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Abstract

Many attempts have been made in the past to regain the spectral accuracy of the spectral methods, which is lost drastically

due to the presence of discontinuity. In this article, an attempt has been made to show that mollification using Legendre and

Chebyshev polynomial based kernels improves the convergence rate of the Fourier spectral method. Numerical illustrations

are provided with examples involving one or more discontinuities and compared with the existing Dirichlet kernel mollifier.

Dependence of the efficiency of the polynomial mollifiers on the parameter P is analogous to that in the Dirichlet mollifier,

which is detailed by analysing the numerical solution. Further, they are extended to linear scalar conservation law problems.
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Abstract

Many attempts have been made in the past to regain the spectral accuracy of the
spectral methods, which is lost drastically due to the presence of discontinuity. In
this article, an attempt has been made to show that mollification using Legendre and
Chebyshev polynomial based kernels improves the convergence rate of the Fourier
spectral method. Numerical illustrations are provided with examples involving one
or more discontinuities and compared with the existing Dirichlet kernel mollifier.
Dependence of the efficiency of the polynomial mollifiers on the parameter 𝑃 is anal-
ogous to that in the Dirichlet mollifier, which is detailed by analysing the numerical
solution. Further, they are extended to linear scalar conservation law problems.

KEYWORDS:
spectral methods, Gibbs phenomenon, mollifier, Legendre kernel, Chebyshev kernel, linear advection
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1 INTRODUCTION

Spectral methods are efficient and robust global numerical methods that provide exponential accuracy while approximating
infinitely smooth functions or solutions of differential equations. The spectral accuracy enjoyed by the spectral methods is lost
when discontinuous points are present in the domain. Spurious oscillations, known as Gibbs phenomenon, are produced in the
solution obtained using these spectral methods. Besides producing the oscillatory solutions, Gibbs phenomenon reduces the
spectral accuracy of the method to linear order globally. There are various post-processing techniques to regain the convergence
rate of the spectral methods, and mollification is among them. Mollifiers are compactly supported non-negative kernels having
unit mass and considered for the convolution with the approximate solution to eliminate Gibbs phenomenon.

In 1985, Gottlieb and Tadmor1 introduced a mollifier𝜓𝜃,𝑃 (𝑦) = 𝜃−1𝜌(𝜃−1𝑝)𝐷𝑃 (𝜃−1𝑦). It is the product of a sufficiently smooth
cut-off function and the Dirichlet kernel (called regularization kernel). They have proved that convolving the Fourier spectral
approximation of a discontinuous function with this regularization kernel recovers the pointwise spectral accuracy depending on
the local smoothness of the function. Abarbanel et al.2 observed that enough information is hidden in the spectral approximation
of the discontinuous solution itself. i.e., For any infinitely differentiable function 𝑣, ( 𝑢(𝑥, 𝑡), 𝑣(𝑥)) = (𝑢(𝑥, 𝑡), 𝑣(𝑥)) + 𝜖1,
where  𝑢(𝑥, 𝑡) is the Fourier Galerkin approximation of the solution 𝑢(𝑥, 𝑡) of a linear hyperbolic equation and 𝜖1 is spectrally
small. Hence to retrieve spectral accuracy at the points where 𝑢 is smooth, it is sufficient to find an appropriate function 𝑣 such
that (𝑢(𝑥, 𝑡), 𝑣(𝑥)) = 𝑢(𝑥, 𝑡)+𝜖2, where 𝜖2 is spectrally small. They showed that it is possible to extract accurate pointwise values
from  𝑢(𝑥, 𝑡) using 𝑣 ≡ 𝜓𝜃,𝑃 and the improvements in the accuracy approve their claim.

Close to two decades later, Tadmor and Tanner3 have modified the above regularization kernel 𝜓𝜃,𝑃 as adaptive mollifiers in
which the parameters 𝑃 and 𝜃 are optimized according to the number of vanishing moments of the mollifier and discontinuity
position, respectively. Convolution with their adaptive mollifier has further improved the accuracy of the Fourier approximation
of a piecewise function up to the immediate vicinity of the discontinuous points.The mollifiers discussed thus far are compactly
supported. However, Tanner4 developed a noncompactly supported optimal filter and mollifier for which parameters are chosen
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simultaneously for both time and frequency space, thus leading to a more balanced error decomposition. Piotrowska et al.5, in
their recent work, modified the above mollifier to a one-sided, normalized mollifier for each point as given by,

Ψ̃𝑑
𝑝,𝑁 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

Ψ𝑑
𝑝,𝑁 (𝑥, 𝑦)

∫ 𝑐𝑗+1
𝑐𝑗

Ψ𝑑
𝑝,𝑁 (𝑥, 𝑦)𝑑𝑦

𝑐𝑗 ≤ 𝑦 ≤ 𝑐𝑗 + 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝑐𝑗 are jump points, Ψ𝑑
𝑝,𝑁 is the mollifier defined in4. It is shown through examples that they preserve most of the properties

of the original discontinuous function considered.
Apart from mollifiers, there are other methods in the literature to mitigate the effects of Gibbs phenomenon and improve the

accuracy of the spectral methods. Nira Gruberger6 introduced new post-processing filters for Fourier and Chebyshev spectral
methods by considering corresponding approximations of the Dirac delta function. With a marginal modification of the filter at
the point of discontinuity, the results have improved significantly for Burgers’ equation but disappointing in the case of astro-
physical problem. In 1991, Vandevan7 has introduced a class of filters that does not require the prior knowledge of the position
of the discontinuity and produces exponential accuracy for the filtered solution 𝜎𝑢𝑁 (𝑥) =

∑𝑁
𝑘=0 𝜎(𝑘∕𝑁)𝑢̂𝑘𝜙𝑘(𝑥), nevertheless

only for points away from the discontinuity. Analogous to the adaptive mollifier, Tadmor constructed an exponential adaptive
filter8, where the parameter 𝑝 (represents the order of the projection) involved is optimized according to the distance from the
discontinuity. The adaptive choice allows the use of lower ordered filter in the close vicinity of the discontinuity and higher
order filters for points away from the discontinuity. For Fourier approximation, a Lanczos type filter using sigmoidal function
was proposed by Yun and Rim9, which again provide exponential accuracy for points away from the discontinuity. Kanevsky10,
in their work observed that while solving time-dependent problems, filtering-in-time error become additive for certain numeri-
cal methods. To address this, they introduced an idempotent filter, which is also a function of time. Post-processing on spectral
method solutions of the nozzle flow problem using these idempotent filters supported their observations.

Another frequently used and well discussed post processing technique is Gegenbauer reconstruction method. In 1992, Got-
tlieb et al.11 laid foundation for this idea. Gegenbauer reconstruction method involves projecting the spectral method in a new
space of Gegenbauer polynomials. Though the reprojection helped in overcoming Gibbs phenomenon, the method suffers from
round-off errors and Runge phenomenon. By incorporating the properties lacked by Gegenbaur polynomials, a robust Gibbs
complementary basis was introduced12. In this work, they proposed to use Freud polynomials over the Gegenbauer polynomi-
als for the reprojection space, despite not having concrete theory on the optimum Gibbs complementary basis. Recently, Chen
and Shu13 have analysed linear transport problems having initial conditions with singular derivatives using Gegenbaur recon-
struction and Faghihifar and Akbari14 proved the robustness of Gegenbaur reconstruction method against truncated convolution
error. An inverse polynomial reconstruction method, inspired from Gegenbauer reconstruction method, was proposed by Shizgal
and Jung15 and the betterment happend over the years16.

Eckhoff17 developed a reconstruction method in which a discontinuous function with𝑀 number of jumps is reconstructed as
a linear combination of step function and a continuous function. Eckhoff’s algorithm also determines the jumps and the location
of discontinuity. Some modifications on this algorithm in terms of identifying the jump positions and improving the accuracy
can be found in the literature18,19. Driscoll and Fornberg20 introduced a singular Fourier–Padé approximation method and a su-
perior accuracy even at the point of discontinuity was obtained. An extension of Fourier Padé approximation using both Galerkin
and collocation approaches21 for Boussinesq convection flow was also studied. In a later work22 and the references therein, Padé
approximation in terms of orthogonal polynomials can be found. Spectral viscosity and essentialy non-oscillatory techniques
are the other approaches commonly considered to handle shock/discontinuity while solving nonlinear conservation law model
problems. Based on Fourier basis, Tadmor23 introduced a spectral vanishing viscosity method, which recovers spectral conver-
gence properties by adding a convolution kernel to the artifical viscosity term to control the dissipation. This also helped the
scheme to be stable especially for nonlinear problems. Some of the later works discuss further improvements on spectral vis-
cocity approach in the context of spectral methods and their extension to nonlinear problems24,25,26,27. In 2021, a feedforward
multiperceptron artificial neural network has been used to predict the regularity of the solution that helps in tuning many parame-
ters in artificial viscocity term added to suppress oscillations28. An essentially non-oscillatory spectral method was proposed by
Wei Cai et al.29 in which a saw-tooth function is added to the Fourier basis functions. Similarly, in a more recent work30, Gibbs
oscillation was suppressed by adding Fourier coefficient of suitable Heaviside functions to that of the discontinuous function
and uniform convergence was proved.

From the literature on spectral mollifiers1,3, it is clear that we need a kernel function 𝑣 such that the regularization error should
be spectrally small. i.e., The difference between (𝑢(𝑥), 𝑣(𝑥)) and 𝑢(𝑥) is spectrally small. The Dirichlet kernel is one kernel
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among them, which is also a spectral approximation of the delta function. Gottlieb et al.1 used this idea to recover the accuracy
of the Fourier spectral method when applied to problems having discontinuous solutions. In an earlier report in 198431 and
above article1, they have proposed mollifiers based on Legendre and Chebyshev kernels for Legendre and Chebyshev spectral
methods, respectively. Later in 1994, Kaber32 gave a detailed convergence analysis of mollification by Legendre polynomial
kernels on Legendre spectral methods.

The results given in the present article have been motivated by the ideas discussed by Gottlieb and Tadmor1 and Kaber32.
In their work, Legendre and Chebyshev spectral approximations were mollified by Legendre and Chebyshev polynomial based
kernels, respectively. In our work, we have proposed Legendre and Chebyshev polynomial mollifiers to Fourier spectral method.
These mollifiers are an alternative approach to the Dirichlet mollifier proposed by Gottlieb and Tadmor1. Convergence analysis
shows that the spectral accuracy of the Fourier approximation has been regained with these Legendre and Chebyshev polynomial
mollifiers, nevertheless at the points away from the discontinuity. Convergence results have been extensively verified by applying
it to Fourier approximation of the one and two-dimensional functions having discontinuities and to the Fourier-Galerkin solution
of linear PDEs with discontinuous initial data. Further, polynomial mollified Fourier approximate solutions are compared with
the corresponding Dirichlet mollified Fourier approximations1,3. It is observed that different choices of the parameter 𝑃 in each
sub-interval have continuously improved the accuracy and considerably reduced the length of the "low accurate" region in the
vicinity of the discontinuity. This shows that there is scope for improving the present work by optimizing the parameter 𝑃 .

In Section 2, some of the preliminary definitions and results have been provided. Recovery of the spectral accuracy of the
Fourier approximation using polynomial mollifiers has been detailed in section 3. Section 4 provides various examples to show
the efficacy and possible limitations.

2 PRELIMINARIES

The truncated Fourier series of a 2𝜋 periodic function 𝑢 is,

 𝑢(𝑥) =
∑

|𝑘|≤𝑁
𝑢̂𝑘𝑒

𝑖𝑘𝑥 = 𝐷𝑁 ∗ 𝑢(𝑥), (2)

where, 𝐷𝑁 is the Dirichlet kernel, 𝐷𝑁 = 1
2𝜋

∑

|𝑘|≤𝑁
𝑒𝑖𝑘𝑥.

The convergence rate of spectral methods depends upon the differentiability of the function 𝑢. The following theorem discuss
about the spectral convergence of the Fourier spectral method33.

Theorem 1. If a function 𝑢(𝑥), its first (𝑠−1) derivatives and their periodic extensions are all continuous and if the 𝑠𝑡ℎ derivative
𝑢(𝑠)(𝑥) ∈ 𝐿2([−𝜋, 𝜋]), then ∀ 𝑘 ≠ 0 the Fourier coefficients, 𝑢̂𝑘, of 𝑢(𝑥) decay as |𝑢̂𝑘| ∝ ( 1

𝑘
)𝑠.

Hence, an exponential convergence rate is obtained if the function is infinitely smooth. When discontinuity or non-smoothness
is present in the method, it drastically spoils spectral convergence all over the domain.
Define the weighted Sobolev space,

𝐻𝑠
𝜔([−𝜋, 𝜋]) = {𝑢 ∈ 𝐿2

𝜔([−𝜋, 𝜋]) ∶
𝑑𝑖

𝑑𝑥𝑖
𝑢 ∈ 𝐿2

𝜔([−𝜋, 𝜋]), ∀𝑖 0 ≤ 𝑖 ≤ 𝑠}

The convergence results of Fourier spectral method is discussed in detail in terms of Sobolev norm by Canuto et al.34. i.e.,
for 𝑢 ∈ 𝐻𝑠

𝑝 ([−𝜋, 𝜋]),

‖𝑢 − 𝑁𝑢‖𝐿2([−𝜋,𝜋]) ≤ 𝑐𝑠𝑁
−𝑠
‖𝑢(𝑠)‖𝐿2([−𝜋,𝜋]) ≤ 𝑐𝑠𝑁

−𝑠
‖𝑢‖𝐻𝑠([−𝜋,𝜋]) 𝑠 ≥ 1, (3)

where 𝑝 denotes the periodicity and 𝑐𝑠 is a generic constant.
Polynomial spectral methods include representing a function as truncated series with orthogonal polynomials. Legendre,

Chebyshev, Hermite, Laguerre spectral methods are some of the well-known polynomial spectral methods. They also give spec-
tral accuracy when the approximating function is infinitely smooth. To overcome the Gibbs phenomenon due to discontinuties,
one choice is to construct a mollifier that could approximate Dirac delta function spectrally. Hence we consider suitable mollifiers
based on Legendre and Chebyshev polynomials1.
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The Legendre spectral method is defined as,

Π𝑁𝑢(𝑥) =
𝑁
∑

𝑘=0
𝑢∗𝑘𝐿𝑘(𝑥),

where, 𝑢∗𝑘 =
1

∫
−1

𝑢(𝑦)𝐿𝑘(𝑦)𝑑𝑦
‖𝐿𝑘‖2

and𝐿𝑘 is the Legendre polynomial of degree 𝑘. The following equation shows the relation between

the spectral accuracy of the Legendre spectral method and the smoothness of a function34. If 𝑢 ∈ 𝐻𝑠([−1, 1]),

|Π𝑁𝑢(𝑥) − 𝑢(𝑥)| ≤ 𝑐𝑠𝑁
3
4
−𝑠
‖𝑢‖𝐻𝑠([−1,1]) (4)

Similarly, the Chebyshev spectral method is defined as,

Π1
𝑁𝑢(𝑥) =

𝑁
∑

𝑘=0
𝑢∗𝑘𝑇𝑘(𝑥),

where, 𝑢∗𝑘 =
1

∫
−1

𝑢(𝑦)𝑇𝑘(𝑦)
‖𝑇𝑘‖2

1
√

1 − 𝑦2
𝑑𝑦 and 𝑇𝑘 is the Chebyshev polynomial of degree 𝑘.

The spectral convergence of the Chebyshev spectral method is given by the following result34. If 𝑢 ∈ 𝐻𝑠
𝜔([−1, 1],

|Π1
𝑁𝑢(𝑥) − 𝑢(𝑥)| ≤ 𝑐𝑠 log𝑁𝑁−𝑠

‖𝑢‖𝑠,∞, (5)

where ‖𝑢‖𝑠,∞ = max
0≤𝑘≤𝑠

‖𝑢(𝑘)‖∞ and 𝜔(𝑦) = 1
√

1 − 𝑦2
.

Inverse inequality of algebraic polynomial34 is used in the next section. For an algebraic polynomial 𝑞(𝑥) with degree 𝑛,

‖𝑞(𝑚)‖𝐿𝑝𝜔([−1,1]) ≤ 𝐶𝑛2𝑚‖𝑞‖𝐿𝑝𝜔([−1,1]), 2 ≤ 𝑝 ≤ ∞. (6)

The following section describes how polynomial based kernels can be used in Fourier spectral method as a mollifier to improve
accuracy.

3 MOLLIFICATION IN FOURIER SPECTRAL METHODS USING POLYNOMIAL
KERNELS

Mollification is one among many methods used to regain the accuracy of the spectral methods which is lost due to the presence
of the discontinuities.

Definition 1. The process, mollification, is convolving the approximation with a unit mass, which is compactly supported
non-negative kernel Ψ. i.e.,

 𝑢 ∗ Ψ(𝑥) =

𝜋

∫
−𝜋

 𝑢(𝑥)Ψ(𝑥 − 𝑦)𝑑𝑦.

The function Ψ is called mollifier. The corresponding action in Fourier space is called filtering, which is defined by


𝜎𝑢(𝑥) =

𝑁
∑

𝑘=0
𝜎(𝑘∕𝑁)𝑢̂𝑘𝑒𝑖𝑘𝑥

where 𝜎 is called filter. It is a 𝐶∞([−𝜋, 𝜋]) even function, whose support is [−𝜋, 𝜋] and 𝜎(0) = 1.

To obtain the mollifier, we consider the function 𝜌, a 𝐶∞ function that vanishes outside the given interval. In the present work
we consider, 𝜌 ∶ ℝ → ℝ, as,

𝜌(𝜁 ) =

{

𝑒
𝛼𝜁2

𝜁2−1 , 𝜁 ∈ (−1, 1)
0, 𝜁 ∉ (−1, 1), 𝛼 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

(7)
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3.1 Legendre polynomial based mollifier
Define the kernel, 𝐾𝑃 ∶ [−1, 1] → ℝ,

𝐾𝑝(𝜁 ) =
𝑃
∑

𝑘=0

𝐿𝑘(𝜁 )𝐿𝑘(0)
‖𝐿𝑘‖2,

(8)

= 𝑃 + 1
2

𝐿𝑃+1(𝜁 )𝐿𝑃 (0) − 𝐿𝑃+1(0)𝐿𝑃 (𝜁 )
𝜁

Also define the mollifier,

𝜓𝜃,𝑃 (𝑥) = 1
𝜋𝜃
𝜌
( 𝑥
𝜋𝜃

)

𝐾𝑃

( 𝑥
𝜋𝜃

)

, 𝑥 ∈ [−𝜋, 𝜋]. (9)

The parameter 𝜃 is defined in such a way that, it is the distance between the point 𝑥 and the nearest discontinuity point of the
function given 𝑢.

𝜃 = 1
𝜋
𝑑𝑖𝑠𝑡(𝑥, discontinuity point of 𝑢). (10)

Applying the mollification on the truncated Fourier series 𝑁𝑢 by defining, 1

(𝑁𝑢 ∗ 𝜓𝜃,𝑃 )(𝑥) =

𝜋

∫
−𝜋

(𝑁𝑢)(𝑦)𝜓𝜃,𝑃 (𝑦 − 𝑥)𝑑𝑦. (11)

Then the total error is decomposed as,

(𝑁𝑢 ∗ 𝜓𝜃,𝑃 )(𝑥) − 𝑢(𝑥) = (𝑁𝑢 − 𝑢) ∗ 𝑁𝜓𝜃,𝑃 (𝑥) + (𝑁𝑢 − 𝑢) ∗ (𝜓𝜃,𝑃 − 𝑆𝑁𝜓𝜃,𝑃 )(𝑥) + (𝑢 ∗ 𝜓𝜃,𝑃 − 𝑢)(𝑥). (12)

Considering the first term,

(𝑁𝑢 − 𝑢) ∗ 𝑁𝜓𝜃,𝑃 (𝑥) =

(

∑

|𝑘|≤𝑁
𝑢̂𝑘𝑒

𝑖𝑘𝑥 − 𝑢(𝑦),
∑

|𝑗|≤𝑁
𝜓̂𝑗𝑒

𝑖𝑗(𝑦−𝑥)

)

. (13)

For a particular ‘𝑗,’

(

∑

|𝑘|≤𝑁
𝑢̂𝑘𝑒

𝑖𝑘𝑥 − 𝑢(𝑦), 𝜓̂𝑗𝑒𝑖𝑗(𝑦−𝑥)
)

=

(

∑

|𝑘|≤𝑁
𝑢̂𝑘𝑒

𝑖𝑘𝑥, 𝜓̂𝑗𝑒
𝑖𝑗(𝑦−𝑥)

)

−

(

𝑢(𝑦), 𝜓̂𝑗𝑒𝑖𝑗(𝑦−𝑥)
)

= 𝜓̂ 𝑗𝑒
𝑖𝑗𝑥𝑢̂𝑗

(

𝑒𝑖𝑗𝑦, 𝑒𝑖𝑗𝑦
)

− 𝜓̂ 𝑗𝑒
𝑖𝑗𝑥𝑢̂𝑗

(

𝑒𝑖𝑗𝑦, 𝑒𝑖𝑗𝑦
)

= 0.

Thus (13) becomes,
(𝑁𝑢 − 𝑢) ∗ 𝑁𝜓𝜃,𝑃 (𝑥) = 0. (14)

Now the two terms remaining in the total error (12) is referred as truncation error and regularization error respectively.

(𝑁𝑢 ∗ 𝜓𝜃,𝑃 )(𝑥) − 𝑢(𝑥) = (𝑁𝑢 − 𝑢) ∗ (𝜓𝜃,𝑃 − 𝑆𝑁𝜓𝜃,𝑃 ) + (𝑢 ∗ 𝜓𝜃,𝑃 − 𝑢) (15)
= 𝑇 𝜃,𝑃𝑁 𝑢(𝑥) + 𝑅𝜃,𝑃𝑁 𝑢(𝑥).

In the following, we prove the spectral accuracy of the truncation and regularization error in (15).

Lemma 1. If 𝑢 ∈ 𝐻𝑠
𝑝 ([−𝜋, 𝜋]), then the truncation error satisfies,

|𝑇 𝜃,𝑃𝑁 𝑢(𝑥)| ≤ 𝑐𝑠𝑁
−(𝑠+𝑚)

‖𝜓𝜃,𝑃
‖𝐻𝑚([−𝜋,𝜋])‖𝑢‖𝐻𝑠([−𝜋,𝜋]), 𝑚, 𝑠 ≥ 1. (16)

Where 𝑐𝑠 is a constant.

1In equation 11 we are not using the usual definition of convolution, instead we define it as, (𝑓 ∗ 𝑔)(𝑥) = ∫Ω 𝑓 (𝑦)𝑔(𝑦 − 𝑥)𝑑𝑦
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Proof.

|𝑇 𝜃,𝑃𝑁 𝑢(𝑥)| = |(𝑁𝑢 − 𝑢) ∗ (𝜓𝜃,𝑃 − 𝑆𝑁𝜓𝜃,𝑃 )(𝑥)|

≤

𝜋

∫
−𝜋

|(𝑁𝑢 − 𝑢)(𝑦)(𝜓𝜃,𝑃 − 𝑆𝑁𝜓𝜃,𝑃 )(𝑦 − 𝑥)𝑑𝑦|

≤ ‖𝜓𝜃,𝑃 − 𝑆𝑁𝜓𝜃,𝑃
‖𝐿2([−𝜋,𝜋])‖(𝑁𝑢 − 𝑢)‖𝐿2([−𝜋,𝜋]),

≤ 𝑐𝑠𝑁
−(𝑠+𝑚)

‖𝜓𝜃,𝑃
‖𝐻𝑚([−𝜋,𝜋])‖𝑢‖𝐻𝑠([−𝜋,𝜋]), ∵ 𝑏𝑦 (3).

Lemma 2. If 𝑢 ∈ 𝐻𝑠([−𝜋, 𝜋]), then the regularization error satisfies,

|𝑅𝜃,𝑃𝑁 𝑢(𝑥)| ≤ 𝑐𝑠𝑃
3
4
−𝑠
‖𝜙𝜃,𝑥‖𝐻𝑠([−1,1]), 𝑠 ≥ 1. (17)

Where 𝑐𝑠 is a constant and 𝜙𝜃,𝑥(𝜁 ) = 𝑢(𝑥 + 𝜃𝜋𝜁 )𝜌(𝜁 ) − 𝑢(𝑥).

Proof.

|𝑅𝜃,𝑃𝑁 𝑢(𝑥)| =
|

|

|

|

|

|

|

𝜋

∫
−𝜋

𝑢(𝑦)𝜓𝜃,𝑃 (𝑦 − 𝑥)𝑑𝑦 − 𝑢(𝑥)
|

|

|

|

|

|

|

=
|

|

|

|

|

|

|

𝜋

∫
−𝜋

𝑢(𝑦) 1
𝜋𝜃
𝜌
(𝑦 − 𝑥
𝜋𝜃

)

𝐾𝑝

(𝑦 − 𝑥
𝜋𝜃

)

𝑑𝑦 − 𝑢(𝑥)
|

|

|

|

|

|

|

=
|

|

|

|

|

|

|

𝑥+𝜋𝜃

∫
𝑥−𝜋𝜃

𝑢(𝑦) 1
𝜋𝜃
𝜌
(𝑦 − 𝑥
𝜋𝜃

)

𝐾𝑝

(𝑦 − 𝑥
𝜋𝜃

)

𝑑𝑦 − 𝑢(𝑥)
|

|

|

|

|

|

|

.

Let, 𝑦 − 𝑥
𝜋𝜃

= 𝜁 ⇒ 𝑦 = 𝑥 + 𝜃𝜋𝜁.

|𝑅𝜃,𝑃𝑁 𝑢(𝑥)| =
|

|

|

|

|

|

|

1

∫
−1

(𝑢(𝑥 + 𝜃𝜋𝜁 )𝜌(𝜁 ) − 𝑢(𝑥))𝐾𝑃 (𝜁 )𝑑𝜁
|

|

|

|

|

|

|

(18)

=
|

|

|

|

|

|

|

1

∫
−1

𝜙𝜃,𝑥(𝜁 )𝐾𝑃 (𝜁 )𝑑𝜁
|

|

|

|

|

|

|

(19)

For any function 𝑓 ∈ 𝐻𝑠([−1, 1]),
1

∫
−1

𝑓 (𝑦)𝐾𝑃 (𝑦)𝑑𝑦 =

1

∫
1

𝑓 (𝑦)
𝑃
∑

𝑘=0

𝐿𝑘(𝑦)𝐿𝑘(0)𝑑𝑦
‖𝐿𝑘‖2

=
𝑃
∑

𝑘=0
𝐿𝑘(0)

1

∫
−1

𝑓 (𝑦)
𝐿𝑘(𝑦)𝑑𝑦
‖𝐿𝑘‖2

=
𝑃
∑

𝑘=0
𝑓 ∗
𝑘𝐿𝑘(0) = Π𝑃𝑓 (0).

Hence,
|𝑅𝜃,𝑃𝑁 𝑢(𝑥)| = |

|

|

Π𝑃𝜙
𝜃,𝑥(0)||

|

(20)
Using the spectral accuracy of the Legendre spectral method as given in Equation (4), Equation (20) becomes,

|𝑅𝜃,𝑃𝑁 𝑢(𝑥)| = |Π𝑃𝜙
𝜃,𝑥(0) − 𝜙𝜃,𝑥(0)| ≤ 𝑐𝑠𝑃

3
4
−𝑠
‖𝜙𝜃,𝑥‖𝐻𝑠([−1,1]), ∵ 𝜙𝜃,𝑥(0) = 0.

To further simplify truncation and regularization errors, consider the following lemma.
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Lemma 3. Following estimate holds for the regularization kernel 𝜓𝜃,𝑃 .

‖

‖

‖

𝜓𝜃,𝑃 (𝑥)‖‖
‖𝐻𝑚([−𝜋,𝜋])

≤ 𝑐𝑚
1
𝜃
𝑃 2

(

𝑃 2

𝜃2
+ 1
𝜃

)𝑚

‖𝜌‖𝑚 (21)

𝑤ℎ𝑒𝑟𝑒, ‖𝜌‖2𝑚 =
𝑚
∑

𝑙=0

𝑙
∑

𝑗=0

𝜋

∫
−𝜋

(

𝑙
𝑗

)

|

|

|

|

𝜌(𝑗)
( 𝑥
𝜃𝜋

)

|

|

|

|

2
𝑑𝑥, 𝑚 ≥ 1.

Proof.

𝐹𝑜𝑟 𝑙 ≤ 𝑚,
|

|

|

|

𝑑𝑙

𝑑𝑥𝑙
𝜓𝜃,𝑃 (𝑥)

|

|

|

|

=
|

|

|

|

|

|

𝑙
∑

𝑗=0

(

𝑙
𝑗

)

1
𝜃𝜋
𝜌(𝑗)

( 𝑥
𝜃𝜋

) 1
(𝜃𝜋)𝑙

𝐾 (𝑙−𝑗)
𝑃

( 𝑥
𝜃𝜋

)

|

|

|

|

|

|

(22)

Using, (6) and the fact that ‖𝐿𝑘‖2 =
2

2𝑘 + 1
, we can show that,

|

|

|

|

𝐾 (𝑙−𝑗)
𝑃

( 𝑥
𝜃𝜋

)

|

|

|

|

≤ 1
(𝜃𝜋)𝑙−𝑗

𝑃
∑

𝑘=0

|

|

|

|

𝐿(𝑙−𝑗)
𝑘

( 𝑥
𝜃𝜋

)

𝐿𝑘(0)
|

|

|

|

‖𝐿𝑘‖2

≤ 𝑐
𝜃𝑙−𝑗

𝑃 2𝑃 2(𝑙−𝑗), 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Substituting (23) in (22)

|

|

|

|

𝑑𝑙

𝑑𝑥𝑙
𝜓𝜃,𝑃 (𝑥)

|

|

|

|

≤ 𝑐
𝑙

∑

𝑗=0

(

𝑙
𝑗

)

𝜃𝑗

𝜃2𝑙+1
|

|

|

|

𝜌(𝑗)
( 𝑥
𝜃𝜋

)

|

|

|

|

𝑃 2𝑃 2(𝑙−𝑗) (23)

Applying the Cauchy-Schwarz inequality,

|

|

|

|

𝑑𝑙

𝑑𝑥𝑙
𝜓𝜃,𝑃 (𝑥)

|

|

|

|

2
≤ 𝑐 1

𝜃4𝑙+2

𝑙
∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

|

𝜌(𝑗)
( 𝑥
𝜃𝜋

)

|

|

|

|

2 𝑙
∑

𝑗=0

(

𝑙
𝑗

)

𝜃2𝑗
(

𝑃 2𝑃 2(𝑙−𝑗))2 (24)

≤ 𝑐 𝑃
4

𝜃2

(

𝑃 4

𝜃4
+ 1
𝜃2

)𝑙 𝑙
∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

|

𝜌(𝑗)
( 𝑥
𝜃𝜋

)

|

|

|

|

2

𝑚
∑

𝑙=0

𝜋

∫
−𝜋

|

|

|

|

𝑑𝑠

𝑑𝑥𝑠
𝜓𝜃,𝑃 (𝑥)

|

|

|

|

2
𝑑𝑥 ≤ 𝑐𝑚

𝑃 4

𝜃2

(

𝑃 4

𝜃4
+ 1
𝜃2

)𝑚 𝑚
∑

𝑙=0

𝑙
∑

𝑗=0

𝜋

∫
−𝜋

(

𝑙
𝑗

)

|

|

|

|

𝜌(𝑗)
( 𝑥
𝜃𝜋

)

|

|

|

|

2
𝑑𝑥

𝐻𝑒𝑛𝑐𝑒,
‖

‖

‖

‖

𝑑𝑚

𝑑𝑥𝑚
𝜓𝜃,𝑃 (𝑥)

‖

‖

‖

‖𝐻𝑚([−𝜋,𝜋])
≤ 𝑐𝑚

1
𝜃
𝑃 2

(

𝑃 2

𝜃2
+ 1
𝜃

)𝑚

‖𝜌‖𝑚.

Lemma 4.

‖𝜙𝜃,𝑥‖𝐻𝑠([−1 1]) ≤ 𝑐𝑠
(

1 + 𝜃2
)𝑠∕2max

0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)‖𝜌‖𝑠, 𝑠 ≥ 1. (25)
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Proof.

𝐹𝑜𝑟 𝑙 ≤ 𝑠,
|

|

|

|

𝑑𝑙

𝑑𝜁 𝑙
𝜙𝜃,𝑥(𝜁 )

|

|

|

|

≤
𝑙

∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

(𝐷(𝑙−𝑗)𝑢)(𝑥 + 𝜃𝜋𝜁 )(𝜃𝜋)𝑙−𝑗𝜌(𝑗)(𝜁 )||
|

≤ (𝜃𝜋)𝑙max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|
𝑙

∑

𝑗=0

(

𝑙
𝑗

)

1
(𝜃𝜋)𝑗

|

|

|

𝜌(𝑗)(𝜁 )||
|

|

|

|

|

𝑑𝑙

𝑑𝜁 𝑙
𝜙𝜃,𝑥(𝜁 )

|

|

|

|

2
≤ (𝜃𝜋)2𝑙

(

max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|

)2 𝑙
∑

𝑗=0

(

𝑙
𝑗

)

1
(𝜃𝜋)2𝑗

𝑙
∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

𝜌(𝑗)(𝜁 )||
|

2

≤ (𝜃𝜋)2𝑙
(

1 + 1
(𝜃𝜋)2

)𝑙
(

max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|

)2 𝑙
∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

𝜌(𝑗)(𝜁 )||
|

2

𝑠
∑

𝑙=0

𝜋

∫
−𝜋

|

|

|

|

𝑑𝑙

𝑑𝜁 𝑙
𝜙𝜃,𝑥(𝑦)

|

|

|

|

2
𝑑𝜁 ≤ (𝜃𝜋)2𝑠

(

1 + 1
(𝜃𝜋)2

)𝑠
(

max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|

)2 𝑠
∑

𝑙=0

𝜋

∫
−𝜋

𝑙
∑

𝑗=0

(

𝑙
𝑗

)

|

|

|

𝜌(𝑗)(𝜁 )||
|

2
𝑑𝜁.

Thus,

‖𝜙𝜃,𝑥‖𝐻𝑠([−1 1]) ≤ 𝑐𝑠
(

1 + 𝜃2
)𝑠∕2 max

0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|‖𝜌‖𝑠.

Now, we state the main theorem of our approach, which is a combined result of Lemma 1 to Lemma 4.

Theorem 2. Let 𝑢 ∈ 𝐻𝑠
𝑝 ([−𝜋, 𝜋]). The Fourier spectral approximation of 𝑢 is 𝑁𝑢, and 𝜓𝜃,𝑃 is defined as in the equation (9).

Then,

|

|

|

𝑁𝑢 ∗ 𝜓𝜃,𝑃 (𝑥) − 𝑢(𝑥)||
|

≤ 𝑐𝑠

(

‖𝜌‖𝑚𝑁
−(𝑠+𝑚)𝑃 2

𝜃

(

𝑃 2

𝜃2
+ 1
𝜃

)𝑚

‖𝑢‖𝐻𝑠([−𝜋,𝜋])

+ ‖𝜌‖𝑠𝑃
3
4
−𝑠 (1 + 𝜃2

)𝑠∕2max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|

)

(26)

Remark 1. The equation (26) shows the spectral accuracy of the method. The accuracy of the method increases when the
smoothness of the function increases. If 𝑠 = 𝑚 and 𝑃 = 𝑁1∕2, then truncation error is of order 𝑂(𝑁−𝑠+1) and regularization
error is of order 𝑂(𝑁3∕8−𝑠∕2).

3.2 Chebyshev polynomial based mollifier
Define, 𝐾𝑝 ∶ [−1 1] → ℝ,

𝐾𝑝(𝜁 ) =
𝑃
∑

𝑘=0

𝑇𝑘(𝜁 )𝑇𝑘(0)
‖𝑇𝑘‖2

. (27)

where 𝑇𝑘 is the Chebyshev polynomial of degree 𝑘. Then, the kernel 𝜓𝜃,𝑃 can be defined as given in the equation (9). All the
results obtained for Legendre polynomial based mollifier could be proved also for Chebyshev polynomial based kernel. The
main theorem can be stated as follows.
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Theorem 3. Let 𝑢 ∈ 𝐻𝑠
𝑝 ([−𝜋, 𝜋]). The Fourier spectral approximation of 𝑢 is 𝑁𝑢, and 𝜓𝜃,𝑃 is defined as in the equation (9).

Then,

|

|

|

𝑁𝑢 ∗ 𝜓𝜃,𝑃 (𝑥) − 𝑢(𝑥)||
|

≤ 𝑐𝑠

(

‖𝜌‖𝑚𝑁
−(𝑠+𝑚)𝑃

𝜃

(

𝑃 2

𝜃2
+ 1
𝜃

)𝑚

‖𝑢‖𝐻𝑠([−𝜋,𝜋])

+ ‖𝜌1‖𝑠,∞ log𝑃𝑃 −𝑠 (1 + 𝜃)𝑠max
0≤𝑘≤𝑠
|𝑥−𝑦|≤𝜋𝜃

|𝐷(𝑘)𝑢(𝑦)|

)

, (28)

where 𝜌1(𝜁 ) = 𝜌(𝜁 )
√

1 − 𝜁2.

In the next section, recovery of the spectral accuracy of Fourier approximation proved in the Theorem 2 and Theorem 3 is
illustrated through various examples having discontinuities.

4 NUMERICAL EXAMPLES

In this section, mollified solutions have been compared in detail for examples involving discontinuities. Further, mollification is
applied to the Fourier-Galerkin solution of the linear scalar conservation law equation with discontinuous initial conditions.

For Legendre and Chebyshev polynomial mollifiers, we have mollified the solutions using constant 𝑃 and varying 𝑃 in
different parts of the sub-domain. Values of 𝑃 are chosen by trial and error approach. In their numerical experiments using
Dirichlet kernel mollifier, Gottlieb et al.1 have also observed that better results are obtained when 𝑃 = 𝑁0.8. Hence we have
chosen the same parameters for the Dirichlet mollifier to compare our results in one dimension. However, for the given two-
dimensional example, 𝑁0.8 does not provide optimum accuracy.

4.1 Mollification on Fourier approximation of functions
Consider Example 1, where the function is discontinuous at a single point 𝑥 = 𝜋. The Fourier spectral approximation of this
function with the number of terms 𝑁 = 64 is mollified using Legendre and Chebyshev polynomial mollifiers and compared
with the Dirichlet mollifier.

Example 1.

𝑢(𝑥) =

{

𝑥, 0 ≤ 𝑥 ≤ 𝜋
𝑥 − 2𝜋, 𝜋 < 𝑥 ≤ 2𝜋.

Figure 1(a) is the graph of the exact function, Fourier approximation, and mollified Fourier approximations using Legendre,
Chebyshev, and Dirichlet mollifiers. Even after mollification, the Gibbs oscillation is not getting damped out at the close vicinity
of the discontinuity. Figure 1(b) shows that the mollified solutions at the boundaries using Legendre and Chebyshev kernels
are marginally better when compared with the Dirichlet mollified solution. The neighbourhood region, where the accuracy is
lost due to discontinuity is marginally smaller for polynomial kernels compared to Dirichlet one. Table 1 shows the error of the
solution at some points in the domain. It is clear that the error has reduced significantly for all the kernels for the points away
from the discontinuity.

The Dirichlet mollifier introduced by Gottlieb and Tadmor1 was modified by Tadmor and Tanner3 in 2002. They optimized
the parameter 𝑃 involved in the mollifier so that it depends on the distance between the discontinuous and the evaluation points.
By choosing 𝑃 adaptively, they could improve the results in1 and up to the close vicinity of the discontinuity.

From equation (26) and through our numerical experiments, we have observed that the error depends upon the parameter 𝑃
of the mollifier. For Example 1, we have also mollified the Fourier approximation by choosing different 𝑃 in two sub-intervals
in the case of polynomial mollifiers. At the points away from the discontinuity, we have chosen 𝑃 = 𝑁 , and near the discon-
tinuity, 𝑃 = 𝑁∕2. The Figures 1(c) and 1(d) give the error graphs where the results are compared with the Dirichlet mollifier
with 𝑃 = 𝑁0.8 and adaptive 𝑃 given in the literature1,3.
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Figure 1 Example 1:-Plots of, (a) solution graphs - exact, unmollified and mollified using Legendre, Chebyshev and Dirichlet
kernels. (b) Corresponding pointwise error graphs. (c) Legendre and Chebyshev mollification using different𝑃 values in different
parts of the domain, Dirichlet remain same as in (b), (d) Legendre and Chebyshev mollification is same as in (c), Adaptive
Dirichlet mollification by Tadmor and Tanner3.

The errors plotted in Figures 1(c) and 1(d) and given in Table 2 show that the interval where the accuracy is lost in the neigh-
borhood of the discontinuity has contracted significantly when different 𝑃 is used for polynomial mollifiers. This improvement
could also be observed through the errors at 𝑥 = 1.9059, 2.0944, 4.1888, 4.5029 in Tables 1 and 2.

In the next example, we consider a function having discontinuities at an interior point as well as at the boundaries.

Example 2.

𝑢(𝑥) =

{

(2𝑒2𝑥 − 1 − 𝑒𝜋)∕(𝑒𝜋 − 1), 0 ≤ 𝑥 < 𝜋∕2
− sin(2𝑥∕3 − 𝜋∕3), 𝜋∕2 ≤ 𝑥 < 2𝜋.

It is a function having discontinuous points 0, 𝜋∕2 and 2𝜋. Similar behavior as in Example 1 is observed in this example
too. Figures 2(a) and 2(b) give solution and error graphs of unmollified and mollified approximations. Results in Figure 2(b)
and Table 3 show that polynomial mollifiers have a slightly smaller window of high errors near the discontinuity 𝜋∕2, when



Megha P and Chandhini G 11

Table 1 Absolute error using Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 1. The discontinuity point
is 𝜋.

Points Unmollified Dirichlet1 Legendre Chebyshev
0.0419 0.0066 6.2×10−13 7.5×10−14 5.7×10−14

0.1047 0.0070 1.5×10−12 1.4×10−13 1.7×10−13

0.2094 0.0126 3.1×10−12 5.4×10−13 3.3×10−13

0.6283 0.0050 9.4×10−12 7.7×10−12 1.4×10−12

1.0472 0.0179 1.1×10−9 1.5×10−9 2.5×10−9

1.9059 0.0109 0.0110 0.0002 0.0002
2.0944 0.0004 0.0004 0.0026 0.0025
2.6180 0.0411 0.0411 0.0411 0.0411
3.1206 0.6992 0.6992 0.6992 0.6992
3.1625 0.6992 0.6992 0.6992 0.6992
4.1888 0.0004 0.0004 0.0026 0.0025
4.5029 0.0243 0.0145 1.8×10−5 2.7×10−5

5.2360 0.0179 1.1×10−9 1.5×10−9 2.5×10−9

5.6549 0.0050 9.4×10−12 7.7×10−12 1.4 ×10−13

6.2413 0.0066 6.1×10−13 7.2×10−14 5.4×10−14

Table 2 Absolute error using Dirichlet, adaptive Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 1. The
discontinuity point is 𝜋.

Points Unmollified Dirichlet1 Adaptive Dirichlet3 Legendre (different 𝑃 ) Chebyshev (different 𝑃 )
0.0419 0.0066 6.2×10−13 6.5×10−13 7.5×10−14 5.7×10−14

0.1047 0.0070 1.5×10−12 1.0×10−12 1.4×10−13 1.7×10−13

0.2094 0.0126 3.1×10−12 4.0×10−12 5.4×10−13 3.3×10−13

0.6283 0.0050 9.4×10−12 8.8×10−12 7.7×10−12 1.4×10−11

1.0472 0.0179 1.1×10−9 1.5×10−10 1.5×10−9 2.5×10−9

1.9059 0.0109 0.0110 1.8 ×10−7 9.8×10−8 1.7×10−7

2.0943 0.0004 0.0004 6.7×10−8 1.8×10−7 2.1×10−7

2.6180 0.0410 0.0411 0.0001 0.0166 0.0148
3.1206 0.6992 0.6992 2.1854 0.6992 0.6992
3.1625 0.6992 0.6992 2.1854 0.6992 0.6992
4.1888 0.0004 0.0004 6.7×10−8 1.8×10−7 2.1×10−7

4.5029 0.0243 0.0145 2.1×10−8 8.4×10−8 1.3×10−7

5.2360 0.0179 1.1×10−9 1.5×10−10 1.5×10−9 2.5×10−9

5.6549 0.0050 9.4×10−12 8.8×10−12 7.7×10−12 1.4×10−11

6.2413 0.0066 6.1×10−13 6.5×10−13 7.2×10−14 5.4×10−14

compared to Dirichlet mollified solutions. Away from discontinuity, all mollifiers provide similar accuracy. When different 𝑃
is chosen at different sub-intervals, the accuracy of the mollified solutions has improved significantly at more points near the
discontinuities for polynomial mollifiers, which are shown in Figures 2(c) and 2(d) and the Table 4. The following example is
an illustration of our mollifier approach on a two dimensional discontinuous function.

Example 3.

𝑢(𝑥, 𝑦) =

{

0.5, 𝜋∕2 ≤ 𝑥 ≤ 3𝜋∕2 & 𝜋∕2 ≤ 𝑦 ≤ 3𝜋∕2
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Table 3 Absolute error using Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 2. The discontinuity points
are 0, 𝜋∕2, 2𝜋.

Points Unmollified Dirichlet1 Legendre Chebyshev
0.0419 0.0773 0.0773 0.0773 0.0773
0.7959 0.0032 0.0032 0.0032 0.0032
1.0472 0.0070 0.0070 0.0070 0.0070
1.5080 0.0502 0.0502 0.0502 0.0502
2.6180 0.0014 0.0014 9.6×10−5 4.4×10−5

3.0997 0.0004 2.0×10−5 1.0×10−7 1.9×10−8

3.3510 0.0022 1.6×10−8 5.2×10−9 1.0×10−9

3.5814 0.0018 6.0×10−10 4.8×10−10 4.7×10−10

3.8746 0.0013 6.5×10−12 2.3×10−11 2.2×10−11

4.1888 0.0045 2.5×10−10 3.5×10−10 5.8×10−10

4.6077 0.0003 2.2×10−7 2.4×10−8 1.1×10−8

4.9218 0.0058 0.0034 3.2×10−6 5.4×10−6

5.4454 0.0052 0.0051 2.9×10−6 1.1 ×10−6

6.2413 0.0826 0.0826 0.0826 0.0826

Table 4 Absolute error using Dirichlet, adaptive Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 2. The
discontinuity points are 0, 𝜋∕2, 2𝜋.

Points Unmollified Dirichlet1 Adaptive Dirichlet3 Legendre (different 𝑃 ) Chebyshev (different 𝑃 )
0.0419 0.0773 0.0773 0.4563 0.0773 0.0773
0.7959 0.0032 0.0032 3.7×10−6 8.6×10−6 6.6 ×10−6

1.0472 0.0070 0.0070 9.5×10−7 0.0027 0.0024
1.5080 0.0502 0.0502 0.2636 0.0502 0.0502
2.6180 0.0014 0.0014 6.9×10−8 5.3×10−9 5.0×10−9

3.0997 0.0004 2.0×10−5 2.6×10−10 3.8×10−8 5.6×10−8

3.3510 0.0022 1.6×10−8 4.4×10−12 5.2×10−9 1.0×10−9

3.5814 0.0018 6.0×10−10 8.0×10−11 4.8×10−10 4.7×10−11

3.8746 0.0013 6.5×10−12 8.4×10−12 2.3×10−11 2.2×10−11

4.1888 0.0045 2.5×10−10 2.7×10−11 3.5×10−10 5.8×10−10

4.6077 0.0003 2.2 ×10−7 1.8×10−10 3.9×10−8 5.6×10−8

4.9218 0.0058 0.0034 1.7×10−8 3.6×10−8 5.5×10−8

5.4454 0.0052 0.0052 5.3 ×10−8 2.9×10−6 1.1×10−6

6.2413 0.0826 0.0826 0.0474 0.0826 0.0826

It is clear that 𝑢(𝑥, 𝑦) is discontinuous on the rectangle {(𝑥, 𝑦) ∶ 𝑥, 𝑦 = 𝜋∕2 𝑜𝑟 3𝜋∕2}. This could make mollification more
challenging.

Figures 3(a) and 3(b) represent unmollified, and Legendre polynomial mollified Fourier approximations. The unmollified
solution exhibits large oscillations, which are subsided in Legendre mollified solution except at the four corners of the rectangle.
Figures 4 and Figure 5 present the error plots of the unmollified and mollified (by Legendre, Chebyshev, Dirichlet kernels)
Fourier approximation with fixed and adaptive values of 𝑃 , respectively. While 𝑃 = 𝑁∕4 is chosen for polynomial mollifiers,
𝑃 = 𝑁0.5 is chosen for Dirichlet mollifier (choice different from suggested optimum by Gottlieb and Tadmor1 in their examples).
For Legendre and Chebyshev polynomial mollifiers, 𝑃 = 𝑁∕4 and 𝑃 = 𝑁 are chosen in different sub-domains.

It is visible from the Figures 4(a) - 4(d) that Legendre and Chebyshev mollified solutions are more accurate, except at some
𝑥− values along 𝑦 = 3.1416. Comparing Figures 4(b) and 5(b), adaptive 𝑃 improves the solution marginally. Unlike in earlier
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Figure 2 Example 2: Plots of, (a) solution graphs - exact, unmollified and mollified using Legendre, Chebyshev and Dirichlet
kernels. (b) Corresponding pointwise error graphs. (c) Legendre and Chebyshev mollification using different𝑃 values in different
parts of the domain, Dirichlet remain same as in (b), (d) Legendre and Chebyshev mollification is same as in (c), Adaptive
Dirichlet mollification by Tadmor and Tanner3.

examples, considerable improvements in accuracy are not observed with adaptive choice for 𝑃 over the fixed 𝑃 . However, along
𝑦 = 1.0853 and 𝑦 = 5.6549, adaptive Dirichlet has shown marginal improvements (see Figures 4(a),4(c) & 5(a), 5(c)).

4.2 Mollification on Fourier Galerkin approximation of scalar conservation law
In the following we consider one dimensional linear hyperbolic equations with discontinuous initial function.

Example 4.
𝑢𝑡 = −2𝜋𝑢𝑥, 0 ≤ 𝑥 ≤ 2𝜋, 𝑡 > 0, 𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡) (29)

𝑢(𝑥, 0) =

{

𝑥, 0 ≤ 𝑥 ≤ 𝜋
𝑥 − 2𝜋, 𝜋 < 𝑥 ≤ 2𝜋.
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(a) (b)

Figure 3 (a) Fourier approximation with 𝑁 = 32. (b) Legendre mollified approximation with 𝑃 = 𝑁∕4. Chebyshev mollified
approximation also shows similar graph.

Example 5.
𝑢𝑡 = −2𝜋𝑢𝑥, 0 ≤ 𝑥 ≤ 2𝜋, 𝑡 > 0, 𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡) (30)

𝑢(𝑥, 0) =

{

sin(𝑥∕2), 0 ≤ 𝑥 ≤ 𝜋,
− sin(𝑥∕2), 𝜋 < 𝑥 ≤ 2𝜋.

In the Fourier Galerkin method, one seeks a solution  𝑢(𝑥, 𝑡) of the form,  𝑢(𝑥, 𝑡) =
∑

|𝑘|≤𝑁
𝑢̂𝑘(𝑡)𝑒𝑖𝑘𝑥, such that the

coefficients 𝑢̂𝑘(𝑡) are determined by,

1
2𝜋

2𝜋

∫
0

𝑅𝑁 (𝑥, 𝑡)𝑒−𝑖𝑘𝑥𝑑𝑥 = 0, ∀ 𝑘 = −𝑁, ...,𝑁, (31)

where, 𝑅𝑁 (𝑥, 𝑡) =
𝜕  𝑢(𝑥, 𝑡)

𝜕𝑡
+ 2𝜋

𝜕  𝑢(𝑥, 𝑡)
𝜕𝑥

. Substitution of  𝑢(𝑥, 𝑡) leads to (2𝑁 + 1) ordinary differential equations
(ODEs) to calculate the (2𝑁 + 1) Fourier coefficients, 𝑢̂𝑘(𝑡) with initial conditions as given below.

𝑑𝑢̂𝑘(𝑡)
𝑑𝑡

= −2𝜋𝑘𝑢̂𝑘(𝑡), ∀ 𝑘 = −𝑁, ...,𝑁. (32)

and

𝑢̂𝑘(0) =
1
2𝜋

2𝜋

∫
0

𝑢(𝑥, 0)𝑒−𝑖𝑘𝑥𝑑𝑥, ∀ 𝑘 = −𝑁, ...,𝑁.

The system of ODEs (32) is solved by the variable separable method. Solution of the above periodic problem (4) is obtained till
time 𝑇 = 4. Later, polynomial and Dirichlet mollification is applied to this solution as a post-processing method. Figures of
Example 4 show that the methods behave similarly to that in Example 1. Tables 5 and 6 corresponds to Example 4 and Figures
6(a) to 6(d), whereas Tables 7 and 8 corresponds to Example 5. The accuracy of the mollified solution in both fixed 𝑃 and
adaptive 𝑃 are similar in Example 1. Interestingly, the mollification process recovers accurate solutions at points away from the
discontinuity at any time level required without affecting the stability.
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Figure 4 Example 3:-Error plots of, unmollified Fourier approximation with, Dirichlet kernel mollified Fourier approximation
(𝑃 = 𝑁0.5), Legendre kernel mollified Fourier approximation (𝑃 = 𝑁∕4), Chebyshev kernel mollified Fourier approximation
(𝑃 = 𝑁∕4) along (a) 𝑦 = 1.0853(b) 𝑦 = 3.1416 (c) 𝑦 = 5.6549 (d) 𝑦 = 6.2261.
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Figure 5 Example 3:-Error plots of, unmollified Fourier approximation with, Dirichlet kernel mollified Fourier approximation
(𝑃 = 𝑁0.5), Legendre kernel mollified Fourier approximation, Chebyshev kernel mollified Fourier approximation along (a)
𝑦 = 1.0853(b) 𝑦 = 3.1416 (c) 𝑦 = 5.6549 (d) 𝑦 = 6.2261.
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Table 5 Absolute error using Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 4 at time 𝑇 = 4. The
discontinuity point is 𝜋.

Points Unmollified Dirichlet1 Legendre Chebyshev
0.0419 0.0066 3.4×10−13 2.5×10−13 2.7×10−13

0.1047 0.0070 1.2×10−12 4.8×10−13 5.7×10−13

0.2094 0.0126 2.7×10−11 8.6×10−13 6.4×10−13

0.6283 0.0050 9.5×10−12 7.5×10−12 1.4×10−11

1.0472 0.0179 1.1×10−9 1.5×10−9 2.5×10−9

1.9059 0.0109 0.0110 0.00021 0.0001
2.0944 0.0004 0.0004 0.0026 0.0025
2.6180 0.0411 0.0411 0.0411 0.0411
3.1206 0.6992 0.6992 0.6992 0.6992
3.1625 0.6992 0.6992 0.6992 0.6992
4.1888 0.0004 0.0004 0.0026 0.0025
4.5029 0.0243 0.0145 1.8×10−5 2.7 ×10−5

5.2360 0.0179 1.1×10−9 1.5×10−9 2.5×10−9

5.6549 0.0050 9.1×10−12 7.9×10−12 1.4×10−11

6.2413 0.0066 9.4 ×10−13 3.2 ×10−13 3.0×10−13

Table 6 Absolute error using Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 4 at time 𝑇 = 4. The
discontinuity point is 𝜋.

Points Unmollified Dirichlet1 Adaptive Dirichlet3 Legendre (different 𝑃 ) Chebyshev (different 𝑃 )
0.0419 0.0066 3.4×10−13 9.6×10−13 2.5×10−13 2.7×10−13

0.1047 0.0070 1.2×10−12 1.3×10−12 4.8×10−13 5.1×10−13

0.2094 0.0126 2.7×10−11 3.6×10−12 8.6×10−13 6.5×10−13

0.6283 0.0050 9.5×10−12 9.0×10−12 7.5×10−12 1.4×10−11

1.0472 0.0179 3.1×10−9 1.6×10−10 1.4×10−9 2.5×10−9

1.9059 0.0109 0.0110 1.9×10−7 9.8×10−8 1.7×10−7

2.0944 0.0004 0.0004 6.6×10−8 1.8×10−7 2.1×10−7

2.6180 0.0411 0.0412 0.0001 0.0167 0.0148
3.1206 0.6992 0.6992 2.1854 0.6992 0.6992
3.1625 0.6992 0.6992 2.1854 0.6992 0.6992
4.1888 0.0004 0.0004 6.6×10−8 1.8×10−7 2.1×10−7

4.5029 0.0243 0.0145 2.1×10−8 8.4×10−8 1.3×10−7

5.2360 0.0179 1.1×10−9 1.6×10−10 1.5×10−9 2.5×10−9

5.6549 0.0050 9.1×10−12 8.6×10−12 7.9×10−12 1.4×10−11

6.2413 0.0066 9.3×10−13 3.7×10−13 3.2×10−13 3.0×10−13
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Figure 6 Example 5:- Plots of, (a) solution graphs - exact, unmollified and mollified using Legendre, Chebyshev and Dirichlet
kernels at time 𝑇 = 4. (b) Corresponding pointwise error graphs. (c) Legendre and Chebyshev mollification using different 𝑃
values in different parts of the domain, Dirichlet remain same as in (b), (d) Legendre and Chebyshev mollification is same as in
(c), Adaptive Dirichlet mollification by Tadmor and Tanner3.
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Table 7 Absolute error using Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 5 at time 𝑇 = 4. The
discontinuity point is 𝜋.

Points Unmollified Dirichlet1 Legendre Chebyshev
0.0419 0.0021 2.7×10−13 3.4×10−13 3.5×10−13

0.1047 0.0022 1.5×10−13 4.6×10−13 4.7×10−13

0.2094 0.0040 1.5×10−13 6.1×10−13 5.4×10−13

0.6283 0.0016 2.3×10−12 2.7×10−12 4.7×10−12

1.0472 0.00570 3.6×10−10 4.6×10−10 7.9×10−10

1.9059 0.0035 0.0035 6.6 ×10−5 4.9 ×10−5

2.0944 0.0001 0.0001 0.0008 0.0008
2.6180 0.0131 0.0131 0.0131 0.0131
3.1206 0.2226 0.2226 0.2226 0.2226
3.1625 0.2226 0.2226 0.2226 0.2226
4.1888 0.0001 0.0001 0.0008 0.0008
4.5029 0.0077 0.00462 5.7 ×10−6 8.6 ×10−6

5.2360 0.0057 3.6×10−10 4.6×10−10 7.9×10−10

5.6549 0.0016 2.9×10−12 2.1×10−12 4.1×10−12

6.2413 0.0021 4.4×10−13 3.6×10−13 3.6×10−13

Table 8 Absolute error using Dirichlet, adaptive Dirichlet, Legendre, Chebyshev kernel mollified solution of Example 5 at time
𝑇 = 4. The discontinuity point is 𝜋.

Points Unmollified Dirichlet1 Adaptive Dirichlet3 Legendre (different 𝑃 ) Chebyshev (different 𝑃 )
0.0419 0.0021 2.7×10−13 5.4×10−13 3.4×10−13 3.5×10−13

0.1047 0.0022 1.5×10−13 7.5 ×10−13 4.6×10−13 4.7×10−13

0.2094 0.0040 1.5×10−13 8.8 ×10−13 6.1×10−13 5.4×10−13

0.6283 0.0016 2.3×10−12 2.7×10−12 2.7×10−12 4.7×10−12

1.0472 0.0057 3.6×10−10 5.2 ×10−11 4.6×10−10 7.9×10−10

1.9059 0.0035 0.0035 6.1×10−8 4.0×10−8 6.6×10−8

2.0944 0.0001 0.0001 1.4×10−8 4.8×10−8 5.3×10−12

2.6180 0.0131 0.0130 3.6×10−5 0.0053 0.0047
3.1206 0.2226 0.2226 0.6997 0.2226 0.2226
3.1625 0.2226 0.2226 0.6997 0.2226 0.2226
4.1888 0.00011 0.0001 1.4×10−8 4.8×10−8 5.3×10−12

4.5029 0.0077 0.00462 5.1×10−9 3.6×10−8 5.5×10−8

5.2360 0.0057 3.6×10−10 5.2 ×10−11 4.6×10−10 7.9×10−10

5.6549 0.0016 2.9×10−12 3.3×10−12 2.1×10−12 4.1×10−12

6.2413 0.0021 4.4×10−13 1.7×10−13 3.6×10−13 3.6×10−13
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5 CONCLUSION

In the present work, two polynomial mollifiers have been proposed as an alternative to the Dirichlet mollifier for Fourier spectral
methods. It is proved that spectral accuracy has been regained for points away from the discontinuity. Numerical results show
that Legendre and Chebyshev polynomial mollification methods provide a marginally better solution when compared with the
accuracy obtained in Dirichlet mollified solution with trial and error optimum parameter 𝑃 = 𝑁0.8 used by Gottlieb and Tad-
mor1. Even for linear advection model problems with discontinuous initial values, a stable approximation could be obtained
even at a later time. Further, Legendre and Chebyshev mollifiers were applied using adaptive values of 𝑃 . i.e., Different choices
of 𝑃 in the sub-interval/region close to discontinuity. This modification has substantially improved the accuracy and reduced the
length of the region having Gibbs oscillations around discontinuity. This behavior is analogous to the adaptive Dirichlet molli-
fier3. Hence there is a scope for improving the accuracy by optimizing the parameter 𝑃 for the proposed polynomial mollifiers.
Accurately identifying the discontinuity is essential for problems involving dynamically evolving discontinuities. Therefore
combining the mollification approach with suitable edge detection algorithms such as developed by Gelb and co-workers35 is
necessary for equations such as nonlinear conservation laws.
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