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Background. Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with high rates of mortality and
morbidity. +e traditional Chinese medicine Wenxin Keli (WXKL) can effectively improve clinical symptoms and is safe for the
treatment of AF. However, the active substances in WXKL and the molecular mechanisms underlying its effects on AF remain
unclear. In this study, the bioactive compounds in WXKL, as well as their molecular targets and associated pathways, were
evaluated by systems pharmacology.Materials and Methods. Chemical constituents and potential targets of WXKL were obtained
via the Traditional Chinese Medicine Systems Pharmacology (TCMSP). +e TTD, DrugBank, DisGeNET, and GeneCards
databases were used to collect AF-related target genes. Based on common targets related to both AF and WXKL, a protein
interaction network was generated using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGGs) pathway enrichment analyses were performed. Network diagrams of the active component-target and
protein-protein interactions (PPIs) were constructed using Cytoscape. Results. A total of 30 active ingredients in WXKL and 219
putative target genes were screened, including 83 genes identified as therapeutic targets in AF; these overlapping genes were
considered candidate targets for subsequent analyses. +e effect of treating AF was mainly correlated with the regulation of target
proteins, such as IL-6, TNF, AKT1, VEGFA, CXCL8, TP53, CCL2, MMP9, CASP3, and NOS3. GO and KEGG analyses revealed
that these targets are associated with the inflammatory response, oxidative stress reaction, immune regulation, cardiac energy
metabolism, serotonergic synapse, and other pathways. Conclusions. +is study demonstrated the multicomponent, multitarget,
andmultichannel characteristics ofWXKL, providing a basis for further studies of the mechanism underlying the beneficial effects
of WXKL in AF.

1. Introduction

Atrial fibrillation (AF) is one of the most common ar-
rhythmias, and its prevalence is increasing [1]. +e occur-
rence of AF can lead to heart failure, embolism, and stroke
and significantly increases the rates of disability and death,
presenting a serious health issue [2, 3]. +erefore, the
prevention and treatment of AF are major concerns.
According to the American Heart Association practice

guidelines, current strategies for AF management include

rate control, rhythm control, anticoagulation, lifestyle, and
risk factor management [4]. Antiarrhythmic drugs and
catheter ablation are the main treatment options. However,
available medications for AF are suboptimal based on the
high rate of arrhythmia recurrence and the potential
proarrhythmic effect [5, 6]. Catheter ablation is also limited
by a high rate of recurrence, and patients often require
additional surgery [6, 7]. +erefore, researchers, clinicians,
and patients seek new effective and safe treatment strategies
for AF.
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Traditional Chinese medicines (TCMs) have been used
for the prevention and treatment of arrhythmias in China for
over a thousand years [8]. Wenxin Keli (WXKL), a classical
Chinese patent medicine with high efficacy and favorable
safety, is useful for the management of patients with AF
[9–11]. WXKL is composed of five Chinese herbal extracts:
Radix (Dang Shen, DS), Polygonati Rhizoma (Huang Jing,
HJ), Notoginseng Radix et Rhizoma (San Qi, SQ), Ambrum
(Hu Po, HP), and Nardostachyos Radix et Rhizoma (Gan
Song, GS). It is the first Chinese antiarrhythmic medicine
approved by the China Food and Drug Administration
[11–13].
Recent animal and cell studies [14–16] have demon-

strated that WXKL inhibits and prevents atrial arrhythmias
via complicated antiarrhythmic mechanisms, but the specific
molecular mechanism remains unclear.
Similar to other TCM formulas, WXKL is a multi-

component and multitarget agent that achieves its specific
therapeutic efficacy via the regulation of molecular networks
by active components. In this study, we used a compre-
hensive network pharmacology-based approach to investi-
gate the mechanisms by which WXKL exerts therapeutic
effects in AF. A flowchart of the experimental procedure is
shown in Figure 1.

2. Materials and Methods

2.1. Database Building and Active Compound Screening.
All compounds in the five herbal components of WXKL
were retrieved from the TCM Systems Pharmacology
(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) database and
analysis platform, which captures relationships among
drugs, targets, and diseases.+e database includes chemicals,
targets, drug-target networks, and associated drug-target-
disease networks, as well as pharmacokinetic properties of
natural compounds, such as oral bioavailability (OB), drug-
likeness (DL), and blood-brain barrier penetration [17, 18].
Compounds were screened based on absorption, distribu-
tion, metabolism, and excretion (ADME), and pharmaco-
kinetic information retrieval filters were used to obtain
bioactive compounds for further analysis using the
thresholds OB≥ 30% and DL≥ 0.18 [19, 20]. A network was
generated using Cytoscape to visualize the complex rela-
tionships between active compounds and potential targets
[21]. Nodes represent compounds and targets, and edges
indicate the intermolecular interactions.

2.2. Identification of Drug Targets. Protein targets of the
compounds were retrieved from the TCMSP. Gene names
were extracted from UniProtKB (http://www.uniprot.org).

2.3. Screening of Potential Targets for AF. AF-associated
target genes were obtained from various databases, such as
TTD, DrugBank, DisGeNET, and GeneCards. +e Drug-
Bank database (https://www.drugbank.ca/) is a unique
bioinformatics and cheminformatics resource that combines
detailed drug data with comprehensive drug target infor-
mation [22, 23]. +e DisGeNET database (https://www.

disgenet.org/) includes one of the largest publicly avail-
able collections of genes and variants associated with human
diseases [24]. +e GeneCards database (https://www.
genecards.org/) is a searchable, integrative database that
provides comprehensive, user-friendly information for all
annotated and predicted human genes [25]. +e term “atrial
fibrillation” was used for searches against these four data-
bases to screen targets related to AF.

2.4. Collection of Common Compound-Disease Targets.
+e screened chemical targets and disease targets were
imported into the ImageGP (http://www.ehbio.com/
ImageGP/index.php) platform, and common compound-
disease targets were obtained as candidates for further
analysis [26].

2.5. PPI Network of Compound-Disease Targets. A protein-
protein interaction (PPI) network was generated using the
STRING database (https://string-db.org/), which covered
almost all functional interactions between the expressed
proteins [27]. Species was set to “Homo sapiens,” and the
target interaction information was obtained. +e results
were imported into Cytoscape (version 3.6.1; https://www.
cytoscape.org/) to draw and analyze the interaction network.
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Figure 1: Analysis framework based on an integrated network
pharmacology strategy.
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+e node size reflected the number of combined edges
(degree), and nodes with a degree greater than twice the
median degree of all nodes were selected as hubs.

2.6. Gene Ontology (GO) and KEGG Pathway Enrichment
Analyses. GO analyses based on the three main categories,
i.e., biological process (BP), molecular function (MF), and
cell component (CC), and a Kyoto Encyclopedia of Genes
and Genomes (KEGGs) (https://www.kegg.jp/) pathway
enrichment analysis were performed using the Metascape
system (http://metascape.org/gp/index.html) [28] and the
ImageGP. A P value less than 0.05 indicated significance.

2.7. PathwayConstructions andAnalysis. In order to explore
the biological effects of cellular targets affecting the diseases
through modulating specific pathways, an incorporated “AF
pathway” was integrated based on the current understanding
of AF pathology [29]. In brief, the obtained target proteins
were firstly mapped to KEGG to distribute them to several
pathways. Next, pathways closely related to AF were picked
out and consolidated into an “AF pathway” under the
pathological and clinical data.

3. Results

3.1. Identification of Active Compounds in WXGs. From the
TCMSP, 354 total compounds were retrieved, including 134
in Radix (DS), 38 in Rhizoma (HJ), 119 in Notoginseng
Radix et Rhizoma (SQ), 6 in Ambrum (HP), and 57 in
Nardostachyos Radix et Rhizoma (GS). Among the 354
compounds, 34 satisfied OB≥ 30% and DL≥ 0.18. Finally, 30
compounds were obtained after excluding duplicates
(Table 1).

3.2. WXKL Target Identification. In total, 30 compounds in
WXKL were associated with 645 target proteins. After
eliminating overlapping proteins, 219 proteins were ob-
tained. To further understand the interactions between
compounds and targets, we constructed a compound-target
network, as shown in Figure 2, bymapping 30 compounds to
219 potential targets associated with inflammation, anti-
oxidant stress, nuclear factor-kappa B, immune regulation,
and so on. +e network had 253 nodes and 531 edges.
Compounds with the most targets in WXKL were quercetin,
luteolin, 7-methoxy-2-methyl isoflavone, beta-sitosterol,
baicalein, and stigmasterol, with 141, 55, 40, 35, 31, and 28
targets, respectively. +ese results suggested that the six
components are probably related to the therapeutic effects in
AF.

3.3. Retrieval of Potential Disease Targets. TTD, DrugBank,
DisGeNET, and GeneCards retrieval results were integrated
to obtain AF-related disease targets. As shown in Figure 3,
the potential targets of WXKL were mapped to the disease
targets using the ImageGP platform, and a Venn diagram
was drawn. A total of 83 potential targets were obtained

based on the intersection of the two sets of targets. +ese
targets are summarized in Supplementary Table S1.

3.4. Analyses of Candidate Target Proteins. A total of 83
potential genes associated with AF were uploaded to the
STRING database for analysis. +e systematically selected
protein targets with a median confidence score of 0.400 were
plotted as a PPI network using the STRING database. A total
of 83 nodes and 1253 edges were acquired, and the average
node degree was 30.2. Furthermore, using Cytoscape, we
constructed a network (Figure 4), in which the edges rep-
resent associations between a pair of targets, nodes represent
the target, and the degree value represents the intensity. +e
top ten targets IL-6, TNF, AKT1, VEGFA, CXCL8, TP53,
CCL2, MMP9, CASP3, and NOS3 had high degrees in this
process, explaining their significance in the network.

3.5. Gene Ontology Enrichment Analysis. We imported the
83 candidate target genes into the Metascape system for a
GO analysis.
Based on this analysis, the potential targets were related

to many biological processes, molecular functions, and
cellular components, including functions that maybe im-
portant for the occurrence and development of AF. +e top
20 highly enriched BP terms were retained for analysis and
included negative regulation of cytokine, reactive oxygen
species, and cell migration (Figure 5(c)). Previous study
showed that AF targets were the diversity of molecular
pathways affecting mechanical stress, sarcomere disarray,
chronic inflammation, reactive oxygen species, and activa-
tion of atrial fibroblasts, which have collectively emerged
from translational research and genome-wide association
studies (GWASs) [30]. +ese results indicated the thera-
peutic effects of WXKL in AF maybe mediated by its effects
on these biological processes. Accordingly, these processes
are of great significance for our understanding of the
mechanism by which WXKL influences AF.
A total of 119 GO terms in the molecular function

category (Figure 5(b)) were enriched, and the top 20 entries
were selected for analysis. +ese terms mainly included
cytokine receptor binding, kinase binding, adrenergic re-
ceptor activity, phosphatase binding, and antioxidant
activity.
In total, 58 GO terms in the cell components category

(Figure 5(a)) were enriched, and the top 19 entries were
selected for analysis based on P< 0.01. +e targets were
closely related to membrane raft extracellular matrix, RNA
polymerase II transcription factor complex, endoplasmic
reticulum lumen, neuron projection cytoplasm, mitochon-
drial outer membrane, perinuclear region of cytoplasm, focal
adhesion, and nuclear membrane. Previous study showed
interconnectivity of numerous targets functioning in the
cardiomyocyte cell membrane, sarcoplasmic reticulum,
nucleus, sarcomere, and inflammasome with reported roles
in human or preclinical models of AF [31, 32].+us, it can be
seen that WXKL plays a role in the treatment of AF through
these cell components category.
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3.6. KEGG Pathway Enrichment Analysis. To further reveal
the mechanisms underlying the effect of WXKL on AF, we
conducted a KEGG pathway enrichment analysis of 83
targets and screened the top 20 pathways based on a
threshold value of P< 0.01 (Figure 6). Many pathways in-
volving potential target genes were identified, such as the
VEGF signaling pathway, HIF-1 signaling pathway, and
PI3K-Akt signaling pathway, which are associated with
signal transduction. Hepatitis B, TNF signaling pathways,
NF-kappa B signaling, cytokine-cytokine receptor interac-
tion, and hepatitis C pathways are related to inflammatory
reactions. Moreover, amyotrophic lateral sclerosis, allograft
rejection, and allograft rejection are closely related to im-
munological processes. +e calcium signaling pathway
modulates intracellular Ca2+ levels and a number of Ca2+-
dependent intracellular signaling processes. Serotonergic
synapses and tryptophan modulate 5-hydroxytryptamine,
which is a hormonal trigger for AF. In addition, complement
and coagulation cascades revealed that WXKL has a po-
tential role in other related diseases. +e AGE-RAGE sig-
naling pathway is highly important in diabetic
complications; it elicits the activation of multiple intracel-
lular signaling pathways involving NADPH oxidase, protein
kinase C, and MAPKs, thereby resulting in NF-kappa B
activity.

Previous study showed that the mechanisms of AF were
related to atrial cardiomyopathy, mechanical stress, acti-
vation of atrial fibroblasts, fibrofatty infiltrations, inflam-
mation, activation of inflammasomes and macrophages,
hypercoagulability and autonomic nervous system dysre-
gulation, sarcoplasmic reticulum Ca2+ leak, and so on [30].
+e results verified thatWXKL alleviates AF by regulating

inflammatory, immunity, antioxidant stress, serotonergic
synapses, Ca2+ levels, and a number of Ca2+-dependent in-
tracellular signaling processes (Figures 7 and 8).

4. Discussion

AF, the most common sustained arrhythmia, currently
affects over 33 million individuals worldwide, and its
prevalence is expected to be more than double over the next
40 years. AF is associated with a twofold increase in pre-
mature mortality and important major adverse cardio-
vascular events, such as heart failure, severe stroke, and
myocardial infarction [33]. AF is not just an atrial disease,
with documented associations with systemic inflammation,
endothelial dysfunction, cardiometabolic disturbance, and
wider abnormalities in myocardial structure and function
[34, 35]. In this study, we identified the main active in-
gredients of WXKL as quercetin, luteolin, 7-methoxy-2-

Table 1: Basic information for components of WXKL.

MOL ID Molecule name
OB
(%)

DL

MOL008397 Daturilin 50.37 0.77
MOL008393 7-(Beta-xylosyl)cephalomannine_qt 38.33 0.29
MOL007514 Methyl icosa-11,14-dienoate 39.67 0.23
MOL009763 (+)-Syringaresinol-O-beta-D-glucoside 43.35 0.77

MOL008407
(8 S, 9 S, 10 R, 13 R, 14 S, 17 R)-17-[(E, 2 R, 5 S)-5-Ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-

1,2,4,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one
45.4 0.76

MOL006774 Stigmast-7-enol 37.42 0.75
MOL003036 ZINC03978781 43.83 0.76
MOL001006 Poriferasta-7,22E-dien-3-beta-ol 42.98 0.76
MOL004355 Spinasterol 42.98 0.76
MOL002879 Diop 43.59 0.39
MOL000359 Sitosterol 36.91 0.75
MOL001494 Mandenol 42 0.19
MOL008411 11-Hydroxyrankinidine 40 0.66
MOL002140 Perlolyrine 65.95 0.27
MOL006331 4′,5-Dihydroxyflavone 48.55 0.19
MOL001040 (2R)-5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 42.36 0.21
MOL005344 Ginsenoside rh2 36.32 0.56
MOL005321 Frutinone A 65.9 0.34
MOL000546 Diosgenin 80.88 0.81
MOL007059 3-Beta-hydroxymethyllenetanshiquinone 32.16 0.41
MOL002959 3′-Methoxydaidzein 48.57 0.24
MOL008400 Glycitein 50.48 0.24
MOL001689 Acacetin 34.97 0.24
MOL007088 Cryptotanshinone 52.34 0.4
MOL000449 Stigmasterol 43.83 0.76
MOL002714 Baicalein 33.52 0.21
MOL000358 Beta-sitosterol 36.91 0.75
MOL003896 7-Methoxy-2-methyl isoflavone 42.56 0.2
MOL000006 Luteolin 36.16 0.25
MOL000098 Quercetin 46.43 0.28
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methyl isoflavone, beta-sitosterol, baicalein, and stigmas-
terol and used network and functional analyses to show
that they are potentially valuable for the treatment of AF.
Some compounds detected in this study have reported

effects other than anti-inflammatory, antiimmune, and
antistress activity. Quercetin, a very common flavonoid
found in plant foods, prevents arrhythmias and dramatically
improves heart muscle function and repair following heart
attack. Quercetin has a protective effect against AF, probably
by inhibiting platelet aggregation and TXA2 formation, as
well as increasing PGI2 generation [35]. Previous studies
have suggested that luteolin, a flavonoid, possesses anti-
oxidative, antitumor, and anti-inflammatory properties. +e
cardiac protective effects of luteolin have recently been
demonstrated in vitro and in vivo [36].
As illustrated in the compound-target network, many

targets could be altered by multiple compounds, such as
TNF, IL-6, JUN, and PTGS1. Others, including CRP,

CXCL2, and COL3A1, could only be regulated by quercetin.
+ese results indicated thatWXKL has multicomponent and
multitarget biological characteristics. A PPI network showed
that WXKL could regulate the expression of AF-regulated
targets and alleviate AF symptoms. IL-6 (degree� 65), AKT1
(degree� 61), TNF (degree� 61), VEGFA (degree� 56), and
TP53 (degree� 53) are potential hub targets in the network.
To predict the mechanisms underlying the therapeutic

effects ofWXKL in AF, we evaluated the candidate targets by
GO enrichment analyses. Based on the top 20 GO terms
(P< 0.01) in each major category, the major hubs were
significantly enriched for multiple biological processes, in-
cluding negative regulation of cytokine, reactive oxygen
species, and cell migration, as shown in Figure 5(c). Fur-
thermore, they were enriched for various molecular func-
tions, including cytokine receptor binding, kinase binding,
adrenergic receptor activity, phosphatase binding, and an-
tioxidant activity, as shown in Figure 5(b). +e active targets

Figure 2: Drug-compound-target network of potential targets inWXKL. Blue diamond represents potential active ingredients inWXKL,
compounds in WXKL are shown in light yellow, pink, red, orange, and purple, and the herbs are shown in green. Radix (Dang Shen, DS),
Polygonati Rhizoma (Huang Jing, HJ), Notoginseng Radix et Rhizoma (San Qi, SQ), Ambrum (Hu Po, HP), and Nardostachyos Radix et
Rhizoma (Gan Song, GS). A1 represents stigmasterol. A2 represents Diop. B1 represents beta-sitosterol. B2 represents sitosterol. DS1
represents daturilin. DS2 represents (8 S, 9 S, 10 R, 13 R, 14 S, 17 R)-17-[(E, 2 R, 5 S)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-di-
methyl-1,2,4,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one. DS3 represents ZINC03978781. DS4 represents
poriferasta-7,22E-dien-3beta-ol. DS5 represents spinasterol. DS6 represents stigmast-7-enol. DS7 represents 11-hydroxyrankinidine.
DS8 represents 3-beta-hydroxymethyllenetanshiquinone. DS9 represents frutinone A. DS10 represents 7-(beta-xylosyl)cepha-
lomannine_qt. DS11 represents perlolyrine. DS12 represents methyl icosa-11,14-dienoate. DS13 represents 7-methoxy-2-methyl
isoflavone. DS14 represents luteolin. DS15 represents glycitein. GS1 represents cryptotanshinone. GS2 represents acacetin. GS3 rep-
resents (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one. HJ1 represents diosgenin. HJ2 represents (+)-syringaresinol-O-beta-
D-glucoside. HJ3 represents baicalein. HJ4 represents 4′,5-dihydroxyflavone. HJ5 represents 3′-methoxydaidzein. SQ1 represents
ginsenoside rh2. SQ2 represents quercetin. SQ3 represents mandenol.
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Figure 3: Matching of target genes for AF and WXKL.

Figure 4: PPI network of targets for WXKL in the treatment of AF. Layout of the three rings corresponds to the area and color of nodes.
Nodes represent potential targets of WXKL in AF. Node size from large to small indicates a decrease in the degree value. Lines connecting
inner nodes indicate relationships between proteins.
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values. Node sizes are in the ascending order of the gene count.
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IL-6, AKT1, TNF, CCL18, CCL2, and NOS3 were related to
various molecular processes, particularly immune regula-
tion, oxidative stress, and inflammatory response. To some
extent, these results are consistent with the pathogenesis and
clinical features of AF.+e key cellular components included
membrane raft extracellular matrix, RNA polymerase II
transcription factor complex, endoplasmic reticulum lumen,
neuron projection cytoplasm, mitochondrial outer mem-
brane, perinuclear region of cytoplasm, focal adhesion,
vesicle lumen, cyclin-dependent protein kinase holoenzyme
complex, and nuclear membrane, and many targets were
highly ranked as potential-related genes. +ese findings
indirectly illustrated the complexity of the pathogenesis of
AF and the damage to various cellular components.
It is generally believed that oxidative stress, inflamma-

tion, and related processes are important factors for the
promotion of apoptosis or myocardial fibrosis, leading to
atrial electrical remodeling and structural remodeling and
eventually to the occurrence and persistence of AF [37, 38].
+e identification of significant leukocyte infiltration in
atrial myocardium in AF patients and observed correlation
between elevated circulating proinflammatory cytokines and
AF severity support this contention [39]. Established in-
flammatory factors and biomarkers related to AF include
tumor necrosis factor α, C-reactive protein, interleukin-2,
interleukin-6, interleukin-8, matrix metalloproteinase,
endothelin, and myeloperoxidase [34]. Cardiac fibroblasts

which were a highly plastic population of resident cells play
an important role in the development of an AF substrate
[40]. Activated fibroblasts secrete extracellular matrix pro-
teins and recruit immune cells, leading to dispersion and
blockade of conduction in the myocardium. Combined with
an already heterogeneous and anisotropic fiber bundle ar-
rangement, focal fibrosis renders the left atrium extremely
susceptible to reentrant circuits [40, 41]. VEGF, a pivotal
activator of angiogenesis and calcium (Ca2+) signaling in
endothelial cells, increases collagen production in atrial fi-
broblasts [42]. In addition, after treatment, procollagen type
I, procollagen type III production, myofibroblast differen-
tiation, and themigratory ability of fibroblasts are reduced in
AF. +ese results further confirm that the targets identified
in this study are consistent with previous reports, indicating
supporting the therapeutic effects of WXKL.
Obesity is associated with an increased amount of epi-

cardial fat, which is a major mediator of the relationship
between obesity and AF [43]. A probable mechanism by
which epicardial fat promotes AF is direct adipocyte infil-
tration into the atrial myocardium, resulting in slow or
anisotropic conduction. A second probable mechanism is
atrial fibrosis caused by adipokines secreted from epicardial
fat. +ird, it is possible that epicardial fat contributes to AF
by the secretion of proinflammatory factors, such as IL-6, IL-
8, and TNF-α. By a KEGG analysis, we found that WXKL
can regulate lipolysis in adipocytes (Figures 7 and 8),
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Figure 7: Target-pathway network forWXKL.Green and yellownodes represent pathways and targets, respectively, and edges represent interactions.
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implying that it is a good treatment strategy for patients with
obesity and AF.
In 2019, Wang et al. [44] proposed that the relationship

betweenAF andDM is complex and ismediated by structural,
electrical, electromechanical, and autonomic changes in the
atria, triggered by oxidative stress, inflammation, and gly-
cemic fluctuations. Glucose-lowering therapies may affect the
development of AF. Accordingly, it is important to elucidate
the mechanism underlying DM-related AF and to evaluate
the best treatment strategy for patients with DM and AF. Our
KEGG analysis indicated that the most important pathway by
whichWXKL effects AF is the AGE-RAGE signaling pathway
(Figures 7 and 8), involved in diabetic complications, which
elicits the activation of multiple intracellular signaling
pathways involving NADPH oxidase, protein kinase C, and
MAPKs, resulting in NF-kappa B activity. Combining our
KEGG analysis,WXKLmaybe is a good treatment strategy for
patients with DM and AF.
Serotonin, 5-hydroxytryptamine, is a hormonal trigger

for AF [45, 46]. By a KEGG analysis, we found that pathways
are related to the role of WXKL in AF including the reg-
ulation of serotonergic synapses and tryptophan
metabolism.
Accordingly, the targets identified in our study are

consistent with previous findings, further supporting the use
of WXKL for the treatment of AF by regulating the in-
flammatory response, oxidative stress reaction, immune
regulation, cardiac energy metabolism, tryptophan meta-
bolism, and other pathways.

5. Conclusions

In summary, WXKL is beneficial for the treatment of AF,
consistent with previous studies. We further characterized
the biological functions of active ingredients in WXKL and
their corresponding targets by a network pharmacological
approach, improving our understanding of the molecular
biological mechanism underlying the effects ofWXKL in AF.
+ese findings provide an important theoretical basis for the
clinical treatment of AF.
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