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Abstract: Human campylobacteriosis results from foodborne infections with Campylobacter bacteria
such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial
gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major
source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea.
Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints
or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading
to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene
measures focusing on the reduction of pathogenic food contamination. Molecular targets for the
treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors
involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation.
This repertoire of intervention measures has recently been completed by drugs dampening the pro-
inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel
pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the
risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies
and actual trends in the combat of Campylobacter infections are presented in this review, alongside
molecular targets applied for prevention and treatment strategies.

Keywords: one health concept; infection prevention strategies; campylobacteriosis; Campylobacter
jejuni infection models

1. Introduction

Campylobacteriosis is the leading cause of bacterial gastroenteritis worldwide [1–5].
Human campylobacteriosis is mostly caused by Campylobacter jejuni and less frequently by
Campylobacter coli, and occurs predominantly after consumption of contaminated chicken
meat [6]. According to a recent EFSA report, a total of 31% of chilled broiler carcasses
sampled at slaughterhouses were Campylobacter-positive. At the food level, the highest
Campylobacter proportions were detected in fresh meat from turkeys (12.9%), followed
by fresh meat from broilers (11.5%) [7]. The potent pathogens cause acute and severe
enteritis in humans, but are harmless commensals in domestic animals. The asymptomatic
colonization in chicken flocks supports the formation of huge pathogen reservoirs [8,9].
Thus, reduction of Campylobacter contamination in chicken breeding and the associated
food chain by hygiene interventions is key to the prevention of human campylobacteriosis.
Humans develop enteritis even after ingestion of low pathogen doses in the range of
hundreds of living bacteria. Campylobacteriosis symptoms vary from mild abdominal
pain to severe, inflammatory, bloody diarrhea associated with grievous cramps and fever,
which can last for more than a week (as reviewed elsewhere [10–14]). The severity of
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initial enteritis is significantly associated with the risk of post-infectious sequelae, which
may appear weeks or months after the intestinal infection [15]. Post-infectious sequelae
include Guillain–Barré-Syndrome (GBS) [16,17], reactive arthritis [18], inflammatory bowel
diseases [19–21] or irritable bowel syndrome [18]. In rare cases, Campylobacter bacteremia
occurring in immunocompromised individuals may lead to meningitis [22] or cardiovascu-
lar diseases [23] (for reviews concerning post-infectious complications, see [4,13,24–26]).
Most importantly, the risk for post-infectious sequelae increases with the severity of the
initial enteritis [14]. This supports the need for novel prevention and treatment strategies,
given that most patients receive rehydration measures, but no causative treatment of the
inflammation [14,17,27]. In consequence of the socioeconomic burden caused by campy-
lobacteriosis, industrialized countries have established control measures by reporting and
undertaking statistical analysis of Campylobacter-associated diseases. However, unreported
campylobacteriosis cases are expected to exceed by far the number of cases reported in
published statistics [28–30].

2. From Microbiology and Intestinal Inflammation to Molecular Targeting
of Campylobacteriosis

The multifaceted campylobacteriosis symptoms and the severe post-infectious seque-
lae have stimulated a wealth of research into the pathogenesis of C. jejuni infections. While
investigations on the inflammation have long been hampered by the lack of experimental
murine infection models [31], there is remarkable progress in the discovery of bacterial
pathogenicity and virulence factors. Several microbiological characteristics represent valu-
able molecular targets for intervention strategies to prevent and treat C. jejuni infections.

Campylobacters belong to the ε-proteobacteria subphylum of Gram-negative bacte-
ria. The spiral C. jejuni bacteria are thermophilic with a growth optimum of 42 ◦C. The
chromosome carries around 1600 genes at high density [32–34]. The low gene number
restricts the metabolic capabilities of C. jejuni and supports a fastidious and microaerophilic
lifestyle with a limited repertoire for environmental adaptation [32–34]. Many regulatory
systems and carbohydrate utilization pathways present in other Gram-negative pathogens
are absent in C. jejuni, as discussed below [30]. This limited adaptation capacity results in
sensitivity to environmental stress, favoring the sensitivity of C. jejuni to organic acids as a
means of preventive hygiene measures in the poultry industries [35]. In humans, the use of
proton pump inhibitors increases the risk of C. jejuni infection, indicating that gastric acid
protects from campylobacteriosis [36]. Therefore, maintaining stomach health is a major
goal for the prevention of campylobacteriosis and enteric infections in general.

In human hosts, ingested C. jejuni bacteria surviving gastric acid, bile acids and
digestive enzymes in the stomach and upper intestines enter the intestinal mucus layer,
which is facilitated by their motility. After adhesion to epithelial cells and invasion of
the sub-epithelial tissues, the pathogens induce inflammation by activation of the innate
immune system. Thus, in the human host, adaptation to acid, bile and oxygen, as well as
the structure and functions of flagella, adhesion and invasion proteins, represent major
pathogenicity determinants of C. jejuni that are essential for the onset, progression and
clinical outcome of campylobacteriosis [37–40]. In line with the mechanisms mediating
bacterial survival in the environment, these factors serve as valid molecular targets for
prevention and treatment strategies, as is summarized in the following paragraphs and in
Figure 1. In contrast, the use of inflammation as a molecular target for the amelioration
of campylobacteriosis awaits further investigation, and corresponding developments are
described in the last paragraph of this review.
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Figure 1. Overview of the molecular targets in C. jejuni treatment strategies. For more details, see text.

3. Pathogenesis of Campylobacter Infection and Introduction to the Major Molecular
Targets within C. jejuni

Our knowledge of mechanisms involved in the molecular pathogenesis of C. jejuni is
based on clinical studies, investigations of the bacteria in cell culture in vitro and in animal
models such as chicken and mice [5,41]. After ingestion, the intruding bacteria move
very effectively by using their rotating bipolar flagella. C. jejuni controls its motility by a
multifaceted chemotaxis machinery that is guided through various chemoreceptors. These
chemotaxis signaling pathways allow the pathogen to move toward beneficial chemoat-
tractants and repulse from chemorepellents. The best-characterized C. jejuni chemotaxis
cascade comprises the CheA/CheW-CheY proteins, all of which are essential for successful
infection of human and animal hosts [42–44]. This machinery is used by C. jejuni to cross the
mucous layer of the lower gastrointestinal tract, a nutrient-rich niche that is perfectly suited
for bacterial colonization and growth [45]. The catabolic versatility of C. jejuni is limited
compared to other enterobacteria, as various pathways of the carbohydrate metabolism
are absent. However, C. jejuni exhibits numerous chemotactic activities, most notably the
sensing of amino acids such as asparagine and aspartate, lactate, formate and intermediates
of the citric acid cycle, which are the key energy sources for the bacterium [46,47]. Thus,
the metabolism of C. jejuni is highly specialized, a feature that can be used to target this
pathogen. A screen of an inhibitor library comprising about 147,000 compounds revealed a
number of small molecules that profoundly compromised the in vitro growth of C. jejuni
and flagellar gene expression, respectively [48]. Some of these inhibitors were found to
display bacteriostatic effects on C. jejuni, while not being harmful to host cells. Oral admin-
istration of at least one compound resulted in reduced C. jejuni loads in a chicken model [48].
In addition, several anti-microbial compounds were found to change the morphology of
C. jejuni. For instance, meropenem triggered bulking of the bacteria, imipenem induced
the conversion of spiral-shaped to coccoid forms, and sitafloxacin resulted in bacterial
elongation, all of which were associated with severely compromised C. jejuni motility [49].
These studies are very promising with regard to pinpointing anti-C. jejuni activities, but
further investigations are clearly required to validate the specific cellular targets of the
compounds, and their possible application in human therapy.

C. jejuni colonizes the intestinal mucus layer as an initial step of the infection [50].
Subsequently, the pathogen adheres to intestinal epithelial cells, transmigrates across the
intestinal epithelium and initiates host cell entry and intracellular survival. Interestingly,
the addition of purified intestinal chicken mucus, but not mucus of human origin, inhibited
both C. jejuni binding and entry of human epithelial cells [51]. Bacterial invasion of the
host cells was more strongly repressed than C. jejuni adhesion. Pre-treatment of chicken
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mucin with sodium-metaperiodate, a chemical compound that oxidizes glycan entities on
mucin glycoproteins, restored C. jejuni invasion of human cells [51]. In contrast, exposure
of chicken mucin to other enzymes, specifically sialidase or fucosidase, did not abolish
C. jejuni cell binding and entry. These observations strongly suggest that glycosylation of
chicken mucin mediates the observed suppressive effects on C. jejuni host cell interactions.
However, the exact interaction points and specific glycan residues in the mucin are still
unknown and should be explored in future studies.

Besides C. jejuni colonization of the mucus layer, the bacteria can also bind to ente-
rocytes, which is facilitated by an array of surface-exposed adhesion proteins. Among
several candidates, the two fibronectin-binding proteins CadF and FlpA have been studied
in detail [52,53]. These proteins also mediate the invasion of C. jejuni into the intestinal
epithelium from the bottom of the cells via a basal mechanism using fibronectin and in-
tegrin receptors. C. jejuni invasion is enhanced by so-called Cia (Campylobacter invasion
antigens) proteins such as CiaB, CiaC, CiaD and others that are secreted by the flagellar
type III secretion system (fT3SS) [54–56]. These interactions also trigger the activation of
the small Rho GTPases Rac1 and Cdc42, which induce cytoskeletal reorganizations and
bacterial uptake [52,53,57–60]. The ability to survive intracellularly in vacuoles enhances
the pathogenicity of C. jejuni. Various natural compounds from plant extracts with so-called
GRAS (generally recognized as safe) status have been screened with the aim of identifying
candidates targeting binding and invasion of host cells by C. jejuni during infection. For
example, glucuronic-acid-enriched polysaccharides prepared from Abelmoschus esculentus
(okra fruit) efficiently prevented C. jejuni binding to host cells in vitro [61]. In addition, ex-
tracts from various citrus plants (Citrus medica, Citrus limon and Citrus aurantium) inhibited
adhesion and invasion of C. jejuni into cultured HeLa cells and reduced the expression
of ciaB and cadF genes [62]. Other studies have described that peppermint essential oil, a
commonly used substance in the treatment of gastrointestinal diseases, led to decreased
expression of various C. jejuni virulence-associated genes such as cheY, cadF and the flagellar
genes flhB and flgE, which inhibited bacterial motility [63]. Thus, specific extracts from
plants may represent innovative and useful new therapeutic reagents to treat C. jejuni
infections in future.

In addition, C. jejuni secretes the serine protease HtrA into the extracellular milieu [64].
This protease disrupts tight and adherens junctions by cleavage of important junctional
proteins such as occludin [65], claudin-8 [66] and E-cadherin [67,68]. This leads to the
opening of cell–cell junctions and epithelial barrier dysfunction during infection. C. jejuni
is thus able to overcome the intestinal epithelial barrier by transmigration via the para-
cellular route, reaching deeper tissue layers and even migrating to other organs such as
liver, spleen or mesenteric lymph nodes, which plays a role in the context of bacteremia
and sepsis [40]. It appears that C. jejuni HtrA activity also contributes to in vivo patho-
genesis in infant mice [69] and interleukin (IL)-10-/- knockout mice [70,71]. Epithelial
barrier dysfunction during C. jejuni infection disturbed the ion homeostasis in the intestinal
epithelium, which leads to the loss of water and diarrhea, called leaky flux phenotype [72].
Several infection-induced immune mediators, such as tumor necrosis factor (TNF), IL-6,
IL-8, IL-12, IL-23 and IL-1β, intensify the barrier damage as discussed below. They also
intensify diarrhea, as characterized by sodium malabsorption through dysregulation of
the sodium channel ENaC [73]. Recent studies in cell culture in vitro and in mice in vivo
indicated a significant reduction of C. jejuni-triggered epithelial barrier dysfunction by
application of the polyphenol curcumin [74] or vitamin D [73]. Vitamin D treatment also
decreased C. jejuni transmigration across polarized epithelial cells. Thus, curcumin and
vitamin D could be promising compounds for the treatment of C. jejuni infection in ani-
mals and humans. Finally, the development of small molecule inhibitors interfering with
HtrA protease activity is another promising novel approach in anti-bacterial therapy [75].
For instance, computer-assisted de novo design revealed a small inhibitor compound in-
terfering with protease HtrA from Helicobacter pylori, a gastric pathogen evolutionarily
related to C. jejuni [76]. Molecular binding and functional activity studies resulted in the
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identification and characterization of this presently best-in-class HtrA inhibitor. However,
while being effective against H. pylori HtrA, this compound only marginally reduced the
number of transmigrated C. jejuni. Nevertheless, these data demonstrated the feasibility of
pioneering inhibitor compounds with tailor-made activity, which could be also applied to
C. jejuni HtrA in the therapy of corresponding infections.

The above-described pathogenic processes of C. jejuni are further enhanced by the
CDT (cytolethal distending toxin), which is secreted by subpopulations of the pathogen [77].
CDT function depends on the presence of three genes, named cdtA, cdtB and cdtC. When
expressed, the protein subunits CdtA, CdtB and CdtC bind to each other and form a
tripartite complex that is called active holotoxin. The CdtA and CdtC subunits are required
for the delivery of CdtB into the cytoplasm of target cells. CdtB represents the catalytically
active subunit, which displays DNase activity and is transferred to the host cell nucleus.
This activity results in chromosomal DNA cleavage, nuclear and cellular swelling and
G(2)/M cell cycle arrest [77,78]. As described above, innovative new tools for better
controlling the C. jejuni infection are natural products derived from plants. Among those,
extracts of silvery mugwort (Artemisia ludoviciana) and sweet acacia (Acacia farnesiana)
inhibited both the adherence of C. jejuni to cultured Vero cells as well as CDT activity [79].
Another report investigated the usefulness of the phytochemicals eugenol, carvacrol and
trans-cinnamaldehyde during C. jejuni infection of polarized Caco-2 cells [80]. Most of the
phytochemicals reduced the expression of CDT and diminished C. jejuni motility, cellular
adherence and invasion, as well as bacterial transmigration [80]. Thus, these plant extracts
and phytochemicals represent additional candidates to be investigated for prevention or
treatment of C. jejuni contamination in food products, and potential anti-microbial therapy
of the infections.

4. Environmental Survival Factors Conduct Campylobacteriosis Prevention

Campylobacter are highly susceptible to different stress conditions that are encountered
by these bacteria in the environment or in the food chain. Campylobacter have developed
mechanisms to adapt to these conditions, however, enabling them to persist in the en-
vironment and the food chain and survive technological stressors applied during food
processing. Table 1 summarizes the factors that influence the survival of Campylobacter
from the farm to the consumer.

Table 1. Factors influencing survival of Campylobacter from the farm to the consumer.

Stage Factors References

Environment UV light, oxygen concentration, dehydration, temperature [81,82]

Farm Biosecurity [83]
Cleaning and disinfection [84]
Vaccination [85,86]
Bacteriophage application [87,88]
Competitive exclusion [89]
Probiotics [90]
Bacteriocins [91]
Feed supplements (e.g., carvacrol, curcumin, cinnamon oil);
drinking water supplements (e.g., organic acids) [83,92,93]

Slaughter Scalding temperature [94,95]
Hot steam [96,97]
Washing or rinsing [98]
Chlorinated water [99]
Sodium hypochlorite solutions [100]
High-pressure spray [101]
Cooling [102]

Food processing Additives (e.g., organic acids, marinades, spices, sugar) [103–105]
Modified atmosphere packaging [106]
Chilling or freezing [107]
Bioactive packaging (immobilized zinc oxide nanoparticles,
immobilized bacteriophages) [108,109]
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A number of studies used genomic and transcriptomic data to investigate mecha-
nisms of stress response and adaption and additionally linked those data to phenotypic
assays [110–114]. While the majority of these studies applied a rather mechanistic approach,
a recent review focused specifically on the survival and adaptation of C. jejuni within the
poultry production chain [109]. De Vries et al. (2017) performed a genome-wide fitness
analysis by transposon mutant library screening of C. jejuni. The authors demonstrated
that a large part of the genome is related to fitness and survival, with 486 out of 1424 genes
coding for fitness factors [115], for type III and type VI secretion systems [116], for the
ferric uptake regulator [114] and furthermore, for components of the flagellar system and
cell envelope [117]. Increased aerotolerance may be an important survival mechanism
of microaerophilic Campylobacter when encountering extra-intestinal environments [118].
Studies showed that aerotolerant or hyper-aerotolerant strains exist that also contain a
higher rate of virulence-related genes if compared to aero-sensitive strains [119]. While
investigating an aerotolerant C. jejuni strain under aerobic conditions, Rodrigues et al.
(2016) identified overexpression of proteins related to oxidative stress response, to amino
acid and to iron uptake [120]. The authors concluded that differential gene expression
patterns contribute to aerotolerance in the investigated strain rather than the presence of
unique stress response genes. Low temperature conditions have been shown to induce
oxidative stress response [115]. Subsequently, genes related to oxidative stress response are
needed for survival at low temperatures, such as oxidoreductase (trxC) and regulator of
oxidative stress (perR). Furthermore, attenuation of mcp4_2 (involved in chemotaxis), kefB
and czcD (antiporters) and fabI (fatty acid metabolism) for survival in different habitats
was associated with a response to lower temperatures [115]. Campylobacter strains differ
significantly in their ability to survive outside their hosts. It is speculated that Campylobacter
strains that potentially adapted to the environment have improved fitness through the
evolution of stress resistance mechanisms [121,122].

Formation of biofilms or integration into existing biofilms increases the survival po-
tential of bacteria in the environment. Campylobacter can form biofilms or (rather) integrate
into pre-existing biofilms present on contact surfaces or equipment of the food chain,
such as slaughter equipment, water supplies or plumbing systems [123]. The ability to
form biofilms is lower in Campylobacter compared to other bacteria. While monospecies
Campylobacter biofilms have not been demonstrated in vivo, secondary colonization or
integration into pre-existing biofilms is possible and of practical concern [124]. A summary
of genes involved in biofilm formation was recently provided by Püning et al. (2021) [125].
Based on data published by Tram et al. (2020), approximately 600 genes are differentially
expressed in Campylobacter during biofilm formation, with induction of genes related to iron
metabolism, cell division and glycan production, among others. Repressed genes are linked
to metabolism and parts of the chemotaxis pathway [126]. The ability of flagella-associated
attachment influences the degree of biofilm formation [127]. Specifically, biofilm formation
depends on flagellar O-linked glycan modification [128]. Other factors influencing the
degree of biofilm formation are alkyl hydroperoxide reductase (ahpC) and catalase A (katA),
highlighting the role of oxidative stress under these circumstances [129]. The degree of
the biofilm formation ability is strain-specific in Campylobacter. For instance, some strains
are not able to form biofilms at all, whereas others show biofilm formation at different
degrees, suggesting that the genetic composition of the specific strain also plays a role in
biofilm formation. Recently, Sung and Khan (2015) and Feng et al. (2016) summarized the
molecular mechanisms of C. jejuni biofilm formation [130,131]. Briefly, genes involved in
motility, flagellar composition (flaAB), oxidative stress response, LOS structure composition
(e.g., waaF, lgtF) or cell structure modification (pgp1) are involved in biofilm formation. By
combining genotyping data and biofilm assays, Pascoe et al. (2015) identified hotspots
of genetic variation that corresponded to specific biofilm phenotypes [132]. Various envi-
ronmental factors influence biofilm formation as well [129]. For example, Campylobacter
biofilm formation under aerobic conditions is promoted by oxidative stress, presence of
organic material or extracellular DNA. On the other hand, biofilm formation is reduced
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by substances causing osmotic stress. Favorable conditions outside or adverse condi-
tions inside the biofilm can activate biofilm dispersion; for example, the accumulation
of signal molecules or increased oxygen levels [133]. Potential biofilm control strategies
include modifying the surface of contact structures to reduce attachment and disrupting the
biofilm matrix through the application of bacteriophages, bacteriocins, DNase or quorum
quenchers (summarized in [134]). Preliminary data are available on the reduction of biofilm
mass by application of trans-cinnamaldehyde, eugenol or carvacrol after initial biofilm
formation [135]. Zinc oxide nanoparticles, which have a high oxidative potential, can also
inhibit biofilm formation [136].

Our knowledge of the role of quorum sensing (QS) mechanisms in Campylobacter is
still sparse, even though the presence of LuxS and AI-2 production in C. jejuni was already
demonstrated in 2002 [137]. We still lack description of autoinducer receptors in Campy-
lobacter. It is speculated that AI-2 is sensed via a two-component regulatory system [138].
There is no clear picture on the role of luxS in C. jejuni. LuxS mutants showed a reduc-
tion in growth, motility, biofilm formation, reaction to oxygen stress, adhesion/invasion,
and colonization. However, these phenotypes varied considerably between respective
studies. Different substances have already been tested for their potential to disrupt QS
mechanisms (quorum quenching). Simunovic et al. (2020) tested 20 plant extracts, almost
all of which altered QS-related phenotypes of C. jejuni [139]. For instance, citrus extracts
lowered AI-2 activity and influenced motility. As mentioned above, adhesion and invasion
in cell cultures, expression of virulence factors (cadF, ciaB) and biofilm development were
also impaired [62,140].

As described for other bacteria, Campylobacter is capable of transitioning into a viable
but non-culturable (VBNC) state under stress conditions, such as aerobic atmosphere,
acid stress, starvation or prolonged cold exposure [83]. Notably, Campylobacter in VBNC
state exhibit higher resistance to disinfecting agents, initiate biofilm formation and are
still infectious.

5. Anti-Microbial and Anti-Inflammatory Therapy of Campylobacteriosis

The value of molecular targets enabling modulation of inflammation in C. jejuni
infections is supported by the fact that antibiotics are not indicated to mitigate enteritis
symptoms. The intestinal environment reduces antibiotic efficacy by absorptive removal
and diarrheal dilution, both favoring resistance development of the pathogen [141]. In
addition, inadequate and improper use of antibiotics has increased C. jejuni resistance to
macrolides and fluoroquinolones. Both antibiotics were originally reserved for treatment of
particularly severe enteritis with systemic manifestations [142]. In consequence, patients
receive symptomatic therapies, including rehydration and electrolyte substitution, without
causative measures and need to sustain symptoms of intestinal inflammation, which in
turn elevates the risk of post-infectious sequelae of infection as outlined above.

Studies of the mechanisms used by C. jejuni to cause intestinal inflammation revealed
that the bacteria lack or at least do not rely on exotoxins that are typically produced by
other enteric pathogens. Thus, the majority of C. jejuni strains produce neither cholera-
like enterotoxin nor CDT [12,13,143,144]. Instead, endotoxins play a major role in the
immunopathogenesis of campylobacteriosis. In gastroenterology, campylobacteriosis is per-
ceived as an inflammatory syndrome caused by innate immune cells, such as neutrophilic
granulocytes and macrophages, which are activated by direct contact with C. jejuni (re-
viewed by [145,146]). In this regard, campylobacteriosis shares common features with the
acute purulent Neisseria meningitidis and Neisseria gonorrhoeae infections affecting other body
compartments [147,148]. Early studies on the histology of C. jejuni infection proved that
neutrophils and macrophages accumulate at intestinal sites of C. jejuni invasion [11,147,149].
Upon activation by bacterial endotoxins, these cells trigger inflammation and tissue de-
struction by the production of pro-inflammatory mediators and reactive oxygen species
(ROS). In this scenario, it is tempting to speculate that ROS plays a key role in induction of
intestinal apoptosis. This assumption was confirmed by clinical studies, showing that both
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severity of campylobacteriosis and post-infectious sequelae are significantly associated
with distinct LOS variants produced by the infecting C. jejuni strains [15,150]. In addition,
LOS was shown to be a master regulator of pathogenesis, triggering inflammation, apop-
tosis, tissue destruction and diarrhea via active induction of sodium malabsorption [150].
Structural variability of LOS has been further shown to be responsible for the heterogeneity
of disease symptoms. Hence, innate immune activation by C. jejuni endotoxins is key to
the treatment of campylobacteriosis and prophylaxis of post-infectious sequelae (reviewed
by [145]). Both the LOS and respective immune responses induced via its detection by
Toll-like-receptor (TLR) 4 serve as potent molecular targets for dampening inflammation
and ameliorating campylobacteriosis [145].

Based on these findings, a combination of anti-microbial and anti-inflammatory drugs
would represent an ideal treatment option for human campylobacteriosis. Indeed, this
conclusion was further supported by results from novel murine infection models that
displayed the symptoms as well as the molecular immunopathogenesis induced by C.
jejuni infections in humans. Notably, mice showed colonization resistance to C. jejuni, as
well as a high tolerance to LOS, mainly due to the fact that the murine TLR4 responses
are approximately 10,000-fold weaker [151,152] compared to humans [153]. Hence, the
development of suitable murine infection models required modification of both the in-
testinal microbiota composition and the LOS responses of mice [145,154,155]. Thus, the
major role of C. jejuni LOS in human campylobacteriosis was confirmed by manipulation of
the murine immune system. Mice with deficiencies in IL-10 [156], single IgG IL-1 Related
Receptor (SIGIRR) [154,157] and mice subjected to zinc depletion [158] developed campy-
lobacteriosis symptoms upon C. jejuni infection. Since IL-10 [159–161] and SIGIRR [154]
signaling pathways, as well as zinc application [162–164], effectively suppress LOS and
lipo-polysaccharide (LPS)-mediated inflammation, C. jejuni-induced disease in mice is
mainly caused by enhanced pro-inflammatory immune responses to enteropathogenic
LOS [145]. Due to its suppressive role in endotoxin signaling, oral zinc supplementation is
used to protect children in low-income countries from bacterial diarrheal diseases, includ-
ing campylobacteriosis [165]. Hence, the development of novel murine infection models
represents a breakthrough in Campylobacter research and helped to identify LOS-induced
inflammation as an innovative molecular target for amelioration of campylobacteriosis in
infected humans [145].

In particular, secondary abiotic (SAB) IL-10-deficient mice have proven useful for the
analysis of C. jejuni–host interactions, mainly because the immunopathology characterized
by granulocyte and macrophage recruitment, by activation of T and B lymphocytes and by
colonic epithelial cell apoptosis mirrors the immune and histopathological responses in
C. jejuni-infected humans [11,150,166]. In this model, campylobacteriosis depends on the
motility and adhesive properties of the pathogen [167]. Most important was the finding
that the immunosuppressive drug rapamycin prevented campylobacteriosis in these mice
and supported clearing of the pathogen [166], which provided the first experimental proof
that the dampening of inflammation is a valuable target for prevention and treatment
of C. jejuni infection. Furthermore, preclinical placebo-controlled intervention studies on
SAB IL-10-deficient mice revealed that defined vitamins, including ascorbate [168] and
vitamin D [73,169], the short chain fatty acid butyrate [170] and plant-derived compounds
that have been used for an extensive period of time in traditional medicine, such as
essential oils [171–174], curcumin [74], resveratrol [175], carvacrol [176], urolithin-A [177]
and activated charcoal [178], effectively dampened inflammation in the course of murine
campylobacteriosis. Their respective mechanisms of action demonstrate that (i) LOS
activity, (ii) pro-inflammatory mediators including oxygen radicals, (iii) intestinal barrier
function and (iv) C. jejuni-related pathogenicity factors are well suited as molecular targets
for the treatment and prevention of campylobacteriosis [157,179,180]. Finally, based on
the key role of iron in ROS formation via the Fenton reaction, it was shown that iron
deprivation by desferoxamine ameliorated murine campylobacteriosis [181]. In line with
the inactivation of ROS by ascorbate (as mentioned above), these data showed that ROS



Biomolecules 2023, 13, 409 9 of 17

production by innate immune cells represents another molecular target for treatment of
human campylobacteriosis. Thus, progress in murine research provided evidence that
traditional medicinal drugs may not only ameliorate human campylobacteriosis, but may
also reduce the risk for the appearance of post-infectious sequelae such as GBS or reactive
arthritis after LOS-induced inflammation. However, this demands further investigation
in murine models of GBS [182–184]. Hence, the discovery of the pivotal role of LOS in
the induction of acute enteritis and of post-infectious sequelae upon C. jejuni infection
has greatly contributed to the identification of defined molecules for the treatment and
prophylaxis of human campylobacteriosis.

6. Concluding Remarks

The early formulated “endotoxin concept” of C. jejuni-induced inflammatory diar-
rhea [148,149] proved valuable, and this has inspired the development of novel murine
infection models that are useful for preclinical evaluation of therapeutic and prophylactic
strategies to combat human campylobacteriosis. Scientific progress in the understanding of
molecular host–pathogen interactions underlying C. jejuni colonization, adhesion, invasion
and environmental adaptation, and their potential to induce innate immune activation
leading to enteritis, have provided molecular targets for innovative treatment options. The
principal concept of bacterial LOS playing a pivotal role in the molecular immunopatho-
genesis of acute campylobacteriosis and its post-infectious sequelae has successfully been
used to overcome LOS/LPS tolerance of mice to solve the puzzle of asymptomatic Campy-
lobacter colonization in poultry versus acute disease in infected humans. Resistance to
LOS is 100-fold to 1,000,000-fold higher in chickens and other birds than in mice and
humans, respectively [153,185]. Thus, LOS might help to understand why chickens and
other poultry do not develop intestinal inflammation upon C. jejuni colonization, as was
hypothesized earlier [8].

For the future, it is tempting to speculate that combinations of anti-inflammatory and
anti-microbial drugs obtained from traditional and conventional medicine will help to
dampen both host intestinal inflammation and anti-bacterial resistance (reviewed by [145]).
The innovative discoveries summarized here support preventive measures in farming, as
well as clinical studies aiming to improve treatment and prophylaxis of human campy-
lobacteriosis.
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