
Kwon and Lee  J Cheminform           (2021) 13:24  

https://doi.org/10.1186/s13321-021-00501-7

RESEARCH ARTICLE

MolFinder: an evolutionary algorithm 
for the global optimization of molecular 
properties and the extensive exploration 
of chemical space using SMILES
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Abstract 

Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization 

algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse 

molecules with desired properties efficiently without any training and a large molecular database. Compared with 

recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outper-

forms in terms of both the optimization of a given target property and the generation of a set of diverse and novel 

molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representa-

tion is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. 

We believe that our results shed light on new possibilities for advances in molecule optimization methods.
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Introduction
An inverse molecular design approach, finding valuable 

molecules with desired properties for a given application, 

is drawing attention from chemists recently. Conven-

tional molecular design approaches find novel molecules 

by perturbing known molecules using experienced chem-

ists’ intuition. For validation, the designed molecules 

should be synthesized and tested through experiments. 

�is whole procedure requires considerable time and 

resources to complete, which retards the development of 

novel valuable molecules. On the other hand, the inverse 

molecular design determines the desired properties or 

properties first and then searches/generates candidate 

molecules that are assumed to have desired properties 

[1, 2]. With the help of the recent development of artifi-

cial intelligence (AI)/machine learning (ML), the inverse 

molecular design is expected to accelerate the discovery 

of novel molecules in various fields including the phar-

maceutical industry [3].

Various inverse molecular design methods using AI 

have been actively developed recently [4]. �e most com-

monly used strategy for molecular design is to use the 

SMILES representation, which is a character-based linear 

notation in which the structure of the molecule is con-

sidered [5]. SMILES strings contain information about 

the structure and stereochemistry of a molecule and 

the presence of electric charges. Here, we briefly review 

a few examples of ML-based molecule generation mod-

els. First, various methods using SMILES have been 

developed based on the variational autoencoder (VAE) 

algorithm [6–8]. Recently, Zhavoronkov and coworkers 

successfully found novel DDR1 inhibitors using a VAE-

based model [9]. VAE-based approaches convert input 
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SMILES strings or molecular graphs into multi-dimen-

sional vectors on a latent space based on their similari-

ties and physicochemical properties. It is also shown that 

molecular transformations are possible by vector trans-

formation on the numerical chemical space.

�e second class of approaches used the recurrent neu-

ral network (RNN) algorithms [10, 11]. RNN-models are 

trained to learn the syntax of the SMILES representa-

tion from a large set of molecule database. After initial 

training, the models are used to generate novel SMILES 

strings sequentially. Generally, RNN-based methods have 

two inherent limitations. First, not all generated SMILES 

strings are valid; some generated strings violate the syn-

tax of SMILES. Second, generated SMILES strings may 

overlap with those in the training set.

Efforts are being made to create the models that gen-

erate molecules with desired properties using the idea of 

reinforcement-learning (RL) [9, 11–14]. RL is an area of 

ML that aims to obtain the best of the selectable behav-

iors based on the current environment. As an example, 

the ReLeaSE algorithm [12] performed RL with a SMILES 

generating model using stacked-RNN cells [15] trained 

with known chemical databases. ReLeaSE was shown to 

generate molecules with desired physicochemical prop-

erties and was used to design possible strong binders of 

the JAK2 proteins. Another RL-based molecular design 

model is Molecule DQN (MolDQN) [13], which is based 

on the Deep Q-Networks (DQN) algorithm [16], which 

is one of the state-of-the-art RL algorithms. MolDQN 

uses predefined molecular variation operations to modify 

existing molecules into new molecules suitable for their 

purposes. Together with the VAE approach, RL–VAE 

models that improve the fitness of molecules produced 

by VAE via RL have been suggested [17, 18]. More com-

prehensive reviews of various ML-based molecular gen-

eration and optimization methods are given in detail in 

recent papers [4, 19–21].

�e above ML-based models must be trained using 

existing molecular libraries such as ZINC [22], ChEMBL 

[23], and PubChem [24]. One potential limitation of 

ML-based approaches is that the results of these models 

heavily depend on training data. In other words, these 

models may be difficult to generate novel molecules that 

are highly dissimilar to the molecules seen during train-

ing. For example, in the case of the VAE model, the latent 

multi-dimensional space is constructed based on the sim-

ilarities between input molecules, which guarantees good 

interpolation between known molecules. However, it is 

still not clear whether extrapolation on the latent space 

will yield valid molecules. In summary, ML-based models 

suffer from strong training data dependence, which may 

bias the quality and quantity of generated molecules.

In addition to recent ML-based approaches, various 

genetic algorithm (GA)-based molecular property opti-

mization algorithms have been developed [25–34]. �e 

main advantage of GA-based algorithms is that they do 

not require a large amount of molecule data relevant to 

a given optimization task because they search novel mol-

ecules in a combinatorial and stochastic way. Also, they 

do not need to train a molecule generator, which takes 

considerable computational time and resources. Most 

existing GA-based molecular optimization algorithms 

are based on the graph representation of a molecule. 

In recent studies, they showed competitive, sometimes 

better, performance compared to ML-based methods 

in generating novel molecules with desired properties 

[26, 27, 29, 30]. In addition, the design of any arbitrary 

operation may be limited because generally it is tightly 

coupled with the molecular manipulation functionality 

of underlying cheminformatics libraries, such as RDKit 

[35]. Alternative to graph-based approaches, Yoshikawa 

et  al. proposed a GA method by converting a SMILES 

string into a 200-dimensional integer array based on a 

certain grammar [31]. However, interestingly, performing 

GA using the SMILES representation itself has not been 

well investigated despite its simplicity and computational 

efficiency [32, 34]. �e approach has been considered less 

efficient than the graph-based approaches [29, 30, 33, 34].

Here, we propose the MolFinder method, which is a 

new molecular design algorithm using the conforma-

tional space annealing (CSA) algorithm [36], a class of 

an evolutionary algorithm. Previously, it has been con-

sidered that performing GA with SMILES is inefficient 

because the random crossover and the mutation opera-

tions of SMILES strings mostly result in invalid SMILES 

strings [29, 30]. For the global optimization of molecular 

properties, MolFinder employs the CSA algorithm, which 

has been successfully applied to many global optimiza-

tion problems in various disciplines [36–40]. Compared 

to conventional GA, the CSA algorithm has sophisticated 

selection procedures to control the diversity of popula-

tions/solutions during sampling.

In this study, to show that MolFinder, a GA-based 

approach using SMILES, is an orthogonal and comple-

mentary approach to RL-based approaches for molecu-

lar property optimization, we compared the sampling 

efficiency of MolFinder with two widely used RL-based 

methods, ReLeaSE and MolDQN. �e ReLeaSE method 

is one of the earliest attempts to apply reinforcement 

learning to find molecules with optimized properties and 

is being widely used. �e MolDQN has also been widely 

used since its publication because the method uses the 

deep Q-Network (DQN), one of the state-of-the-art RL 

algorithms. �e DQN method has shown its efficiency in 

various tasks, such as training a human-level model that 
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plays Atari games [16]. Here, we show that MolFinder 

finds novel molecules with better properties than the 

RL-based methods, while keeping the diversity of sam-

pled molecules. Additionally, it is demonstrated that 

MolFinder successfully explores a wider range of chemi-

cal space than the other RL-based methods tested here.

Methods
Global property optimization using conformational space 

annealing

�e goal of this study is to develop an efficient algorithm 

that performs global optimization of molecular proper-

ties on chemical space. We call our method MolFinder. 

In this study, the CSA algorithm, a highly efficient global 

optimization algorithm, was utilized for the global search 

on chemical space [36, 38, 40–42]. CSA combines the 

strengths of GA, simulated annealing [43], and Monte-

Carlo minimization [44]. It performs an extensive search 

during the initial stage of search and intensive optimiza-

tion near many different local minima during the later 

stage of the search by controlling distance constraints 

between candidate solutions. �e detailed description 

of the general CSA algorithm and its efficiency are dis-

cussed in detail elsewhere [37].

MolFinder performs a global search on chemical 

space using the SMILES representation. �e workflow 

of MolFinder is illustrated in Fig.  1. During the search, 

MolFinder uses a set of molecules called a bank, and its 

size, Nbank , is kept constant during the search. In this 

study, Nbank is set to 1000. MolFinder starts with a prede-

fined number of random molecules. �e average distance 

between all pairs of molecules in the first bank is calcu-

lated, Davg . �e half of Davg is set as an initial distance 

cutoff, Dcut = Davg/2 , which is used to keep the diversity 

of the bank. A distance between a pair of molecules is 

defined as 1 − S(mi,mj) , where S(mi,mj) is the similar-

ity between the two molecules, mi and mj . In this study, 

a similarity between the two molecules is calculated by 

using the Tanimoto coefficient of their RDKit fingerprint 

vectors [35].

Among Nbank molecules, a subset of best molecules in 

terms of a given objective function with a size of Nseed is 

selected as seed molecules for generating new molecules. 

In this study, we set Nseed = 600 . Afterward, one mol-

ecule is randomly selected from this seed set, and the 

other from the entire bank. New molecules, child solu-

tions, are generated from this pair through cross-over 

and mutation operations (Fig. 2). From a single seed mol-

ecule, 40 molecules are generated by crossover. Mutation 

operations consist of addition, deletion, and substitution 

of an atom, and 20 molecules are generated by each oper-

ation, respectively. In summary, a total of 100 molecules 

are generated from one seed molecule.

�e generated molecules are followed by local opti-

mization. For local optimization, atoms in a molecule 

are randomly substituted with other elements for a cer-

tain number of times. If the objective value of a mol-

ecule becomes better, the change is accepted, otherwise 

rejected. In this study, we tested the two versions of 

MolFinder, with and without this local optimization step. 

Sampling with local optimization is called MolFinder-

local in this paper.

�e generated new molecules are used to update the 

bank by considering both the diversity of molecules 

and their objective values. First, if a new molecule has a 

worse objective value than the worst of the bank, it is dis-

carded. If it is not discarded, the molecule is compared 

with all molecules in the bank and its nearest neighbor 

Fig. 1 The workflow of MolFinder
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is identified. �en, if the distance between the molecule 

and its nearest neighbor is less than Dcut , the two mol-

ecules are considered to be in the same basin on chemi-

cal space. �us, only one molecule with a better objective 

value remains. If the distance between the new molecules 

and its nearest neighbor in the bank is larger than Dcut , 

the new molecule is considered to represent a favorable 

novel region and it replaces the molecule with the worst 

objective value in the bank. �e Dcut value decreases by 

a power of 0.98 after every generation until it reaches 

Davg/5 . After Dcut becomes Dcut/5 , it remains constant. 

By using this update procedure, the CSA algorithm ena-

bles an extensive search on chemical space and prevents 

the premature convergence of the search.

Crossover operation

�e key components of MolFinder are crossover and 

mutation operations using SMILES strings to gener-

ate novel molecules (Fig.  2). �e pseudocode of the 

crossover operation is presented in Algorithm 1. A pair 

of SMILES strings are truncated from both the left and 

the right to enhance the diversity of substructures. In 

other words, one string is truncated from the left and the 

other from the right. �e positions to be truncated are 

selected almost randomly for both strings by considering 

ring structures. To generate more valid SMILES strings, 

truncation of a SMILES string in the middle of a ring 

structure is avoided. �e two truncated strings are con-

catenated and the numbers of open and closing parenthe-

ses are counted. If they do not match, excess parentheses 

are removed or deficient parentheses are inserted at ran-

dom positions. After fixing imbalanced parentheses, the 

validity of the resulting string is checked. If the concat-

enated string is not valid, the procedure is repeated until 

it results in a valid SMILES string. If a valid SMILES is 

not found after 30 iterations, the left and right SMILES 

strings are swapped and the same procedure is repeated 

30 times more. If a valid SMILES is not found, even after 

the additional 30 iterations, the pair is discarded. �e 

average rate of generating a valid SMILES via crossover is 

81.7% (Additional file 1: Table S1).

Fig. 2 The Crossover and mutation operators The crossover (a) and mutation operations (b) using SMILES strings
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Mutation operation

Mutation operations consist of the insertion, deletion, 

and substitution of atoms of a molecule. For insertion 

and deletion operations, an atom is inserted or deleted 

at a random position of a SMILES string. If the resulting 

string is not valid, the operation is repeated until a valid 

molecule is generated up to 30 times. �e pseudocode 

of the substitution operation is shown in Algorithm 2. A 

random atom of a molecule is substituted with another 

atom considering its neighboring environment, such as 

the number of valences. To consider the valence of an 

atom properly, a SMILES string is converted to a Mol 

type instance of RDKit. �e average rate of generating a 

valid SMILES via a mutation operation is over 99%.

Dataset

In this study, initial molecules were randomly sampled 

from the ZINC15 database [22], which consists of pur-

chasable drug-like molecules. As of Nov. 2019, there were 

over 980 million SMILES strings in ZINC15 and they 

were grouped as tranches based on molecular weight 

and logP values. We randomly sampled 1/1000 of each 

tranche, resulting in 982,518 SMILES strings. �is subset 

was used as a seed set for both MolFinder and the train-

ing set for other deep-learning-based generation models.

Comparison with reinforcement-learning-based methods

To assess the efficiency of MolFinder, we compared the 

objective values and the diversity of generated molecules 

with two generative-model-based molecular property 

optimization approaches, ReLeaSE [12] and MolDQN 

[13]. ReLeaSE uses the reinforcement-learning approach 

[16] and a stacked-RNN model [15] to generate novel 

SMILES strings with desired properties. To compare 

with MolFinder, we used the ReLeaSE code downloaded 

from its Github repository [12]. �e initial training of a 

stacked-RNN machine to learn the syntax of SMILES 

was performed with the training set, the random subset 

of ZINC15. A learning rate of 0.00005 was used. After 

initial training, reinforcement-learning was performed 

for 3000 steps to optimize the machine to produce more 

molecules with desired properties.

MolDQN [13] is a molecular property optimiza-

tion approach based on the DQN reinforcement learn-

ing algorithm [16]. With the MolDQN approach, a seed 

molecule is modified by atom addition, bond addition/

deletion operations to optimize target properties. �e 

advantage of MolDQN is that it generates valid molecules 

mostly because it generates a new molecule by modi-

fying a seed molecule with the predefined operations. 

We downloaded the MolDQN code from its Github 

repository and reinforcement-learning was performed 

for 40,000 episodes. One episode means the comple-

tion of modifying a seed molecule. Similar to ReLeaSE, 

MolDQN also requires the initial training of its genera-

tive model to learn the syntax of SMILES. �e generator 

of MolDQN was trained with the identical training set 

with ReLeaSE. MolDQN simulations were performed 

from the seed molecule provided in their repository.

Implementation detail

MolFinder was implemented with Python version 3.7.6. 

To compute molecular similarities and properties, RDKit 

version 2019.09.3.0 [35] was used. MolDQN was per-

formed with Tensorflow version 1.15 [45] and ReLeaSE 

with PyTorch version 1.4 [46].
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Results and discussion
Optimization of drug-likeness

To assess the efficiency of molecular property optimiza-

tion approaches, we sampled molecules by optimizing 

the following objective function, a modified drug-like-

ness score, SmQED:

where SQED(m) is the original quantitative estimate of 

drug-likeness (QED) score [47] of a molecule m, SSA(m) 

(1)SmQED(m) = wSQED(m) − (1 − w)SSA(m),

Table 1 A comparison of modified drug-likeness optimization 

results by the MolFinder, ReLeaSE and MolDQN methods

ZINC MolFinder MolFinder-local ReLeaSE MolDQN

Mean 0.7086 0.9237 0.9240 0.8473 0.8677

Std. 0.1248 0.0020 0.0027 0.0380 0.0240

Min. 0.3263 0.9209 0.9199 0.7570 0.8281

Max. 0.9224 0.9316 0.9326 0.9317 0.9235

Fig. 3 A comparison of modified drug-likeness scores of the generated molecules The violin plots of the modified drug-likeness scores of 

generated molecules by MolFinder, MolFinder-local, ReLeaSE, and MolDQN (top). The histogram of QED (left bottom) and SA score (right bottom) 

values of the generated molecules by MolFinder (orange), ReLeaSE (green), and MolDQN (red), and those of the initial ZINC15 database (blue)
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is the synthetic accessibility [48] of m, and w is the weight 

of SQED . In this study, we used w = 0.994 . �e QED score 

ranges from 0 to 1, and more drug-like molecules have 

values closer to 1. �e synthetic accessibility score spans 

from 0 to 10, and a higher score indicates that a molecule 

is expected to be harder to synthesize [48]. �us a high 

modified QED value, SmQED , indicates that a molecule 

has similar molecular properties to known drugs and is 

easy to synthesize.

To assess the optimization efficiency of ReLeaSE and 

MolDQN, we generated 10,000 SMILES strings with each 

method using SmQED (Eq. 1). �e validity of the strings was 

checked and only valid ones were kept for further analy-

sis. All SMILES strings generated by MolDQN were valid. 

However, after removing redundancy, only 4273 molecules 

remained. �is shows that more than half of the generated 

molecules by MolDQN were redundant. ReLeaSE gener-

ated 9821 valid SMILES strings from 10,000 trials. After 

removing redundancy, only 1340 molecules remained. In 

other words, more than 80% of the generated molecules by 

ReLeaSE were redundant suggesting that generative mod-

els may have limitations in sampling diverse molecules. 

For a fair comparison, the top-1000 molecules in terms of 

SmQED were selected from each generated set.

A comparison of the top-1000 molecules obtained 

with MolFinder and the other approaches demon-

strates that MolFinder discovers better molecules than 

the other methods (Table 1 and Fig. 3). MolFinder-local 

achieved the highest mean SmQED of 1000 molecules, 

0.9240. �e molecule with the highest SmQED , 0.9326, 

was also obtained with MolFinder-local. It is notice-

able that the minimum SmQED values obtained with both 

MolFinder models, 0.921 and 0.920, are significantly 

higher than those of the ReLeaSE and MolDQN results, 

which are 0.847 and 0.868, respectively. �ese numbers 

indicate that even the worst molecules generated by the 

MolFinder are comparable to those generated by the RL-

based methods. When the two versions of MolFinder 

methods are compared, it is identified that MolFinder-

local finds slightly better molecules than MolFinder.

Overall, the ReLeaSE results have the lowest mean and 

minimum SmQED values. However, it found one molecule 

that has a higher SmQED value than the best of MolFinder, 

but lower than that of MolFinder-local. �is indicates 

that the molecules generated by ReLeaSE have a wide 

distribution in terms of SmQED . Similarly, MolDQN gen-

erated a few molecules with SmQED values higher than 

0.9. However, the SmQED values of most molecules gen-

erated by MolDQN were distributed between 0.85 to 

0.90, which were significantly lower than the MolFinder 

and MolFinder-local results (Fig.  3).  More details are 

displayed  in  Additional file  1:  Figure S1. To show the 

statistical significance of this difference, we performed 

the two-sample t-tests by using the MolFinder results 

as a reference (Additional file  1: Table  S2). �e t-test 

results show that the MolFinder results have higher 

objective values than the RF-based methods statistically 

significantly.

For further analysis, we compared the distributions 

of the original QED score and the SA score indepen-

dently (the bottom plots of Fig.  3). �e analysis shows 

that MolFinder results have significantly higher origi-

nal QED values than the other methods (left bottom of 

Fig. 3). All molecules generated by MolFinder had SQED 

values of higher than 0.92. On the other hand, the results 

of the other methods have lower SQED values. Following 

MolFinder, the most frequently observed SQED values of 

MolDQN and ReLeaSE results are centered around 0.90. 

On average, MolDQN results have slightly higher SQED 

values than the ReLeaSE results. All optimization results 

have higher SQED values than ZINC15 on average.

In terms of synthetic accessibility, the ReLeaSE results 

have the lowest average SSA value meaning that they are 

relatively easier to synthesize, followed by the MolFinder 

and MolDQN results (right bottom of Fig. 3). It is notice-

able that the MolDQN results have significantly higher 

SSA values than the initial molecules from ZINC15. �is 

suggests that MolDQN tends to optimize seed mol-

ecules by modifying them into complicated and harder 

ones to synthesize (Additional file 1: Figure S2). On the 

other hand, the reinforced ReLeaSE is inclined to gen-

erate rather simpler molecules (Additional file  1: Figure 

S3). In summary, although both ReLeaSE and MolDQN 

are based on the reinforcement learning algorithms, 

they optimize molecules in the opposite way: making 

molecules simpler and more complex. �e SSA values of 

MolFinder results are distributed between those of the 

ReLeaSE and MolDQN results, which are also improved 

than the ZINC15 set (Additional file 1: Figure S4, S5).

�e top-12 molecules discovered by MolFinder are pre-

sented in Fig.  4. It appears that all molecules consist of 

relatively simple fragments and high SQED values. All top-

12 molecules in Fig. 4 have low SSA values, less than 2.5, 

suggesting that they are readily synthesizable. It is notice-

able that, even though we optimized SmQED in this study, 

the SQED values of the top-12 molecules are identical or 

comparable to the best reported values obtained from the 

sole optimization of SQED [26]. In conclusion, the above 

results indicate that molecule optimization of SmQED 

using MolFinder successfully generated a set of mole-

cules with good drug-likeness and synthetic accessibility 

simultaneously. �is clearly demonstrates that MolFinder 

can help accelerate the drug discovery process by gener-

ating novel drug candidates that are readily synthesizable.

�rough extensive sampling of chemical space using 

MolFinder, we found that many different molecules have 
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similarly high QED values. In other words, the QED 

measure itself has high degeneracy. �is high degeneracy 

is due to the innate characteristics of QED design [47]. 

QED is calculated based on the histograms of eight rep-

resentative chemical properties of 771 orally absorbable 

drugs. QED is designed to be scored highest if the prop-

erties of molecules correspond to the modes of the his-

tograms. For example, the mode of molecular weight is 

in the range between 290 and 300 and the mode of the 

number of aromatic rings is two. �us, considering the 

vast size of chemical space, the existence of many mol-

ecules with similar properties to known orally absorbable 

drugs is possible and MolFinder successfully discovered 

them. However, the RL-based methods have large varia-

tions in objective values because they are not fully con-

verged to the global maximum of the objective function 

during optimization. When ReLeaSE and MolDQN were 

iterated ten times, each optimization calculation finished 

at quite different points in chemical space, which demon-

strates that MolFinder performs more extensive sampling 

than the RL-based methods.

To assess whether the performance of MolFinder 

depends on the choice of the weight of SmQED , we 

performed additional calculations with different 

weights (Additional file  1: Table  S3). With w = 0.5 , the 

average SmQED of the top-1000 molecules obtained 

with MolFinder is − 0.274 while those of ReLeaSE and 

MolDQN are − 0.514 and − 1.101, respectively. Similarly, 

when w = 0.9 , the average SmQED of the best molecules 

of MolFinder results is 0.675 while those of ReLeaSE 

and MolDQN are 0.551 and 0.288. With w = 0.95 , the 

average SmQED of MolFinder results is 0.804 while those 

of ReLeaSE and MolDQN are 0.667 and 0.473. Overall, 

these results show that the performance of MolFinder is 

invariant to the change of the weights of SmQED and all 

generated molecules are unique. �e structures of opti-

mized molecules are illustrated as Additional file 1: Fig-

ures S6, S7 and S8.

Fig. 4 Top-12 molecules discovered by MolFinder The modified drug-likeness scores (TARGET, Eq. 1) and their drug-likeness (QED) and synthetic 

accessibility score (SA score) are presented

Table 2 A comparison of pairwise similarities between 

generated molecules by the MolFinder, ReLeaSE and MolDQN 

methods

Mean Std.

MolFinder 0.3106 0.0716

MolFinder-local 0.3211 0.1116

ReLeaSE 0.4330 0.0782

MolDQN 0.3693 0.0719
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We also tested optimization of the normalized form 

of SmQED , S′

mQED , with various weights. �e normalized 

SmQED is defined as follows so that the contribution of 

SA-score is scaled from 0 to 1:

�e structures of best molecules obtained with different 

weights are illustrated as Additional file 1: Figures S9 to 

S13. When the weight is high, i.e., w > 0.9 , the molecules 

with high objective values are similar to those obtained 

with Eq. 1. When the weight is low, i.e., synthetic acces-

sibility is considered more importantly, most molecules 

have rather simple chemical structures and are highly 

similar to each other. For example, with w = 0.1 and 0.3, 

all highest-scored molecules have only two benzene rings 

connected with three or four bonds (Additional file  1: 

Figure S9). �is simplicity seems to be due to the bias of 

SA-score [48].

(2)

S
′

mQED = wSQED(m) + (1 − w)(1 − (SSA(m) − 1)/9).

Diversity of generated molecules

To assess the sampling efficiency of the tested 

approaches, pairwise similarities between the generated 

molecules were investigated (Table 2). It is demonstrated 

that MolFinder and MolFinder-local find more diverse 

sets of molecules than the other RL-based approaches. 

�is suggests that MolFinder performs a more exten-

sive exploration of chemical space than the others. �e 

average pairwise similarities of molecules sampled by 

MolFinder and MolFinder-local were 0.3106 and 0.3211, 

while those of ReLeaSE and MolDQN were 0.4330 and 

0.4097, respectively. From the histogram of pairwise sim-

ilarities, it is evident that most pairs of molecules have 

similarity values between 0.1 and 0.4 (Fig.  5). Although 

the ReLeaSE results show a peak of around 0.2, which is 

similar to the MolFinder results, they also include many 

pairs of molecules whose similarities are over 0.4. �e 

MolDQN results have a peak of around 0.38, which is sig-

nificantly larger than those of the other methods. In other 

words, the molecules generated by the MolFinder meth-

ods are highly diverse while those generated by ReLeaSE 

and MolDQN are much more similar to each other. �is 

implies that RL-based methods are likely to be biased and 

their results may be confined to a certain region of chem-

ical space possibly due to training data dependency.

Recently, to avoid the problem of low-diversity of RL 

results, Blaschke and coworkers developed a memory-

assisted reinforcement learning to generate diverse opti-

mized molecules [49]. In their algorithm, the model 

has the memory of previously generated molecules. If a 

newly generated molecule is highly similar to a saved one, 

a reward function is penalized. In this way, the authors 

showed that the RL can be improved to generate more 

diverse molecules while optimizing a given objective.

To identify the training/initial data dependency of 

the methods, the distributions of generated molecules 

are displayed by using the t-SNE dimension reduction 

method [50] (Fig.  6). A molecular similarity was cal-

culated using the MACCS key [51]. From the plot, it is 

Fig. 5 Pairwise similarities between generated molecules. The 

density plots of pairwise similarities between generated molecules 

by MolFinder (blue), MolFinder-local (yellow), ReLeaSE (green), and 

MolDQN (red). The pairwise similarity was calculated using the RDKit 

fingerprint and Tanimoto coefficient

Table 3 A comparison of uniqueness and novelty of generated molecules and their scaffolds

a Psca�olds represents the fraction of distinct sca�olds.

b The fraction of novel sca�olds was calculated by comparison with sca�olds that are contained in the training dataset

Method Unique Novel (M) Scaffolds (N) Pscaffolds (N/M)a Novel 
scaffold 
%b

ZINC 1000 – 956 0.956 –

MolFinder 1000 1000 860 0.860 99.2

MolFinder-local 1000 1000 828 0.828 98.6

MolDQN 1000 997 880 0.883 96.1

ReLeaSE 967 967 213 0.220 92.0
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clear that MolFinder and MolFinder-local sampled dif-

ferent regions of chemical space compared to the initial 

data from ZINC15. On the t-SNE plot, MolFinder results 

form several distinct clusters that are widely spread over 

chemical space. On the other hand, molecules generated 

by ReLeaSE are mostly clustered at the right top of the 

plot, which suggests that they are similar to each other 

and the sampling of ReLeaSE may be biased. Also, mol-

ecules from ZINC15 are highly populated at the right top 

region and they are largely overlapped with the ReLeaSE 

results. MolDQN results overlap with the training data 

most. Molecules from ZINC15 and MolDQN are mostly 

clustered around the center and the left-center region 

of the plot. �is indicates that molecules generated by 

MolDQN are highly similar to seed molecules, which 

may limit the sampling efficiency of the method. In sum-

mary, MolFinder and MolFinder-local explore wider 

regions of chemical space than the other methods.

Assessment of novelty of molecules

To further analyze the sampling efficiencies of the molec-

ular optimization methods, the uniqueness and novelty 

of molecules and their Bemis–Murcko scaffolds [52] were 

investigated (Table  3). Almost all molecules generated 

by MolFinder and MolFinder-local were novel, absent 

in the input database. Only one molecule generated by 

MolFinder was found in the input database and none by 

MolFinder-local. �irty-three molecules generated by 

ReLeaSE were redundant. In terms of scaffolds, MolDQN 

found the most unique scaffolds, 880. However, as identi-

fied by higher SA scores in Fig. 3, MolDQN results have 

relatively complex chemical structures, such as many 

fused rings, which make them hard to synthesize and less 

practical (Additional file  1: Figure S2). �e MolFinder 

and MolFinder-local methods generated 860 and 828 

scaffolds, respectively, which are comparable to the 

MolDQN results. However, their SSA values are signifi-

cantly lower than those of the MolDQN results (Fig. 3). 

In other words, most molecules discovered by MolFinder 

were drug-like and reasonably easy enough to synthesize 

(Additional file 1: Figures S4 and S5). It is noticeable that 

ReLeaSE generated only 213 unique scaffolds, which are 

remarkably smaller than the other methods. Many mol-

ecules generated by ReLeaSE were identified to have 

similar scaffolds and only peripheral groups were differ-

ent (Additional file  1: Figure S3). �is suggests that the 

reinforced generator of ReLeaSE may be biased to yield 

only similar molecules, which limit the efficiency of RL-

based models.

Additionally, the percentages of novel scaffolds were 

investigated. If a scaffold was not found in the ini-

tial dataset, it was considered novel. MolFinder results 

showed the highest percentage of a novel scaffold, 99.2%. 

�e percentages of novel scaffolds of the ReLeaSE and 

MolDQN results, 96.1% and 92.0%, were lower than 

those of MolFinder and MolFinder-local. �is demon-

strates that the MolFinder methods not only optimize a 

target property more efficiently but also perform a wider 

exploration of chemical space than the other methods.

Computational e�ciency

To compare the computational efficiency of MolFinder 

and other RL-based methods, we compare the total 

runtime of each method. One of the advantages of GA-

based methods over RL-based methods is that RL-based 

models require pre-training of a model to learn the syn-

tax of SMILES generally, while GA-based algorithms 

do not. Overall, MolFinder required about 24 h to 36 h 

to obtain converged results depending on the weight 

on a single Intel Xeon Gold 6132 processor  (Additional 

file  1:  Table  S4). �e variation in runtime is due to the 

complexity of optimized molecules. When the weight 

of QED is small, relatively simple and similar molecules 

were generated, leading to less computational time to 

generate the fingerprints of molecules.

For the RL-based models, all deep-learning calcula-

tions were performed on a single RTX-2080Ti card. A 

MolDQN model required about 50 h to complete 40,000 

episodes of reinforcement on average. To train a ReLeaSE 

model, it required about 100 h to train a generative 

model, which learns the syntax of SMILES and 33.5 h to 

perform reinforcement learning, optimization, on aver-

age. �ese results show that the computational efficiency 

of MolFinder is comparable to those of the RL-based 

methods.

Guacamol benchmark

In the previous section, we showed that MolFinder sam-

ples better molecules in terms of SmQED . However, it 

was suggested that optimization of QED is trivial and 

may not be an effective way to assess the efficiency of a 

molecular optimization method [29]. �us, for a more 

rigorous assessment of our method, we performed the 

optimization of the goal-directed tasks of the Guacamol 

benchmark set [29]. �e Guacamol benchmark consists 

of multiple non-trivial optimization tasks related to the 

optimization of physicochemical properties of drug-like 

molecules and provides a common ground to assess the 

efficiency of molecular property optimization methods.

For each Guacamol goal-directed task, we repeated 

MolFinder calculations ten times and obtained the maxi-

mum objective values (Additional file  1:  Table  S5). �e 

results demonstrate that the optimization efficiency of 

MolFinder is comparable to existing state-of-the-art 

methods (Table 4). MolFinder successfully found the best 

ones, with an objective value of 1.0, for the rediscovery 
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tasks. For the Median molecules 2 and Amlodipine multi-

property optimization (MPO) tasks, MolFinder found the 

highest objective values than the reported values. Only 

for the zaleplon MPO task, MolFinder is showing a worse 

result than the other methods, which is probably due to 

the lack of a bond-order changing operation.

Generating similar molecules to a reference

Designing novel molecules based on a specific scaffold or 

a core structure is a commonly used approach for molec-

ular design. �us, generating molecules with desired 

properties while preserving a specific scaffold has practi-

cal advantages. To benchmark this, we optimized the fol-

lowing objective function used by Zhou et al. [13] using 

MolFinder and MolDQN:

where Ssim(m,mref) is the Tanimoto similarity between 

a molecule m and a reference molecule mref calculated 

with the Morgan fingerprint and w is the weight coeffi-

cient of the similarity term. Here, we set w = 0.8 . For this 

test, we compared MolFinder with MolDQN because, 

based on the previous benchmarks, MolDQN performs 

much wider sampling of chemical scaffolds (Table 3).

Independent molecular generation calculations were 

repeated ten times using MolFinder and MolDQN based 

on the same reference molecule used to benchmark 

(3)f (m) = wSsim(m;mref) + (1 − w)SQED(m)

Fig. 6 An overview of the distribution of generated molecules on 

chemical space The t-SNE plot of the top-1000 molecules generated 

by MolFinder (yellow), MolFinder-local (green), MolDQN (red), and 

ReLeaSE (purple). For comparison, initial/seed molecules from ZINC15 

(blue) are illustrated together. The sizes of circles are proportional to 

the molecules’ SmQED values. The best molecule generated by each 

method is emphasized with black border lines

Table 4 Optimization results on the GuacaMol benchmark

Benchmark SMILES LSTM Graph GA CReM MSO EvoMol MolFinder

Celecoxib rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Troglitazone rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Thiotixene rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Aripiprazole similarity 1.000 1.000 1.000 1.000 1.000 1.000

Albuterol similarity 1.000 1.000 1.000 1.000 1.000 1.000

Mestranol similarity 1.000 1.000 1.000 1.000 1.000 1.000

C11H24 0.993 0.971 0.966 0.997 1.000 1.000

C9H10N2O2PF2Cl 0.879 0.982 0.940 1.000 1.000 1.000

Median molecules 1 0.438 0.406 0.371 0.437 0.455 0.412

Median molecules 2 0.422 0.432 0.434 0.395 0.417 0.454

Osimertinib MPO 0.907 0.953 0.995 0.966 0.978 0.945

Fexonadine MPO 0.959 0.998 1.000 1.000 1.000 0.999

Ranolazine MPO 0.855 0.920 0.969 0.931 1.000 0.947

Perindopril MPO 0.808 0.792 0.815 0.834 0.884 0.816

Amlodipine MPO 0.894 0.894 0.902 0.900 0.906 0.924

Sitagliptin MPO 0.545 0.891 0.763 0.868 0.966 0.948

Zaleplon MPO 0.669 0.754 0.770 0.764 0.810 0.695

Valsartan SMARTS 0.978 0.990 0.994 0.994 1.000 0.999

deco hop 0.996 1.000 1.000 1.000 1.000 1.000

scaffold hop 0.998 1.000 1.000 1.000 1.000 0.948
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MolDQN (PubChem CID: 174590) [13]. Each MolDQN 

simulation was performed for 40,000 episodes and only 

the best 1000 non-redundant molecules in terms of the 

objective value (Eq. 3) were analyzed. �us, 10,000 mol-

ecules were generated by MolFinder and MolDQN, 

respectively, and they are analyzed here.

It is demonstrated that the molecules generated by 

MolFinder have remarkably higher objective values and 

similarities than those generated by MolDQN (Fig.  7). 

�e average objective value of the MolFinder results was 

0.716, while that of the MolDQN results was 0.628. All 

molecules generated by MolFinder have higher objective 

function values over 0.7, while MolDQN results peaked 

around 0.6.

�is difference is mainly attributed to the higher simi-

larity to the reference molecule [ Ssim(m;mref) in Eq.  3]. 

�e molecules generated by MolFinder had an average 

similarity of 0.784 to the reference. However, the mol-

ecules generated by MolDQN were less similar to the 

reference with an average similarity of 0.669. �is result 

shows that MolFinder results are much similar to the ref-

erence as intended. In terms of the QED, the MolDQN 

results were slightly better than the MolFinder results, 

0.461 to 0.444, while the difference is much smaller than 

that of the similarity. It is not clear whether such a small 

difference in QED, 0.017, will lead to a significant differ-

ence in the final quality of generated molecules. In sum-

mary, these results suggest that MolFinder outperforms 

MolDQN in generating molecules that have desired 

properties and are similar to a given reference molecule, 

simultaneously.

Conclusion
In this study, we presented a new molecule optimiza-

tion approach, MolFinder, based on the efficient global 

optimization of molecular properties using the SMILES 

representation. �is method performs a global search 

on chemical space by using the crossover and mutation 

operations of the SMILES representation, which makes 

the method computationally efficient and straightforward 

to implement. Our work indicates that applying evolu-

tionary algorithms based on the SMILES representation 

to molecular property optimization is promising, which 

has been overlooked by the field despite its simplicity. We 

showed that MolFinder finds better molecules than the 

ML-based molecular property optimization methods in 

terms of a given objective function. In addition, it is also 

demonstrated that MolFinder samples a more diverse set 

of molecules than the other tested methods.

�e key components of the efficiency of MolFinder 

are the following two. First, MolFinder uses the sophis-

ticated crossover and mutation operations of SMILES to 

increase the success rate of the operations. Second, the 

diversity of the bank of molecules was kept during the 

exploration of chemical space as much as possible, which 

is one of the key aspects of the CSA algorithm. One com-

mon limitation of conventional GA is that all solutions 

become highly similar to each other, meaning that the 

sampling is trapped in a local minimum or a set of local 

minima. In many previous studies using CSA, it has been 

shown that keeping the diversity of the bank high is criti-

cal in efficient search on multi-dimensional hyper-spaces 

[37–40]. However, despite the efficiency of MolFinder, 

we cannot completely rule out the possibility of any sam-

pling bias caused by crossover and mutation operations.

�e results presented in this paper clearly demon-

strate that applying an evolutionary algorithm with the 

SMILES representation can be an effective strategy for 

molecular optimization, which is contrary to the con-

ventional notion [27, 29, 30]. �us our results will facili-

tate the development of new computational molecular 

design approaches based on the SMILES representation, 

Fig. 7 Assessment of generating similar molecules to a reference Histograms of a objective values (Eq. 3), b similarities to the reference molecules, 

and c drug-likeness scores (QED) of molecules generated by MolFinder (orange) and MolDQN (blue)
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which is advantageous in terms of its interpretability, 

manipulation and sharing data with other researchers. 

In conclusion, we believe that MolFinder is an alternative 

complementary approach to existing GA-based as well as 

ML-based methods and paves a new path for the inverse 

design of molecules via property optimization.
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