
0.12–3.80%), with sequence showing 100% similarity to a
sequence obtained from a racoon dog in Osaka, Japan [GenBank:
AB935167]. Moreover, 8 foxes tested positive for H. canis,
and sequences showed 100% similarity with H. canis described
in hunting dogs from the Czech Republic (32) [GenBank:
KU893127]. Three wolves were found to be infected by B.
capreoli, whose sequence were 100% similar to B. capreoli
[GenBank: KX839234] identified in horses from Northwestern
Italy (33), and 21 by H. canis. Sequences of H. canis obtained in
wolves showed 97–100% similarity to those described in hunting
dogs from the Czech Republic (32) [GenBank: KU893127], in

TABLE 2 | Prevalence and confidence intervals (CI95%) of the analyzed VBPs divided by species.

Species Prevalence (Confidence Interval 95%)

Babesia spp. Anaplasmataceae Hepatozoon spp. Leishmania infantum

Red fox (Vulpes vulpes) 89.7% (83.63–93.63%) 10.97% (6.96–16.86) 5.1% (2.62–9.79%) 12.26% (7.99–18.35)

Wolf (Canis lupus) 39.4% (24.68–56.32%) 11.43% (4.54–25.95) 75.76% (58.98–87.17%) 25.00% (12.68–43.36%)

European badger (Meles meles) 91.1% (79.27–96.49%) 62.22% (47.63–74.89%) 0% (0.00–7.87%) 53.33% (39.08–67.06%)

TABLE 3 | Prevalence, confidence intervals, and identity of each sequenced pathogen divided by host species.

Pathogen species Host species Sequenced amplicons Prevalence Confidence Interval (95%) Percent Identity GenBank Accession Number

B. vulpes Fox 15 10.34% 6.37–16.37 99–100% KM115977

B. sp DO23163 Fox 1 0.69% 0.12–3.80 100% AB935167

B. capreoli Wolf 3 9.09% 3.14–23.57 100% KX839234

Badger 1 2.22% 0.39–11.57 100% KX839234

B. badger type A Badger 7 15.56% 7.75–28.78 100% KX528553

B. badger type B Badger 1 2.22% 0.39–11.57 100% KT223485

A. phagocytophilum Badger 3 6.67% 2.29–17.86 100% KC800985

Ehrlichia sp. Badger 5 11.11% 4.84–23.50 99% KR262717

H. canis Fox 8 5.13% 2.62–9.79 100% KU893127

Wolf 21 63.64% 46.62–77.81 100% KU893127

L. infantum Fox 19 12.26% 7.99–18.35 100% HF937257

Wolf 7 25.71% 14.16–42.07 100% HF937257

Badger 24 53.33% 39.08–67.06 100% HF937257
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Eurasian golden jackals from Austria (34) [KX712123], and in
foxes and ticks from Italy (35) [GenBank: GU371448]. Regarding
badgers, Babesia sp. isolate badger type A was the most prevalent
recorded piroplasm (15.56%, CI95% 7.75–28.78%), followed by
Babesia sp. DO23163 (4.44%, CI95% 1.23–14.83%), Babesia sp.
isolate badger type B (2.22%, CI95% 0.39–11.57%) and B. capreoli
(2.22%, CI95% 0.39–11.57%). Babesia sp. isolate badger type A
sequences showed 100% similarity to a sequence described by
Bartley and colleagues (36) in badgers from Scotland [GenBank:
KX528553], while the positive samples for Babesia sp. DO23163
showed 100% similarity with the sequence we found in one
fox in this study. Babesia sp. isolate badger type B, found
in one badger, was 100% similar to a sequence described by
Barandika and colleagues (14) in badgers from Northern Spain
[GenBank: KT223485], while B. capreoli was 100% similar to
B. capreoli identified in 3 wolves from this study and horses
from Northwestern Italy (33). Finally, A. phagocytophilum was
detected in 3 badgers out of 8 samples sequenced (6.67%, CI95%
2.29–17.86%), while 5 isolates showed 99% similarity with a
novel Ehrlichia sp. found in a badger in Northern Spain (37)
[GenBank: KR262717]. None of the Anaplasmataceae positive
samples obtained from foxes and wolves were sequenced due
to the poor quality of the amplicons. Amplicons of L. infantum
recovered from the animals in this study were sequenced for
species confirmation and showed 100% similarity with those
deposited (e.g., GenBank:HF937257 from Italy).

Logistic regression showed higher risk of infection for animals
collected in flat or hilly areas (below 600m a.s.l.) than in
mountain areas (above 600m a.s.l.) (AUC = 0.79). In particular,
higher risk of Anaplasmataceae infection in foxes (p < 0.05; OR
= 7.16) and of Babesia sp. in badgers (p < 0.01; OR = 22.50)
was recorded.

DISCUSSION

With 23% of emerging infectious diseases actually transmitted by
arthropods, vector-borne pathogens have a considerable impact
on human health (1). Several factors have been implicated in this
emergence; among others, the increase of human encroachment
into wild habitats, climate change and the consequent territorial
expansion of vector arthropods are the most important (38, 39).

The recent increase of some wildlife populations (38) is
expected to influence the epidemiology of vector-borne diseases,
as several sylvatic species are known or suspected reservoirs
of VBPs.

Few data are available on VBP presence and prevalence
in carnivorans from the alpine region (21). In our study, the
prevalence of Babesia in foxes is one of the highest reported so far
in Europe. Similar prevalence has been found in Portugal, where
Cardoso and colleagues have reported a prevalence ranging from
78 to 100%, depending on the type of sample (blood or bone
marrow) and the analyzed area (northern or southern part of the
country) (39). Lower prevalence has been detected in Spain (40),
Germany (41), Hungary (42) and Slovakia (43) (72.2, 46.4, 20,
and 9.7%, respectively). In Italy, previous findings have showed
variable results depending on the geographical area, ranging from

<1 to 54% (21–23, 44). Most of the foxes in the present study
were found to be infected with B. vulpes, as already reported in
Spain (45), Italy (46), Croatia (47), Germany (41), Portugal (39),
and Austria (31). Despite the severe symptomatology reported
in dogs infected with B. vulpes (48–50), only one case of
symptomatic infection in a fox has been reported so far (51).
This finding, together with the high rate of infection reported,
may indicate a role of foxes in the sylvatic cycle of this parasite,
although more evidences are needed. To date, no proven tick
vectors for B. vulpes have been observed. The hedgehog tick
Ixodes hexagonus has been proposed as the main vector of this
parasite based solely on the association between the occurrence of
this tick and the infection in dogs (52). Moreover, the detection of
B. vulpes DNA in unfed Dermacentor reticulatus ticks in Austria
(53) may suggest a possible role of this tick species as well. In
the study area, both I. hexagonus and D. reticulatus have been
described infesting privately owned dogs (54).

To the best of our knowledge, only two previous studies have
investigated the occurrence of Babesia spp. in free-ranging wolves
in Europe, reporting a prevalence of 20% in Croatia (10) and 7%
in Italy (23). Similar to the present study, Beck and colleagues
(10) reported the presence of wolves infected by piroplasms
having wild ungulates as natural hosts. In particular, we detected
B. capreoli DNA in 3 wolf samples, with sequences showing
100% similarity to those reported from sympatric roe deer,
red deer, horses and ticks collected from owned dogs (21, 33).
Additionally, the same parasite was also found in 1 badger from
this study, suggesting a broader host specificity for B. capreoli
than previously observed. However, due to the limited number
of sequenced amplicons, we are not able to speculate any further,
and more studies are needed in order to better understand the
role of wolves and badgers in the epidemiology of this Babesia
species. Moreover, most of the badgers and one positive fox were
infected withmustelid-related Babesia species, such as Babesia sp.
DO23163, Babesia sp. badger type A and type B (13, 14, 36) that
belong to the B. microti group (13). In Italy, badger-associated
Babesia infection has been observed also in a wolf from Southern
Italy (23), highlighting the circulation of these species within wild
carnivorans of the order Caniformia.

Hepatozoon canis was the only Hepatozoon species detected,
with 5% of prevalence in foxes and more than 75% in wolves.
Previous reports of H. canis in foxes from Italy (35), Croatia
(47), Bosnia and Herzegovina (11), and Spain (18, 55) showed a
prevalence ranging from 13% up to 90%, while to the best of our
knowledge this is the first epidemiological study investigating the
occurrence of this parasite in free-ranging wolves. In contrast to
Babesia, infection with H. canis is acquired by the mammal host
through the ingestion of an infected tick rather than tick bite.
The main vector of this parasite is Rhipicephalus sanguineus s.l.,
the kennel tick, which is widely distributed in Southern Europe
and strongly associated with dog presence (56). However, the
occurrence of H. canis has been reported in wildlife from areas
in which R. sanguineus s.l. is not endemic such as Austria (57),
Slovakia (58), and Germany (59), suggesting the role of other
tick species as vectors of H. canis. To date, only Rhipicephalus
turanicus has been considered as an additional definitive host
for this parasite (60), while Dermacentor spp., Haemaphysalis
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concinna and Ixodes ricinus have proved to harbor parasite DNA
(35, 61). In Northern Italy, both the proved and the suspected
vectors of H. canis have been reported in dogs (54) and humans
(62). Predation has been proved to be an alternative route
for Hepatozoon americanum infection, a closely related species
endemic in the United States (63), thus suggesting a similar
transmission way for H. canis. In particular, the consumption of
infected carrions and prey such as rodents carrying tissue cysts
of the parasite may be a possible infection route for both wild
and domestic carnivores (e.g., shepherd and hunting dogs) (61).
Finally, transplacental transmission of H. canis has been proved
in dogs (64) and foxes (65).

Several studies have investigated the prevalence of
Anaplasmataceae in wild carnivorans, showing considerable
differences among the animal species. In foxes, the occurrence
of these bacteria has been previously investigated in Italy (17),
Germany (66), Poland (67), The Netherland (68), Romania (69),
Switzerland (70), Czech Republic (71), Austria (65), Hungary
(16), and Spain (37), with results that are in line with our
findings. In contrast to the red fox, badgers and wolves have been
less investigated in Europe. No badgers showed positivity for A.
phagocytophilum in The Netherland (68), Czech Republic (71),
and Spain (72), where negative results have been obtained also for
the wolf (37). Notably, out of 114 badgers only two were found
positive during a study on the occurrence of VBPs in mustelids
from Belgium and The Netherland (73). The prevalence of A.
phagocytophilum obtained in the present study is in line with that
reported previously, showing low occurrence of this bacterium
in badger and maybe suggesting the poor role of this mustelid
species in the epidemiology of Anaplasmataceae. Conversely,
additional studies are needed to further investigate the presence
of this bacteria in the wolf, due to limited existing information.

More than half of the badgers in our survey tested positive
for L. infantum, while the prevalence in the other two species
is significantly lower (25.71% in wolves and 12.26% in foxes).
The occurrence of L. infantum has been largely assessed in
free-ranging carnivorans, especially in canids, due to their
phylogenetic closeness to dogs that are the main reservoir of this
parasite (20). The prevalence of L. infantum found in foxes in this
study, although lower than reported previously in Central and
Southern Italy (74, 75), confirms the recently established endemic
area of transmission in Northern Italy where autochthonous dogs
showed more than 40% of seroprevalence (24). The prevalence
in foxes from Spain ranges from 14% (76) to 75% (77), while in
Portugal the prevalence is much lower (78, 79). Although several
studies have been performed in order to detect L. infantum in
wolves in Europe (76, 80, 81), to our knowledge this is the
first epidemiological study on this parasite in the Italian wolf
population. Our results are in line with those obtained from Spain
(81), suggesting a similar epidemiological situation. Compared
with foxes and wolves, the presence of L. infantum in badgers
has been generally less evaluated. However, the moderate to high
prevalence observed in this and other studies (81, 82) could
suggest a role of this species in the epidemiology of L. infantum,
at least in its sylvatic life cycle. Nevertheless, further studies are
needed to assess the capacity of badgers to infect sandflies, a
fundamental ability for a competent reservoir (20).

Statistical analysis of risk factors showed a higher risk of
Anaplasmataceae infection in foxes and of Babesia spp. in
badgers collected in flat or hilly areas (below 600m a.s.l.) than
in mountain areas (above 600m a.s.l.). This could be accounted
to higher abundance of vectors (Ixodid ticks) in hilly areas
than in the mountains due to more suitable environmental
characteristics and to a higher presence of other sylvatic hosts for
ticks as wild ungulates.

CONCLUSIONS

With the molecular analysis of 235 specimens collected from
2009 to 2017, this study provides valuable information about the
situation of vector-borne pathogens in wild carnivorans from
Northwestern Italy, showing high level of infection in all target
species. Moreover, we reported for the first time the presence of
B. capreoli in wolves and badgers, two unexpected hosts for this
parasite, and of H. canis in wolves.

This survey highlights the presence of several VBP in
the study area, many of which capable to infect domestic
animals and humans. The high occurrence of VBPs in
sylvatic carnivorans could pose a risk for both animal and
human health, especially in an area with growing urbanization
and increasing wildlife population as in many parts of
Europe, that lead humans, wildlife, livestock and pets to
closer contacts.
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