
 Open access  Posted Content  DOI:10.33774/CHEMRXIV-2021-CG9P8

MoleGuLAR: Molecule Generation using Reinforcement Learning with Alternating
Rewards (preprint) — Source link 

Manan, Goel, Shampa, Raghunathan, Siddhartha, Laghuvarapu, Priyakumar, U. Deva

Institutions: International Institute of Information Technology, Hyderabad

Published on: 27 Jul 2021 - ChemRxiv

Topics: Reinforcement learning and Virtual screening

Related papers:

 End-to-end Deep Reinforcement Learning for Targeted Drug Generation

 Deep inverse reinforcement learning for structural evolution of small molecules.

 Нейронная сеть с конкурентным порогом для генерации малых органических молекулярных структур

 Generating stable molecules using imitation and reinforcement learning

 Automating Feature Subspace Exploration via Multi-Agent Reinforcement Learning

Share this paper:    

View more about this paper here: https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-
4n7wlgf5pg

https://typeset.io/
https://www.doi.org/10.33774/CHEMRXIV-2021-CG9P8
https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg
https://typeset.io/authors/manan-goel-shampa-raghunathan-siddhartha-laghuvarapu-1ko3nc9br8
https://typeset.io/institutions/international-institute-of-information-technology-hyderabad-kakifb3o
https://typeset.io/journals/chemrxiv-1zns4vcp
https://typeset.io/topics/reinforcement-learning-19scn3xh
https://typeset.io/topics/virtual-screening-5stlnh31
https://typeset.io/papers/end-to-end-deep-reinforcement-learning-for-targeted-drug-1wnmyr86tp
https://typeset.io/papers/deep-inverse-reinforcement-learning-for-structural-evolution-5ey5e50k7v
https://typeset.io/papers/neironnaia-set-s-konkurentnym-porogom-dlia-generatsii-malykh-63b2jnem4g
https://typeset.io/papers/generating-stable-molecules-using-imitation-and-4cwq7f8ldx
https://typeset.io/papers/automating-feature-subspace-exploration-via-multi-agent-do5cwpwvsu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg
https://twitter.com/intent/tweet?text=MoleGuLAR:%20Molecule%20Generation%20using%20Reinforcement%20Learning%20with%20Alternating%20Rewards%20(preprint)&url=https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg
https://typeset.io/papers/molegular-molecule-generation-using-reinforcement-learning-4n7wlgf5pg


MoleGuLaR: Molecule Generation using

Reinforcement Learning with Alternating

Rewards

Manan Goel, Shampa Raghunathan, Siddhartha Laghuvarapu, and U Deva

Priyakumar∗

Center for Computational Natural Sciences and Bioinformatics, International Institute of

Information Technology, Hyderabad 500 032, India

E-mail: deva@iiit.ac.in

Abstract

Design of new inhibitors for novel targets is a very important problem especially

in the current scenario with the world being plagued by COVID-19. Conventional

approaches undertaken to this end, like, high-throughput virtual screening require

extensive combing through existing datasets in the hope of finding possible matches.

In this study we propose a computational strategy for de novo generation of molecules

with high binding affinities to the specified target. A deep generative model is built

using a stack augmented recurrent neural network for initially generating drug like

molecules and then it is optimized using reinforcement learning to start generating

molecules with desirable properties–primarily the binding affinity. The reinforcement

learning section of the pipeline is further extended to multi-objective optimization

showcasing the model’s ability to generate molecules with a wide variety of properties

desirable for drug like molecules, like, LogP, Quantitative Estimate of Drug Likeliness

etc.. For multi-objective optimization, we have devised a novel strategy in which the
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property being used to calculate the reward is changed periodically. In comparison to

the conventional approach of taking a weighted sum of all rewards, this strategy shows

enhanced ability to generate a significantly higher number of molecules with desirable

properties.

1 Introduction

The advent of data driven techniques across multiple domains of computer science, like,

robotics, natural language processing and computer vision has found immense success and

this has led to their application in natural sciences.1,2 The curation of large datasets3–5 has

increased the relevance of machine learning based approaches in problems like molecular

property prediction, conceiving retrosynthetic pathways, protein structure prediction and

drug disovery.6–9

Drug discovery is a long, expensive and arduous process which combines a wide range

of disciplines including chemistry, biology and pharmocology. For a novel target, the con-

ventional approach is to perform high-throughput screening on chemical libraries to identify

small molecules that bind well to the target. The identified hits are then optimized to get

higher binding affinity, reduce toxicity and improve oral bioavailibity.10,11 The time and ex-

pense involved in this process gave rise to alternate in silico approaches like virtual screening

wherein small molecules from existing drug libraries are computationally evaluated by gen-

erating protein ligand complexes and ranking them using a scoring function.12,13 However,

these also come with the caveat that finding the most stable conformation of the complex is

a non-convex optimization problem and it can take a very large amount of time (≈ 10 min-

utes for large molecules) to find the most optimal conformation. Even the most exhaustive

studies14 have been able to find binding affinities of ≈ 108 molecules on a single target which

is minuscule in comparison to the vast magnitude of the chemical space with about 1060

synthesizable molecules.15 This posits the argument for the de novo generation of molecules

with high binding affinities to the required target instead of searching in existing libraries.
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Machine learning based approaches like recurrent neural networks, generative adverserial

networks (GANs) and variational autoencoders have recently been adopted for molecule

generation. Gupta et al. used long short term memory recurrent neural networks, generally

used for natural language processing tasks to generate molecules in the form of SMILES

(simplified molecular-input line-entry system) which is a string representation of molecules

and has it’s own grammar and semantics.16 GANs are generative models that learn the

probability distribution of the training data and sampling from the distribution can then

be used to generate synthetic data points. This model has also been applied to generation

of molecules with desirable properties in works by De Cao and Kipf, Prykhodko et al. and

Maziarka et al..17–19 Jin and coworkers used the graph representation of molecules to train a

variational autoencoder that could then generate graphs of new molecules.20 Kusner et al.,

Griffiths and Hernández-Lobato and Lim et al. used SMILES representations for generating

molecules through the variational autoencoder architecture.21,23 In fact, applications of deep

learning models for molecule generations have proven to be very successful, in the recent

years.24–31

The next challenge is to generate molecules with desirable properties for which the

two major approaches being adopted are reinforcement learning and latent space optimiza-

tion. Variational autoencoders are capable of learning a continuous space representation

of molecules which can then be optimized to get molecules with target properties through

techniques like Bayesian optimization and swarm optimization.32,33 Reinforcement learning

can be used to generate desirable molecules by decomposing the process as a sequence of

states and actions to maximize a reward which in this case is the desirable property. Popova

and coworkers used stack-augmented gated recurrent units (GRUs) to generate molecules

followed by reinforcement learning guided optimization on properties like LogP, quantitative

estimate of drug likeliness (QED) and synthetic accessibility.34 Guimaraes et al. combined

the GAN and reinforcement learning frameworks for the task while You and coworkers used

a graph based policy network to generate molecular graphs.35,36 Boitreaud et al. combined a
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variational autoencoder model with reinforcement learning to generate molecules with high

binding affinities to the specified target.37

Figure 1: Pipeline used by MoleGuLaR for generating molecules with high binding affinity
to a specified drug target.

In this work we propose a molecule generation pipeline (Figure 1) which uses a stack aug-

mented recurrent neural network (RNN) initially trained to generate valid drug-like molecules

which is then optimized to generate molecules with a high binding affinity to the specified

target. For the binding affinity calculation, we tried two methodologies:

1. Performing docking calculation to find the most stable complex and the corresponding

binding affinity.

2. Using a machine learning model trained to predict binding affinities.

We draw a comparison between the two and report their pros and cons. In case of multi-

objective optimization we found that using a weighted sum of the rewards from different

properties may not be effective in some cases because it is possible that one or more properties

dominate others leading to poor results. Hence, we also propose a novel optimization strategy
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in which the reward is alternated so that the model changes the region it samples from in

the chemical space. When the reward is changed, the generator starts from a better position

with respect to one property when optimization for another property is started. We also

showcase it’s application on two proteins: Mpro of SARS-CoV-2 and TTBK1 with a wide

set of target properties. The robustness of this strategy is further showcased by using it to

optimize the model for conflicting properties along with the binding affinity.

2 Theory and Methods

This section describes the various components of the proposed framework (Figure 1). The

formulation of the stack-augmented RNN as the generator model is detailed in Section 2.1

followed by methods for binding affinity calculation and hydration free energy calculation in

Sections 2.2 and 2.3, respectively. The formulation of the molecule generation as a Markov

Decision Process, use of reinforcement learning to maximize a given reward function using

policy gradient and the two optimization strategies used in this study are described in Section

2.4.

2.1 Generator

The generator module makes use of a stack augmented GRU which outputs molecules as

SMILES strings.34,38 A valid SMILES string must have correct valency for all atoms and all

ring openings and closures must be counted and hence, conventional RNNs do not work well

on this task because of their inability to count. Therefore, the addition of a memory unit

along with the RNN forms an appropriate model.

The added stack has 3 operations: PUSH adds a new element at the top of the stack,

POP removes the top element and NO-OP does not change the state of the stack. The

operation at every step at is given by

at = f(Aht)
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Figure 2: Schematic of push down stack augmented RNN.

where A is a learned parameter and f is the softmax function. Update rules for the stack

are:

st[0] = at[PUSH]σ(Dht) + at[POP ]st−1[1] + at[NO −OP ]st−1[0]

st[i] = at[PUSH]st−1[i− 1] + at[POP ]st−1[i + 1]

If at[PUSH] = 1, then a new value is pushed to the top of the stack and all existing values

are pushed down. While if at[POP ] = 1, the value at the top is removed, and all other

values are moved up. The top of the stack is then used to update the hidden state given by

ht = σ(Uxt + V ht−1 + Pskt−1)

where skt−1 represents the top k elements of the stack and P is a m × k matrix when m is

the hidden state size.

The stack RNN is initially trained on ≈ 1.5 million drug-like molecules from the ChEMBL21

database5 to learn the rules and grammar of SMILES strings.
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2.2 Binding Affinity Calculation

The two methodologies being used for binding affinity calculation are detailed in the following

sections.

2.2.1 Docking Calculations

The generator model once trained is then used to produce ligands which are then docked to

the specified target to find the most stable conformation of the complex and find the corre-

sponding binding affinity further referred as BA in the manuscript. The 3D structure of the

molecule from the SMILES string is obtained using the RDKit toolkit.39 This structure is

then converted to a format suitable for the input to the docking software using AutoDock-

Tools4 with the final docking being done using AutoDock-GPU.40,41 This tool is referred as

AutoDock in the rest of the manuscript.

2.2.2 Machine Learning Models

We also experimented with making use of machine learning models to predict the binding

affinities of the generated ligands instead of performing a docking calculations to reduce the

computation time. In order to do this we obtained a dataset of ≈ 2 million molecules docked

with the TTBK1 protein.

Figure 3a shows that a significant number of molecules lie in a small range of binding

affinities and hence, using that for the predictor model tends to overfit (Figure S1 of Sup-

plementary Material). In order to tackle this issue we split the entire dataset into smaller

bins of 1 kcal/mol and sampled 25K molecules from each bin and all the molecules if the

number of molecules is less than 25K. Figure 3b shows the distribution of the obtained subset

consisting of ≈ 200K molecules. This is then split into training, testing and validation sets

in the ratio 80:10:10.

We further experimented with various machine learning models for this regression task.

Jaeger et al. proposed the Mol2vec42 model for learning vector representations of SMILES
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(a) (b)

Figure 3: Distribution of binding affinities. (a) 2 million molecules with TTBK1, and
(b) selected molecules from buckets.

strings that can then be used for further downstream tasks like property prediction. Using

these embeddings, a random forest model with 250 decision trees was trained for predicting

the BA. The aforementioned model with input features from the embeddings obtained from

Graph Isomorphism Networks (GIN) proposed by Xu et al. 43,44 were also used for the task.

The drawback of these approaches is that the embeddings being used are constant (Figure S2

of Supplementary Material). Fine tuning these representations during the training process

helps improve the accuracy for which three linear layers were added with the GIN embeddings

and the model is then trained end-to-end.

2.3 Hydration Free Energy Prediction

The hydration free energy (∆GHyd) of a molecule measures it’s interaction with water and

forms an important part of the drug delivery system. Recently, Pathak et al. proposed a

neural network model for predicting hydration free energies in any generic organic solvent.45

To predict ∆GHyd, presently, we train a message passing neural network (MPNN) proposed

by Gilmer et al. on the FreeSolv dataset which consists of 643 molecules.46 The MPNN
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model has shown to perform extremely well across a wide variety of quantum mechanical

prediction tasks as well as ∆GHyd prediction as shown by Wu et al..3

2.4 Reinforcement Learning

A reinforcement learning pipeline generally consists of two modules: the actor and the critic.

The actor takes the current state (st) of the system and performs an action (at) that should

maximize the reward. The critic sees at, st and the state obtained by performing the action

(st+1) and penalizes or rewards the actor.

Generation of a SMILES string can be modelled as a Markov Decision Process where st

denotes the SMILES string constructed so far, at denotes the addition of a token to st. We

also define a terminal state sT which signifies the end of the molecule and initial state s0.

The whole generation process can be represented by the trajectory:

Figure 4: Illustration of SMILES string generation as a Markov Decision Process. At each
state st, the agent performs an action at to give the updated state st+1 and provide a reward
according to the state.

The generator model parameterized by Θ estimates the probability p(at|st,Θ), samples

at from the probability distribution and updates the state until sT is reached. Rewards of

all intermediate states st with t < T is 0 since it is possible that the intermediate SMILES

strings may not represent a valid molecule. sT is then sent to the critic which returns the
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reward r(sT ). Hence, the task here is to find Θ such that the expected reward is maximized.

R(Θ) = E[r(sT )|s0,Θ] =
∑

sT ǫS

pΘ(sT )r(sT )

The set S containing all terminal states of length T is exponential in size and hence, needs

to be approximated as a mathematical expectation.

R(Θ) = E[r(sT )|s0,Θ] = Ea1∼pΘ(a1|s0)....EaT∼pΘ(aT |sT−1)r(sT ) (1)

To maximize R(Θ) we need to calculate its gradient which can be done using the REIN-

FORCE algorithm47 and the following differentiation rule –

δΘf(Θ) = f(Θ)
δΘf(Θ)

δΘ
= f(Θ)δΘ log f(Θ) (2)

From Equations (1) and (2)

=⇒ δΘR(Θ) =
∑

sT ǫS

[δΘpΘ(sT )]r(sT ) =
∑

sT ǫS

pΘ(sT )[δΘ log pΘ(sT )]r(sT )

=
∑

sT ǫS

pΘ(sT )[
T∑

t=1

δΘ log pΘ(at|st−1)]r(sT )

=⇒ δΘR(Θ) = Ea1∼pΘ(a1|s0)....EaT∼pΘ(aT |sT−1)[
T∑

t=1

δΘ log pΘ(at|st−1)]r(sT )

For the multiobjective set up, the reward function r(sT ) is composed of multiple com-

ponents from the different properties that model is being optimized for. The two reward

strategies that we propose are –

• Weighted Sum Rewards: The total reward r(sT ) is expressed as a weighted sum of
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all other components

r(sT ) = w1D(sT ) + w2L(sT ) + w3Q(sT ) + w4T (sT ) + w5H(sT )

where D fetches the reward for BA, L for LogP, Q for QED, T for topological polar

surface area and H for ∆GHyd. Weights are kept as hyperparameters and remain

constant throughout the optimization process. The functional forms of the reward for

each property is given in Table S1 of the supplementary material.

• Alternating Rewards: The aforementioned approach does not work especially in

cases where properties are conflicting like high TPSA and more negative hydration

free energy would be contradictory in nature. In such cases we have devised a strategy

wherein one of the weights is changed to 0 while keeping the other as 1. This takes

the generator model into the space where one property is optimal providing a better

starting point when optimization for the other property is started. The current strategy

works extremely well across most of the tasks and outperforms previous works. Further

details are mentioned in the Results and Discussion section.

3 Results and Discussion

This section describes the performance of machine learning models for predicting binding

affinity and ∆GHyd as well as application of the proposed pipeline on the targets:

• SARS-CoV-2 Mpro (PDB ID: 6LU7): With the world in the midst of a global pandemic

caused by COVID-19, the main protease (Mpro) has been identified as an important

target due its vital role in viral transcription and replication.48

• TTBK1 (PDB ID: 4BTK): Neurodegenerative diseases have become extremely common

over the past few years and the tau kinase tau-tubulin kinase 1 has proved to be an

attractive target to combat a wide variey of neurodegenerative diseases.49
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3.1 Machine Learning Models

The performance of machine learning models mentioned in Section 2.2.2 for BA prediction

on the test set is reported in Table 1.

Table 1: Performance of predictor models for BA in terms of performance metrics MAE
(kcal/mol) and coefficent of determination (R2).

Model MAE (kcal/mol) R2

Graph Embeddings + Random Forest 0.87 0.55
Mol2vec + Random Forest 0.47 0.91

Graph Isomorphism Network (GIN) 0.45 0.93

The use of constant embeddings for the random forest models leads to a higher mean

absolute error (MAE) in comparison to the GIN model because in the latter, the model

learns to automatically extract more relevant information from the molecular graph. The

former also showed comparatively poor performance in the desirable region i.e. where BA is

high due to the less number of samples in that range in the dataset. The correlation between

the predicted values and ground truth values is shown in Figure 5a. Figure 5b shows the

correlation of predicted and ground truth ∆GHyd in the test set obtained from the FreeSolv

dataset. The MPNN model succeeds in achieving a high degree of accuracy with root mean

squared error (RMSE) of 1.31 kcal/mol and close correlation characterized by the R2 score

of 0.881 which should be as close to 1 as possible.

3.2 Single Objective Optimization

The initial experiments were performed to analyze the ability of the generator model based

only on SMILES to learn to generate molecules whose structure is complementary to the

binding pocket without any explicit 3D information. Refer to Section S3 of the supplemen-

tary material for the statistics and generated molecules from each of the experiments in

Section 3.2.
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(a) BA predicted by GIN vs. ground truth

values from AutoDock

(b) ∆GHyd predicted by MPNN vs. ground

truth values from FreeSolv

Figure 5: Correlation plots between predicted values from the machine learning models and
ground truth values from the respective datasets.

3.2.1 Docking Calculations

For both TTBK1 and SARS-CoV-2 Mpro, the generator model was optimized for 175 itera-

tions with 15 policy gradient steps in each and a batch of 10 molecules. At the end of every

iteration, 100 molecules are generated and their docking scores are calculated. After the

completion of 175 iterations, 500 molecules were generated from the initial model and the

optimized model. The distribution of the binding affinities was then plotted in Figures 6a

and 6b which show a significant shift towards the more desirable regions.

The above approach shows great performance in optimization for BA but if other prop-

erties of the molecule are monitored like LogP, QED etc. (Figures 7a and 7b), they do not

stay within the desirable range for drug-like molecules which is between 0 and 5 for LogP

and as close to 1 as possible for QED. Hence, there is a need for multi-objective optimization

in order to keep the other properties in check as well.
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3.2.2 Using GIN

Usage of a GIN for BA prediction leads to an approximately 10 fold speed up in optimization

taking only about 5 hours while still keeping the high performance. To further validate the

generator, 500 molecules were generated and docked to TTBK1. The shift in distribution of

BA, LogP and QED are shown in Figures 6c and 7c. However, the undesirable LogP and

QED still persist hence, multi-objective optimization is used further.

3.3 Multi-Objective Optimization

In order to address the shortcomings of single objective optimization, the rewards from differ-

ent properties were also integrated into the policy gradient calculation and the performance

was tested for the two proteins using different target values and both optimization strategies.

These are listed in Figure 8 and the results have been discussed in the subsequent sections.

Refer to Section S4 of the supplementary material for the statistics and generated molecules

from each of the experiments in Section 3.3.

3.3.1 Weighted Sum Reward

Tests were done to optimize the BA calculated using AutoDock along with target LogP

= 2.5. While there was improvement in the distribution of LogP in comparison to single

objective optimization and BA in comparison to the initial model (Figure 9), however the

target was not achieved yet (Figure 10). A similar observation was seen when GIN was used

for BA calculation instead of AutoDock in the same setting (Figures 9c and 10c). Further

experimentation was done using the GIN BA predictor (Figure 11), in which the generator

was optimized to generate molecules with various simultaneous targets i.e. LogP = 2.5,

maximum QED, TPSA = 100 Å2 and ∆GHyd = −10 kcal/mol and the weighted sum of all

rewards was taken. This worked well for BA, TPSA and ∆GHyd but failed to achieve the

target LogP and showed a very low QED. This is in concordance with the OptiMol pipeline

by Boitreaud et al. who showed that optimizing for BA led to a reduction in QED.37 In order
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(a) (b)

(c)

Figure 6: Distribution of BA of generated molecules. BA of generated molecules
before and after optimizing the generator for reward from BA with (a) SARS-CoV-2 Mpro,
(b) TTBK1 and (c) TTBK1 calculated using GIN.
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(a) (b)

(c)

Figure 7: Joint distribution of LogP and QED of generated molecules before and after
optimizing the model for reward from BA with (a) SARS-CoV-2 Mpro, (b) TTBK1 and (c)
TTBK1 calculated using GIN.
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Figure 8: Experiments performed for multi-objective optimization: Protein PDB ID, tools
used for BA calculation, different target values of respective properties and optimization
strategies. ∆GHyd and TPSA are in kcal/mol and Å2, respectively.

to tackle this, we propose the following alternating rewards strategy for optimization.

3.3.2 Alternating Rewards

The pipeline’s exceptional performance on single objective tasks helped formulate the strat-

egy that only one objective be optimized at a time and the objective be changed at regular

intervals. Taking the example of LogP and BA, initially the model moves to generating

molecules with better BA but after a few iterations, the reward is switched to optimize for

LogP. When the reward is switched, the model is already sampling from the space with high

BA and moves towards the region close to the target LogP. Figures 12 and 13 show the ap-

plication of this strategy on SARS-CoV-2 Mpro and TTBK1, respectively, using AutoDock.

We can see a better distribution for BA as well as a significant overlap in the most desir-

able and optimized regions of LogP and QED. Furthermore Table 2 shows the ability of the

current strategy to consistently generate a higher percentage of hit molecules in compari-

son to the weighted sum approach. More detailed information is given in Figure S6 of the

supplementary material.
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(a) (b)

(c)

Figure 9: Distribution of BA of generated molecules before and after optimizing the generator
for sum of rewards from target LogP = 2.5 and high BA calculated with (a) SARS-CoV-2
Mpro, (b) TTBK1 and (c) TTBK1 calculated using GIN.
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(a) (b)

(c)

Figure 10: Joint distribution of LogP and QED of generated molecules before and after
optimizing the generator for sum of rewards from target LogP = 2.5 and high BA with (a)
SARS-CoV-2 Mpro, (b) TTBK1 and (c) TTBK1 calculated using GIN.
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(a) (b)

(c)

Figure 11: (a) Distribution of BA, (b) joint distribution of QED and LogP, and (c) joint
distribution of ∆GHyd and TPSA before and after optimizing the generator for high BA with
TTBK1 calculated using GIN; target values are LogP = 2.5, QED = 1, TPSA = 100 Å2 and
∆GHyd = −10 kcal/mol.
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(a) (b)

Figure 12: (a) Distribution of BA, and (b) joint distribution of LogP and QED before and
after optimizing the model for LogP = 2.5 and high BA with SARS-CoV-2 Mpro calculated
using AutoDock by alternating rewards.

(a) (b)

Figure 13: (a) Distribution of BA, and (b) joint distribution of LogP and QED before and
after optimizing the model for LogP = 2.5 and high BA with TTBK1 calculated using
AutoDock by alternating rewards.

The GIN model was used for further experimentation. Different targets were kept for

different properties to evaluate the model’s capability of achieving all targets simultaneously.

In Figure 14 and Table 3, it is visible that the model is capable of generating molecules

with high BA along with maximizing QED subject to the LogP being constrained to 2.5

and 6. Furthermore in Figure 14c, there is a clear separation of the distributions in three
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Table 2: Percentage of molecules with desirable properties for SARS-CoV-2 Mpro and TTBK1
using the two optimization strategies.

PDB ID Optimization
strategy

Percentage
of molecules
with BA < −9
kcal/mol and
1 < LogP < 5

Percentage of
molecules with
BA < −10
kcal/mol and
1 < LogP < 5

Percentage of
molecules with
BA < −11
kcal/mol and
1 < LogP < 5

6LU7 Sum 11.4 % 6.5 % 2.6 %
4BTK Sum 6.3 % 1.1 % 0.4 %
6LU7 Alternate 39.1 % 18.9 % 7.1 %
4BTK Alternate 30.3 % 14.2 % 3.0 %

dimensions showing the model’s ability of navigating different regions of the chemical space

where molecules possess the desired properties.

Table 3: LogP and QED targets along with obtained mean values of BA, LogP and QED of
the corresponding generated data as well as the best BA.

Target LogP Target QED Mean BA
(kcal/mol)

Best BA
(kcal/mol)

Mean
LogP

Mean
QED

2.5 1 -6.76 -8.18 2.9 0.42
6 1 -7.64 -8.41 5.87 0.19

A similar experiment was repeated with TPSA and ∆GHyd along with BA to see how

the optimization strategy handles conflicting targets since higher the TPSA, more negative

the ∆GHyd. The target pairs are mentioned in Table 4.

Table 4: TPSA and ∆GHyd targets along with mean values of BA, TPSA and ∆GHyd of the
corresponding generated data as well as the best BA.

Target TPSA
(Å2)

Target
∆GHyd

(kcal/mol)

Mean
TPSA (Å2)

Mean
∆GHyd

(kcal/mol)

Mean BA
(kcal/mol)

Best BA
(kcal/mol)

70 -11 88.77 -10.13 -6.11 -8.36
120 -11 117.25 -10.75 -6.65 -8.32
70 -7 71.64 -7.42 -7.4 -8.90
120 -7 99.16 -8.42 -6.85 -8.64

TPSA of 120 Å2 and 70 Å2 with ∆GHyd of −11 kcal/mol and −7 kcal/mol respectively

are feasible simultaneously. The distinction in the distributions is shown in Figure 15 where
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(a) (b)

(c)

Figure 14: (a) Distribution of BA, (b) joint distribution of LogP and QED, and (c) 3D
representation of properties of generated molecules before and after optimizing the generator
for high BA with TTBK1 calculated using GIN.
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the pipeline successfully generates molecules with high BA as well as the target TPSA and

∆GHyd. The generator learns to add Oxygen, Nitrogen and Sulphur atoms to the molecular

structure to increase TPSA and improve ∆GHyd in the first case while in the second it adds

long aliphatic chains and benzene rings to keep the TPSA and ∆GHyd low. However, both

the tasks are achieved while keeping a high BA to the target protein.

(a) (b)

(c)

Figure 15: (a) Distribution of BA, (b) joint distribution of LogP and QED, and (c) 3D
representation of properties of generated molecules before and after optimizing the generator
for high BA with TTBK1 calculated using GIN.

The difficulty arises in the other two cases since it is extremely hard to achieve the
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mentioned TPSA and ∆GHyd simultaneously. However, switching the rewards after every

35 iterations does help reach a common consensus between the properties. In Figures 16b

and 16c, though the peaks of the distributions do not lie exactly at the target but they

show a wider distribution which leads to a higher fraction of molecules being closer to the

target properties. The molecules with ∆GHyd= -7 kcal/mol and TPSA = 120Å2 are much

larger than those generated for other cases with both a large number of Oxygen, Nitrogen

and Sulphur atoms to increase TPSA as well as long aliphatic chains and benzene rings to

make the ∆GHyd less negative which shows that the generator automatically learns to create

large molecules so that both properties can be satisfied simultaneously. The molecules with

∆GHyd = -11 kcal/mol and TPSA = 70Å2 are smaller but contain at least 3 benzene rings

causing a low TPSA but a large number of Oxygen, Nitrogen and Sulphur atoms to take the

∆GHyd close to −11 kcal/mol. This further showcases the robustness of the the alternating

reward strategy to generate molecules with simultaneous targets of different nature and find

an intersection between the sets of molecules.

The best hit from 500 molecules generated from each of the aforementioned experiments

using alternating rewards are shown in Figure 17.

4 Conclusion

In this study, we propose a pipeline for de novo generation of drug like molecules with high

BA to novel targets along with other desirable properties. Reinforcement learning is used

to optimize the generator model weights to maximize the rewards obtained from calculated

properties. A novel optimization strategy is also proposed for the multi-objective set up in

which the reward function is switched to optimize for a different property at regular intervals

instead of the conventional approach in which sum of rewards from all properties is taken.

We also show the performance of two ways of calculating BA i.e. using AutoDock and using

a predictor model while also weighing the merits and demerits of both approaches as a part
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(a)

(b)

(c)

Figure 16: Distribution of (a) BA, (b) ∆GHyd, and (c) TPSA before and after optimizing
the model for high binding affinity with TTBK1 calculated using GIN.
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Figure 17: The top hit from 500 molecules generated after each experiment done using
alternating rewards.
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of the pipeline. Further work can include training the BA predictor models on the fly using

techniques like active learning to make the pipeline more robust and efficient. The use of

this architecture significantly reduces the number of docking calculations required to identify

potential drugs for a novel target removing a major bottleneck in the drug discovery process

and can potentially be used to generate targeted drug libraries. We show that the alternating

reward strategy is extremely robust in finding potential hits for the target across a wide set

of target properties.
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