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of Time Autocorrelation Functions 

Marc DU?UIS*l 

Institute of Physics, College of General Education 

Uni·versity of Tokyo, Tokyo 

(Received October 30, 1966) 

Two representations of the Laplace transforms of time autocorrelation functions, namely 

the moment expansion and Mori's continued fraction representation, are studied from the 

point of view of their convergence, with the aim of obtaining new general properties of time 

autocorrelation functions. First, the relation between them is established by using mathema

tical techniques in the case of a general dynamical variable, and a direct method, useful for 

applications, in the case of Hermitian variables. The mathematical structure associated to 

Mori's generalized random forces is investigated and it is shown that these random forces 

can be obtained by a Schmidt orthogonalization of the sequence of initial time derivatives of 

the dynamical variable considered. Then, the convergence criteria for both representations 

are examined and an illustration is given with the exactly solvable case of an isotopic impu

rity in a linear chain of coupled harmonic oscillators. Finally, the question of knowing whether 

the continued fraction expansion is convergent for any Hermitian dynamical variable and any 

system is discussed, with its implications for the general behaviour of time autocorrelation 

functions. 

~-1. Introduction 

In two recent papers,1
l'

2
) Mori has developed a generalized Brownian motion 

theory of irreversible processes and then, with the purpose of studying the 

anomalous behaviour of damping constants and transport coefficients near second

order phase transition points, he was led to derive a continued fraction expansion 

for the Laplace transforms of time autocorrelation functions. 

In order to explain the aims of the present work, let us first recall from 

· Mori's formalism, the equations which will be our starting point. 

We consider a dynamical variable A (t), the invariant part of which is set 

to be zero, that IS, 

T 

lim _J_ (A (t) dt= 0. 
T+ro T J (1·1) 

\Ve assume furthermore that A(t) belongs to the Hilbert space of dynamical 

variables, the invariant parts of which are set to be zero arid for which the 

inner product of the dynamical variable A with the Hermitian conjugate of the 

*l Pensionnaire a la Maison Franco-]aponaise de Tokyo. Present address: Departement de 

Physico-Chimie, Centre d'Etudes Nucleaires de Saclay, 91 Gif-sur-Yvette, France. 
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Nfoment and Continued Fraction Expansions 503 

dynamical variable B is (A, B). For the largest part of this paper, we need 

not specify the form of the inner product; in addition to the usual properties 

(A, B)= (B, A)*, (A, A) >o, we shall only require for this scalar product to 

have the Liouville operator L Hermitian: 

(A, LB) =(LA, B). (1·2) 

The starting point of Mori is to separate the time derivative A (t) = dii (t) I dt 

into a functional F;[A (s), t>s> initial time t 0] depending upon the past history 

of A (t), and an additional term F 2 (t, t 0) depending explicitly upon the other 

degrees of freedom; then, expanding the functional F 1 in terms of il (s) and 

extracting the linear term, Mori defines the first random force fr (t) as the sum 

of F~ (t, t 0) and the non-linear terms. Now the same procedure can be applied 

to fr (t) to define a second random force fz (t), then to fz (t) to define a third 

random force is (t) and so on. In this way a hierarchy of random forces h (t) 

is generated, the values of which at initial time to= 0, which we denote by h, 
obey the recurrence equa_tions 

fo [A (t)] t=~o== A , (1· 3) 

where 1s the projection operator onto the vector J;.. These vectors fi form 

an orthogonal set, 

(1· 4) 

and evolve m time according to the equations 

( ">1) .J__ ' fo (t) =A (t) , (1· 5) 

where 

Lo=L. (1· 6) 

The initial time derivatives j.i = [dh (t) I dt] t=o satisfy the recurrence equations 

i-l 

jj = ( 1 - ·1.: S.i\) iLh . 
1=0 

Denoting by iu).i the projection of f.i onto the h axis, 

ifJJ.i= Cii, h) I Ch, h), 

we have 

and introducing the quantities 

(1· 7) 

(1·8) 

(1· 9) 

(1·10) 

the Laplace transform of the relaxation function E (t) == (A (t), A) I (A, A) can 

be written 
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504 M. Dupuis 

co 

E(z) =~(A (t), A) (A, A)- 1e-ztdt 
f) 

1 
(1· 11) --- • - - A 2 

Z- Uj)o + ~I 
z- iuh + Li2

2 

z- icu2 + · ·. 

This expansion is Mori's infinite continued fraction representation for the Laplace 

transforms of time autocorrelation functions. 

The knowledge of the analytic properties of the function represented by 

(1· 11) is important from at least two points of view. First, the knowledge of 

the singularities is essential, since they determine the relaxation of A (t). If 

one is going to describe the approach of A (t) toward an equilibrium value, 

these singularities are expected to be located in the half-plane Re z<O. However, 

one should not think that the study of the analytic properties in the other half

plane Re z>O lacks interest: indeed, as was also shown by Mori, 1
> the expres

sions of the transport coefficients are proportional to the limiting value of E(z) 

when z-,)0+. Therefore the knowledge of the convergence of the continued 

fraction has a practical interest, not to men:tion the theoretical interest in itself; 

indeed, as the theoretical interest is concerned, such a convergence study is in 

the line of recent efforts to study the convergence of equilibrium expansiOns 

such as the Virial expansion3
> or the analyticity of non-equilibrium expansiOns 

such that the density expansion of transport coefficients. 4
> 

Thus, one of the main purposes of the present paper is to study the con

vergence of two analytic representations of the Laplace transforms of time 

autocorrelation functions, namely the continued fraction (1·11) and the well

known moment expansion,5
> which is a power series expansion. Let us now 

also briefly recall the features of the moment expansiOn. 

\Ve shall denote by sn the quantities 

n 

Sn= (A, A) I (A, A) , (1·12) 

It 

where A= [dnA (t) I dt~] t~o. Although the lowest time derivatives should be 
1 2 

written A, A, · · · in this notation, we shall however keep for them the more 

usual notation A, .ii, · · ·. Now we can develop the relaxation function E(t) 

into the Taylor series around t = 0, 

E(t)=1+ s1_t+ S2_t2+···+ Snt~+···. 
1! 2! n! 

(1·13) 

Then, ignoring for the time being the question of convergence, we can formally 

deduce a series expansion for the Laplace transform of E(t), by taking the 

Laplace transform of each term of the right-hand side of (1· 13). \Ve obtain 

in this way 
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Moment and Continued Fraction Expansions 505 

(1·14) 

The series (1·13) and (1·14) are called respectively the moment expansiOn 

of the relaxation function and the moment expansion of the Laplace transform 

of the relaxation function. The reason is that the coefficients sn are related to 

the moments /J.n of ~ ((J)), the frequency distribution of E (t), by the equations 

(1·15) 

where 

(1· 16) 

In connection with the definition of the quantities sn, we would like to also 

recall relations existing between the correlation functions of the initial values 

of the time derivatives of A (t). By simply making a repeated use of the fact 

that the inner product has the Liouville operator Hermitian and by remembering 
n . 

that A ~=c (iL)nA, we obtain for any m and i> 

m m+27' m+p m+p 

(A, A ) = ( +?(A , A ) = (---1)ms2crn+p) , (1·17) 

m m+2p+l m+P m+p+J ?n+1J+l m-t·JJ 

(A, A ) = (- 1)P (A , A ) = ( --1)Pt-1 ( A , A ) 

= ( 1)m+-IS2(m-f p)-1-1 • (1·18) 

m 1n-12p 

Thus we see that the correlation functions of the form (A, A ) have real 
m m+2p+l 

values ; on the contrary, correlation functions of the form (A, A ) have pure 

1mag1nary values, since 

m+p m+7'·t·l m+rH-1 m-1-p m-t-p m+p-t-1 

(A , A ) = - ( A , A ) == -- (A , A )* , (1·19) 

unless A is an Hern1itian variable, in which case they are equal to zero. These 

last remarks as well as the relations (1·17) and (1·18) will be useful later. 

Thus, as we said before, we shall mainly investigate the convergence of 

the continued fraction (1·11) and the power series (1·14): for this reason, we 

shall agree throughout this paper, for the sake of brevity, that we are referring 

to (1·14), when speaking of "the moment expansion". However, the con

vergence of the momep.t expansion (1·13) will be also discussed, because beyond 

the convergence problem in itself, a fundamental problem we wish to approach 

is to find any general properties of time autocorrelation functions, valid if not 

for any dynamical variable and any system, at least for large classes of dynamical 

variables and systems. 
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506 M. Dupuis 

Now, for the convergence problem as well as for the general problem of 

the properties of time autocorrelation functions, as it will be clear later, the 

sets of quantities sn on the one hand, and wj and J/ on the other hand, play sym

metric roles, so that it is necessary to know the relation between the two: this 

will be accomplished in § 2. Whereas the continued fraction expansion was 

introduced by Mori in the frame of a Brownian motion theory of time relaxa

tion, we shall introduce it from another point of view, which consists in looking 

for an analytic continuation to the possibly divergent moment expansion. Indeed 

it is a common practice in Analysis to try to find an analytic continuation to a 

divergent series by expanding it into a continued fraction, and we shall apply 

to our physical problem well-known mathematical techniques developed to solve 

this problem. However, the formalism developed in § 2 will provide us with 

more than the relation between the two expansions. Actually, as was already 

pointed out by Mori, 2l the generalized Brownian motion formulation does not 

depend upon the explicit form of the inner product. Thus we can suspect that 

we are in presence of a rather general mathematical structure: another purpose 

of § 2 will be to elucidate this structure. Doing so, we shall find another way 

of constructing the random forces and identify mathematically some other im

portant physical quantities. 

In § 3 we shall discuss the same problem of the relation between the two 

expansions for the case of Hermitian dynamical variables. The main reason 

for this special discussion is that it will provide us with formulae important 

for practical applications. 

Then, in § 4, we shall discuss in general the convergence rules of the 

moment and continued fraction expansions and this general discussion will be 

illustrated in § 5 by an exactly solvable case, that of an isotopic impurity in a 

linear chain of coupled harmonic oscillators. Finally, § 6 will be devoted to 

the question of knowing whether or not the continued fraction expansion might 

be convergent for any Hermitian dynamical variable and any system, with a 

discussion of the consequences of such an affirmative answer. *l 

§ 2. Relation between the moment expansion and the continued 

fraction expansion : Case of a general dynamical variable 

As we have stated in the previous paragraph, the problem of relating the 

moment expansion (1·14) to the continued fraction representation (1·11) simply 

belongs to the general problem of expanding a series into a continued fraction 

or vice-versa. Such a problem has been treated by mathematicians for a very 

long time since Frobenius6
l'

7
l and Stieltjes8

l and it is known at least since 

Tchebychef9
l that it is related to the problem of constructing a set of polynomials 

*l A preliminary report of some of the results presented in this paper was published by the 

author in Prog. Theor. Phys. 35 (1966), 752. 
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Moment and Continued Fraction Expansions 507 

orthogonal with a given sequence of numbers, namely here the coefficients of the 

series. In turn, these orthogonal polynomials appear also when trying to establish 

a correspondence between a certain sequence of real numbers and a certain 

Jacobi matrix. Thus the mathematical theory has many ramifications and presents. 

much interest by itself. As this formalism may not be so familiar to physicists, 

we shall first recall some mathematical results, before applying them to the 

physical problem: in doing so, we shall of course restrict ourselves to the 

mathematical background indispensable for our purpose ; besides, the fact that we 

start from a sequence of numbers not necessarily real brings some limitation 

to the possible mathematical developments. With the necessary adaptations, 

we follow closely the elegant presentation of Akhiezer,10
) to which we refer the 

reader for proofs and further details. 

We then consider an infinite sequence of numbers s0 = 1, s1, s2, • • ·, sn, · · · which 

may be complex or real and for which we assume that the Hankel determinants. 

So s1 Sn 

s1 s2 Sn+l 

Dn= (2·1) 

Sn+l 

are different from zero. To this sequence, we associate a functional 9! defined 

in the space of polynomials by 

~1 {ao + a1;t + a2A
2 + · · · + an;tn} 

(2·2) 

where ao, a1, .. ·, an are the coefficients of some' arbitrary polynomial in J.. of 

degree n. Now, the polynomials PnCA), where the index n refers to the degree 

of the polynomial, orthogonal with respect to the sequence sk, are defined by 

the condition that 

fl =0 

=1=0 

if m=l=n, 

if m=n. 
(2· 3) 

These polynomials can be constructed, the on the one hand, by simply orthog

onalizing the sequence of functions ).k (k = 0, 1, 2, · · ·) by the usual Schmidt process, 

taking for scalar product, in view of (2 · 2), 

(2· 4) 

But, on the other hand, one can also show directly that they are given by the 

expressions*) 

*> As the definition (2 · 3) does not specify the normalization of the polynomials Pn (A), we 

choose the proportionality factor in view of future use. Furthermore, if we agree to put D_1 =1, 

the determinantal expression (2·5) remains valid for n=O. 
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508 1\1. Dupuis 

So s1 Sn 

s1 s2 Sn-!-1 
1 ' . 

PoU) = 1, PnCA) = Dn_
1 

(n>1). (2· 5) 

1 }. 

Indeed,. the polynomials defined by (2 · 5) are of the form Pn U) = },n + Rn-1 (A), 

where Rn-l U) is a polynomial of degree n- 1. Therefore they satisfy (2 · 3) 

if ~f {Pn U) Am}= 0 for m<n and ::I {Pn U) Am} ~1=0 for m. = n. But this is precisely 

the case for the polynomials (2 · 5) smce 

So 

( 0 if m<n, (2· 6) 

1 
Dn 

if ;n=n. (2· 7) 
Dn--1 

A recurrence equation for the polynomials Pn (l) can be easily obtained 

by expanding APn U) in terms of the polynomials P~c U) of degree /<,<n + 1. 

Making use of (2 · 3), (2 · 5) , (2 · 6) and (2 · 7), we are led to the second order 

recurrence equation 

(2·8) 

where 

(2· 9) 

bo=O, (2·10) 

with the initial conditions 

Po (A)= 1, (2 ·11) 

But another solution of the recurrence equation (2 · 8) is provided by the pol

ynomials On (A) of degree n- 1, for which the initial conditions are 

(2·12) 

and it can be shown10
),ll) that 

On(z) = So + s1 + ... + S2n-1 + 0 ( 1 ) 

P ( ~) '7 • 2 ..,.2n z2n+ 1 
n ...G .......... Z "'"' 

(2 ·13) 

Let us consider now the infinite continued fraction 
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Moment and Continued Fraction Expansions 509 

1 

(2·14) 

for which the n-th approximant with numerator Nn (.z) and denominator A1n (z) 

is defined by 

1 

(n_2:1) (2. 15) 

One easily verifies that Mn(z) .and Nn(z) obey the. recurrence equation (2·8) 

with initial conditions (2 ·11) and (2 ·12) respectively. Therefore we may write 

Nn (z) = On (:i) 

Mn (z) 1~~ (z) 
(2 ·16) 

and Eq. (2 ·13) shows that (2 ·14) is the continued fraction expansion of the 

formal series associated to. the sequence s1c, that IS 

(2 ·17) 

in this sense that the expansion of the n-th approximant of (2 ·14) 1n powers 

of 1/z agrees with (2·17) up to the term s2n- 1/z 2
n. 

This establishes the fact that expanding a series into a continued fraction 

is equivalent to constructing the set of polynomials orthogonal with respect to 

the coefficients of the series, and (2 · 9) and (2 ·10) give us the expressions of 

the coefficients of the continued fraction in terms of those of the series. 

At this point we could already simply use (2 · 9) and (2 ·10) to solve the 

problem of expressing the quantities oJi and J/ in terms of the moments, but 

the fact that the randon1 forces jj and the polynomials ~t (J.) both form ortho

gonal sets of vectors in their respective spaces, and the similarity between the 

expressions L1/ = ( jj, jj) / ( jj-1, jj_1) and b/ = Ef{ Pi().) l~i (J.)} /c:I { Pj-1 U) Pj-1 (}.)} 

let us suspect a close connection between the random forces and the polynomials 

PJc. In order not only to bring it out, but also, more generally, to bring fully 

out the connection between the mathematical formalism and Mori's formalism, 

we shall now consider the previous developments from a completely different 

point of view. 

Let us first introduce the polynomials R1c (l) defined by 

(2·18) 
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510 M. Dupuis 

From (2 · 8), (2 · 9) and (2 ·10), we find that they satisfy the recurrence equa

tion 

(2·19) 

Now together with the initial condition (a0 - A) Ro (A)+ ib1R 1 (A)= 0, it determines 

the infinite matrix 

ao ibl 0 0 0······ 

-ibl a1 ib2 0 0······ 

0 -ib2 a2 ibs 0······ (2· 20) 

0 0 -ibs as ib4 ...... 

~ 0 ••• ~ 0 ••••• 0 ••• 0 0 0 0 ••••••• 0 •• 0 • 0 •••• 0 • 0 •••• 0 • 

Following Akhiezer, 10
) let us consider this matrix as the representation of a 

certain linear operator .L in a Hilbert space $£. Let us denote by x the vectors 

of that Hilbert space and by (xh xk) the inner product of xj by the Hermitian 

conjugate of xk. 

Taking an orthonormal basis ek in ~g{, we can first define the operator _£ 

for the unit vectors ek by the equation 

(2· 21) 

Since .L is linear, it is also defined by (2 · 21) for all finite vectors of ~g{. 

Furthermore, the definition (2 · 21) determines also every integer non-negative 

power of the operator .L and therefore every polynomial of the operator _f. 

As the construction of ek from e0 requires the same algebraic operations as 

constructing Rk ().) from Ro U) = 1, we may write 

and to the expansiOn 

rn 

},"'= ,E a/m)Rj(A) 
j=O 

does correspond the expanswn 

m m 

_Lm eo= :E ct/m)ej =I: ct/m) [Rj (_f)] eo . 
j=O j=O 

By applying the functional S: on (2 · 23), we then obtain 

m n 

gc;zm+n) = Sm+n =I: :E ct/m)CXk(n)(Jjk, 
j=O k=O 

whereas from (2 · 24), we deduce 

(2· 22) 

(2· 23) 

(2· 24) 

(2· 25) 

(2· 26) 
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Moment and Continued Fraction Expansions 511 

We now are in the position to apply the previous mathematical formalism 

to our physical problem. 

We wish to relate (1·11) to (1·14) in the same way as we have related 

(2·14) to (2·17). Now, in (1·11) the coefficients an=iwn are pure 1magmary 

quantities : indeed, using (1· 7), one has 

_c_jj, h) = _(if_[;,_b) = - --~,i~h)- -· 
Cfj, h) Ch, h) Ch, h) 

_(j_£~fl,JJ2~ = -- (jj, [i)* 
Ch,h) Ch,h) 

(2·27) 

Thus it follows from (2·21) that 

(.Le'", e1c) = a1c = -a/f.= - (eTc, .Le1c) (2·28) 

On the other hand, the coefficients L1n2 
= - bn2 are real and positive numbers. 

Therefore one has 

} (2·29) 

From (2· 28), (2·.29) and (2· 21) we can conclude, for any vectors ei and e1c 

and, more generally 'since .L is linear, for any finite vectors xi and x1c, that 

we have the equalities 

These equalities lead to 

(.Leh e1c) = - (eh .Le1c) , 

(.Lxh x1c) = - (.xh .Lx1c) . 

J= -.L+ 

and Eq. (2 · 26) yields then 

m n 

} (2· 30) 

(2·31) 

(Jme0, .Lneo) = ~ ~ ( -1)na/m)ak<n>ojk= ( -l)nsm+n. (2·32) 
j=O k=O 

Now let us compare this last equation with (1·17) and (1·18). Remembering 
n 

that A= (iLY~A, we immediately recognize that in the relaxation function expan-

sion problem, we have 

(2· 33) 

and that generally, we can deduce the quantities appearing in Mori' s formalism 

from those appearing in the orthogonal polynomials formalis·m~ just by replacing 

J.. by iL and then by operating on A with the resulting function of the operator 

iL. 
If we perform this operation on Pk. (J..), we obtain the random force !,. : 

!,.= [P1c(iL) ]A. (2· 34) 

Although this relation IS fairly obvious from the properties of the two sets of 
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512 JVi. Dupuis 

quantities, one can reason in the following way. On the one hand, the polynomials 

Pk U) can be constructed by a Schmidt orthogonalization of the sequence of 

functions ),k, k=O, 1, 2···. On the other hand, one can see from Mori's defini

tion of the random forces, that the random forces can be obtained by orthogo-
k 

nalizing the sequence of time deri·vative:·; A, k = 0, 1, 2, · · · according to 

n 

n n-l (A +") 
+ = . - "')1 . ,Jl + 
Jn fl.1. "'--' . Jl· 

I 0 ( fz, fz) 
(2. 35) 

One has just to notice that the recurrence equation leads to an expression of 
k 

fn linear with respect to the A (k<n), where the coefficient of the highest order 

time derivative is unity. The. resulting linear system can be solved to give an 
n 

expression of A linear with respect to the vectors fk (1?-<n), leading to (2· 35) 

after the orthogonality of the vectors fk has been taken into account. Thus, 
/c 

since one goes from the sequence ),k to the sequence A by the above mentioned 

correspondence rule, the identity (2 · 34) is proved. By using (2 · 5), one can 

then write for i~ the expressiOn 

1 
fn= D ·-

n-1 

So 

Sn-1 Sn 

A 

(2. 36) 

A 

and from (2 · ~:3) and (2 · 6) the static correlation functions of i~ are seen to be 

g1ven by 

if m<n, 

(A, A) if me= n. 
(2. 37) 

From (2 · 9) and (2 ·10) follow the expressions of the coefficients iuJn and L1n2 

in terms of the moments: 

.Yn+l 

' . 1 
Uun= 

DnDn-1 (2. 38) 

A Ji 
n +l 

A A A 
n 

A 
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(2·39) 

As for the recurrence equation which is satisfied by the random forces, it 

IS readily deduced from (2 · 8), 

(l"L- (iLfn-1, fn-1) ·) j' . + A2 r 
. . n--1 L1 n-1Jn-2 

( fn--1, ht-1) 
(2· 40) 

and can also be written 

fn= (iL- C/n--:1'_/n-::l)) fn-l + L1 2n-1fn-2 
( ht-1, fn-1) 

(2. 41) 

as it is seen from· (1· 7). Equation (2· 40) is easily seen to eoincide with Mori's 

definition (1· 3), once the orthogonality of the random forces has been taken 

into account. Indeed, (2 · 40) yields 

(iLfn-1, fz) = 0 if lSn- 3 , (2 · 42) 

(2· 43) 

which shows that Mori's recurrence equation reduces to (2· 40). 

Finally let us mention that the representation of the operator iL in the 

base provided by the normalized random forces fie! (fie, f1cY 12 is the matrix 

(2· 44) 

as can be easily verified by computing the matrix elements with help of Eqs. 

(2·40) and (2·41). 

As we have stated in the introduction, the fact that Mori's formalism did 

not depend upon the explicit form of the inner product, let us suspect that we 

were in presence of a fairly general strueture: this structure is now/ elucidated. 

The most interesting result is perhaps represented by the identity (2· 34) or, 

equivalently, by the fact that the random forces may be constructed by a Schmidt 
!c 

orthogonalization of the set of time derivatives A. Furthermore, from a more 

practic~l point of view, we have obtained expressions for the coefficients of the 

continued fraction expansion in terms of the moments. The inverse problem, 

that is to express the coefficients of the series in terms of those of the continued 

fraction, was solved a long time ago by Stieltjes,8
)'

12
) using a completely different 

method. As the resulting expressions are far from being as simple as (2· 38) 

and (2· 39), and as we shall not use them later, we shall not reproduce them 

here. But we shall see in the next section that in the case of an Hermitian 
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514 M. Dupuis 

variable, a new direct method produces again simple relations. 

§ 3. Relation between the moment expansion and the continued 

fraction expansion : case of an Hermitian variable 

In this section we shall treat the same problem as in § 2 for the case of 

Hermitian dynamical variables : by an Hermitian variable, we mean a real phase 

function in the classical case or an Hermitian operator in the quantum case. 

The general formalism developed in the previous section could of course 

be applied to such variables, and for this reason we shall be somewhat briefer, 

since some of the results relative to the Hermitian case are very close or even 

similar to the general ones. However, it is instructive to consider separately 

the case of Hermitian variables at least for two reasons. First, using a new 

method, we shall adopt a more physical attitude and take up the problem as it 

presents itself in the development of the physical theory: namely, we shall start 

from Mori's definition of the vectors h·. Secondly, this direct method has the 

advantage to lead naturally to expressions valid to general order, and which 

may be useful in practical calculation& (Eqs. (3 · 8)- (3 ·11)), as it will be de

monstrated in § 5. Let us add, from the same practical point of view, that the 

class of Hermitian variables is very large and contains, in particular, all fluxes 

associated with transport processes due to thermal, momentum or concentration 

gradients ; however, notable exceptions exist, such as, for example, the normal 

coordinates of sound waves. 1
l 

If the dynamical variable A (t) is supposed to be Hermitian, then it follows 

from (1·19) that every si with odd index vanishes, 

n=0,1,2,···, (3·1) 

whereas si with even index, according to (1·17) take the form 

n n 

S2n= ( -1Y~(A, A) I (A, A), (3· 2) 

n=O, 1, 2, 

It is therefore convenient to introduce the positive quantities en equal to the 

moments fJ. 2n, defined by 

n n 

c0 = 1, Cn= (A, A) I (A, A)= ( -1Y~s2n= fJ.2n, n>1 
-' 

(3· 3) 

so that the moment expansion (1·14) reduces to 

-~-- _£~-+ --~ _ ... + ( -1)n _G_n_ + .... 
z zs z5 z2n+l 

(3· 4) 

On the other hand, if A is Hermitian, then all the h· are also Hermitian and 

(2 · 27) yields 

j=O, 1, 2, (3· 5) 
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Moment and Continued Fraction Expansions 515 

Correspondingly, the infinite continued fraction (1·11) reduces to 

(3· 6) 

Let us now turn to the problem of expressing the coefficients Ll/ in terms 

of the moments c1c and vice-versa. 

We start by applying Mori's recurrence formula (1· 3) to the construction 

of the vectors jj with lowest indices. Taking into account (3 ·1) and (3 · 2) and 

making appropriate rearrangements, one can bring the expressions of the random 

forces and their static correlation functions into the following form : 

.h=A, 

.t;=A+LI12
A, 

4 

(fr, fr) I (A} A)= c1, 

( h, };) I (A, A) = Cz- LI1
2
C1 , 

./:=A+ (L11
2
+L1/+Lis

2
)A+L11

2
Lfs

2
A, 

(f4,J:)I(A, A) =c4- (L11
2
+LI2

2
+Lis

2
)cs+LI1

2
Lis

2
C2, 

5 3 • 

.h=A+ (Lil2 +L1/+Lis2 +L142)A+ (LI1
2
Lis

2
+LI/LI4

2
+LI2

2
L14

2
)A, 

( h, };) I (A, A) = C5- CLI1
2 
+ Ll2

2 
+ Lls

2 
+ Ll4

2
) C4 + (LI1

2 Lls2 
+ LI1

2
LI4

2 
+ LI2

2
LI4

2
) Cs, 

(3·7) 

where the quantities Ll/ are defined by (1·10).*) We have given the expres

sions (3 · 7) because they may be useful for practical calculations and illustrate 

the general expressions which follow. Indeed a careful examination of (3 · 7) 

suggests that these general expressions are 

2n 2n-2 2n-4 2n-2p 
hn =A+ S1 (2n-1) A + S2<2n-1) A + ... + Sp <2n-1) A + ... 

+ Sn (2
n-l) A, (3' 8) 

2n-1 2n-3 2n-5 2n-2rJ-1 

hn-1 =A + S1 <Zn-z) A + S2 <2n-z) A + · · · + S p <Zn- 2
) A + · · · 

+ s~~~l- 2 ) A, (3. 9) 

(f;n, fzn) I (A, A)= Czn- sl<Zn-l)Czn-1 + s2<2
n-

1)C2n-2- ... 

+ ( -1)PS. (2n-l)c + ... + ( -1)nS (2n--I)c 
p 2n-p n n, (3·10) 

*) In order to obtain these expressions, the following two relations have been useful: 

Cf2, f2)/(A, A) =c2-ch (j3, j3)j(A, A.) =c3- '-:.
22 

· 
c1 
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516 lvl. Dujntis 

(j, j-' ) j (A A) --- , 1...' (2n -2) , S (2n-2) , 
2n--I, 2n-l. , - Lzn--1 --01 C2n--2 + 2 C2n--B --

0 

• 

0 

_L (-1)PS (2n--2) '. _r __ •oo -+- (-1)n-1Q(2n-~)C 
I p (~2n--p--I l Dn-1 n. (3 ·11) 

It 

In these expressions S1 <nl = :E Ji 2 and Sp <'~) denotes the sum of all possible products 
i~l 

of p different factors L!TG
2 chosen in the set d 1

2
, .d 2 \ 

0 0 0

, L1n2 in such a way that 

all the indices k differ from each other by more than 1. For example, the last 

two expressions (3·7) show that S 2 <
4l=t11

2.d3

2 +d1

2 Li 4

2 -I-Li 2

2Li/ Referring to the 

definition of Li/, we see that these products are such that there is no cancel

lation between autocorrelation functions appearing in the numerator and the 

denominator. 

In order to prove the validity of Eqs. (3 · 8) and (3 · 9), we simply have 

to show that they satisfy the recurrence relations (1· 3), or equivalently (2 · 40). 

If one notes that the sums SP <nl obey the recurrence relations 

(' (n) = ) (n -1) --I- Q (n-:2) A 2 
'---Jp -~ p '---Jp-1 L.ln , (3 ·12) 

then one easily verifies that the expressions (3 · 8) and (3 · 9) satisfy the recur

rence equation 

(3 ·13) 

But, if one makes use of (3 · 5), this recurrence equation is seen to be identical 

to (2 · 40). Therefore the expressions (3 · 8) and (3 · 9) are established. 

The same expressions provide us with a set of equations linear with respect 
n n 

to the vectors A and can be solved to yield the vectors A in terms of the 

random forces fno The resulting expressions for even order time derivatives 

are the determinants 

fzn ') (2n -1) ~' (2n-l) s'}t, (2n--l) 
'-- 1 '-- 2 

hn--2 1 S
1
(2n-S) S' (~n-0) 

J... n-1. 

'2n 

fzn-4 0 1 )C2n-5) 
"- n-'2 (3 ·14) 

fo 0 0 1 

obtained by considering the n + 1 equations corresponding to even jj, j<2n. 

The expressions for time derivatives of odd order are very similar and need 

not be exhibited. From the fact that the coefficient of fn is unity and from 

the orthogonality of the vectors f,~, it follows that 

n 

( f,~, fn) = ( fn, A) (3 ·15) 

which proves (3 ·10) and (3 ·11), if one takes into account (1·17) 0 Furthermore, 

we can write the expansion of (3 ·14) as 
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Moment and Continued F'raction Expansions 517 

It 

"'1 = J;~ + ~~ (A, fL) ~ 
l c() ( Jz., .fL) /, ' 

(3. 16) 

whence (2 · 35) IS again deduced, sh<)wing here with full detail that the 

random forces can be constructed by orthogonalizing the sequence of vectors 
n 

A (n = 0, 1, 2, · · ·) by the usual Schmidt process. 

We can say that the expressions (3·10) and (3·11) are rnixed in the sense 

that they give the static autocorrelation functions of the random forces in term.s 

of both the moments ck and the quantities Ll/ .. Therefore we must go one step 

further in order to obtain the expressions of the ck in terms of the Ll/ only and 

vice-versa. 

In order to obtain the expressions of the ck in terms of the Ll/, we simply 

have to notice that ( ];~, fn) /(A, A) = J/&,; 1" · Jt Thus, the expressions (3 ·10) · 

and (3 ·11) considered as equations linear w] th respect to the moments can be 

solved immediately to yield 

2n 

Il Lli 
2 

i=l 

Zn-1 

II Lli 
2 

L ~::. ! 

2n-"2 

C2n IT Lli 
2 

i=l 

and 

Zn-1 

II Ji 
2 

i=l 

2n-2 

rr Ji 
2 

icd 

2n-3 

·rr .. A} C2n-1 = £.J. 
i·~l 

sl 
(2n-l) s2(2n--1),,, ( -- l)n ') (2-n---1) 

Ln 

1 --S1 (2n 2) ... ( -1)" - \.~'2:_~-2) 

0 

0 

0 

- s1(2n-2) 

1 

0 

0 

0 

1 

0 

0 

... ( --1)n 

0 

0 

2 S~~=~~~-:l) 

') (2n--2) •.. ( ---l)n--1 ~'(2n-2) 
'- 2 '- n-l 

- Sl (2n-3) ..• ( --- 1)n-2S,f~~2-:l) 

1 

0 

0 

... ( __ 1)n--3s(2'';-4) 
n-.l 

0 

0 

( -·-

0 

0 

1)n 1sc~n-:n •.. 
'1/.-l 

0 

0 

0 

0 

0 

0 

( 1 y~-rsczn-3) - n-1 ... 

( 1)n--2s(zn-4) 
- n-'2 ··-

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

Reciprocally, in order to obtain the expressions of the coefficients Ll/ in 

terms of the ck, we first note that in view of Eq. (3 · 16), one has 
k 

Cfn, A) =0 if k<n. (3 ·19) 
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518 M. Dupuis 

Then let us combine the n equations (3 · 19) corresponding to k = 0, 2, 4, · · ·, 

2n- 2 with Eq. (3 ·10). We have a system of n + 1 equations linear with respect 

to the n variables S 1 c
2
n-l), S 2 c

2
n-l), · • ·, Sn c2

n-l). If we introduce the Hankel de-

terminants Bn defined by 

1 Cn-1 

Cs 

Cn>1), (3· 20) 

Cn+l 

the condition of compatibility yields 

(3. 21) 

In the same way, let us combine the n -1 equations (3 ·19) corresponding to 

k = 1, 3, · · ·, 2n- 3 with Eq. (3 · 11). Introducing the other Hankel determinant 

Cn defined by 

c2 Cs 

Cs 

Co= 1, (n>1), (3· 22) 

Cn+l Cn+2 C2n-l 

we obtain through the compatibility condition 

(3· 23) 

The combination of (3 · 21) and (3 · 23) finally leads to the relations which we 

were seeking : 

(3· 24) 

These relations could of course have been deduced from (2 · 39) by putting 

equal to zero all the si with odd index and then making suitable interchanges 

of rows and columns. 

We then have completely solved the problem of relating the moment 

expansion to the continued fraction expansion. The method developed for the 

Hermitian case may appear simple compared to the mathematical machinery 

used in § 2, and one may wonder if this direct method could not be extended 

to the general case: the reason is that in the general case, the non-validity of 

(3 ·1) and (3 · 2) complicates the calculations and precludes the existence of 

expressiOns as simple as (3 · 8)- (3 ·11), the obtention of which is the key of 

the method. 
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Moment and Continued Fraction Expansions 519 

We shall close this section by mentioning some interesting inequalities 

arising from (3 · 24) . Indeed the expressions (3 · 24) show that all the determi

nants Bn are of the same sign and that all the determinants Cn are also of the 

same sign. Since Bo =Co= 1, all these determinants must be positive. But it 

is well known13
> that in this case, all Hankel determinants of the form 

Cp Cp+l 

Cp+l 

(3. 25) 

where p and q are arbitrary, are positive. In particular 

>O (3. 26) 

or 

Cn+2 '----- Cn+l 
----··-·---·· /". -- - ·- (3· 27) 
Cn+l Cn 

that is, the ratio cn+1/ en always increases with n. This remark will be important 

in the next section. It should be added, however, that we can also derive the 

inequality (3 · 27) directly by applying the Schwarz inequality to the inner product 
n+2 n 

(A, A): 

n+2 n n+l n+l n+2 n+2 n n 

(A , AY = (A , A Y< (A , A ) (A, A) (3· 28) 

But the remark concermng the sign of the determinants Bn and Cn will be 

useful in the next section. 

§ 4. Convergence criteria of the moment 

and continued fraction expansions 

In this section we shall confine ourselves to Hermitian dynamical variables. 

The reason for this is that in this case, the infinite continued fraction (1·11) 

takes the form 

1 J(z) = -- --
z + L11

2 

z 
-·-· 

z2 + Lllz 
------·--

z + L1z
2 

·----·----·-------·-·--

z+ . 
1 + L12

2 

(4·1) 

and thus z- 1J(z) is a Stieltjes-type continued fraction with respect to the variable 

z 2 
= u ; now the analytic properties of Stieltjes continued fractions are much 
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520 M. Dupuis 

simpler to study than that of general continued fractions with complex coef

ficients. 

In view of (4·1) it will be convenient to introduce the infinite continued 

fraction 

J(u) -z-lJ(.z) = u+l Ll/ 

1 + Lf2
2 

u+ 
(4· 2) 

In the same way, to the moment expanswn (1· 14), which we denote by 

S (z), corresponds the series expansion 

S (u) -z- 1S (z) = 
1 

- c~ + c: - · · · + ( -1)n 
u u Zl 

+···. (4· 3) 

\Ve have introduced the symbols J and S, to insist on the fact that both expan

sions are representations of E (z) in the complex plane, with restricted domains 

of validity: as we pointed out earlier, the continued fraction 1nay possibly play 
the role of an analytic continuation for the moment expansion. As a matter of 

fact, we note that J(z) and S(z) have the symmetry J(z) = -J(-z), S(z) = 

--S(-z), whereas E(z)=/--=-3(-:z). The reason is e_asy to understand both 

mathematically and physically. Let us first take the physical point of view and 

choose for inner product Kubo's_ canonical product 

/] 

(A, B) = ~ j <e>..H Ae->..HB1)dJl , 

0 

(4· 4) 

where /3 = (kT) --\ T being the absolute temperature and k Boltzmann's constant, 

and the brackets denote the canonical average. \Ve have, in the quantum case, 

w 

(A (z), A)= j dt exp (- zt) Lf ~ exp (i (El- E 1_,) t/h) All'AJ,, exp ( -j]El) 
(I 

(4. 5) 

where El is an eigenvalue of the Hamiltonian and Aw a matrix element of A 
in the Hamiltonian base. Thus E(z) has pole~ located on the imaginary axis, 

and when the system becomes infinitely large, these poles will form a singular 

line limited by branch points located either at finite distance or at infinity. 

On the other hand, from the mathematical point of view, it is well known 

that all the poles of the approximants of the Stieltjes continued fraction J(u) 

are located on the negative part of the real axis of the u-plane. To these poles 
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Moment and Continued Fraction Expansions 521 

correspond singularities on the imaginary axis of the z-plane. Therefore, all 

criteria ensuring convergence of J(u) out of the negative part of the real axis, 

will ensure that J(z) represents E(z) only for z such that Re z>O, and in 

order to continue into the half-plane Re z<O the definition of the function to 

which J (z) converges, one will have to introduce a Riemann surface and find 

the physically meaningful Riemann sheet.*) 

Keeping these remarks in mind, let us turn to the cqnvergence criteria of 

J(u) and S(u). As we have emphasized it in § 2, the sets of quantities ck on 

the one hand and J/ on the other hand, play equivalent roles, so that it is 

necessary to have criteria expressed in terms of either set for both expansions. 

Indeed, there may be physical situations in which the moments have simple 

expressions, whereas the quantities Ll/ are of a very· complicated form or even 

are impossible to obtain to general order. Actually, in view of the results 

obtained in § 3, it is that situation which one would normally expect. Once· 

A (t) is given, the moments are, in principle, di~ectly accessible by repeated 

time derivation and scalar product formation, whereas the evaluation of the 

quantities J/ requires more calculations. However, the inverse situation, where 

the Ll/ have simple expressions, whereas the moments are given by complicated 

formulae, may also occur, as will be shown in § 5. 

We first consider S(u) and S(z). We have seen at the end of § 4 that 

the ratio cn+ll en increases with the index n. Therefore two cases may happen: 

a) The ratio Cn+l/ en has an upper limit l: 

(4· 6) 

Thus S(u) is convergent for lui> l, divergent for lui< l and S(z) represents 

E(z) for lzl > V}, with Re z>O. 
b) The ratio Cn+ 1/cn increases without limit: thus S(u) and S(z) are always 

divergent, except at infinity. They are asymptotic series. 

If we now wish to have criteria in terms of the coefficients J/, we can 

use a result due to Stieltjes.14
) This result states that case a happens if the 

quantities L1n2 have an upper limit: 

n--)oo 

and that m such a case, one has the inequality 

Z< 4J~l. 

(4· 7) 

(4·8) 

On the contrary, if the quantities L1n2 have no upper limit, then case b happens. 

Further~ore, analogous results hold for the largest root of the polynomial 

Pn (z)' which we shall denote by Zn. In case a, one has lznl < vT and in case 

b, Zn goes to infinity with n. 

*l The author is indebted to Professor H. Mori for this last remark and for pointing out to 

him Eq. (4·5)·. 
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522 M. Dupuis 

Next, let us consider J(u) and J(z). We introduce the numbers kn defined 

by the recurrence law 

leading to 

Ll~p-2 1 Jl 
2 

L13 
2 

----··-

' 
k2p+l 

LJ~p-3 J~]J-1 J2 
2 

L14 
2 

(p>1)' 

so that the infinite continued fraction J(z) takes the form 

J(z) =--) 
k1z+ 1 

k2z+ 1 

k3z+ 

(4·9) 

( 4 ·10) 

(4·11) 

Then we can apply a theorem due to Stieltjes,14
) which says that if the series 

~PkP is divergent, J(u) is uniformly convergent over every finite closed domain 

of the complex u-plane, the distance of which from the negative half of the real 

axis is positive; furthermore, the value of J(u) is an holomorphic function of 

u for all u not on the negative part of the real axis. It follows then that under 

the same condition, and for every z such that Re z>O, J(z) represents the 

relaxation function E (z), holomorphic in that domain. 

If we wish, on the other hand to have a criterion in terms of the moments 

ck, we may use a theorem derived by Carleman in the theory of quasi-analytic 

functions. 15
> This theorem states that if the determinants Bn and Cn are positive, 

and if the series ~nCn -lf
2
n is divergent, then the Stieltjes moment problem is 

determinate. But it is well known that the Stieltjes moment problem is de

terminate if and only if the positive term series ~PkP is divergent. Therefore 

we may conclude that if the series 'L:ncn -lf
2
n is divergent, then J(u) converges 

to an holomorphic function of u for all u not on the negative part of the real 

axis; the same conclusion as above follows for J(z). We should like to remark 

at this point that although the moment problem has necessarily a solution in 

the time autocorrelation function case-indeed the coefficients ck are not any 

numbers, but moments, and it was shown at the end of § 3 that the determinants 

Bn and Cn are positive as required-nothing proves a pnon that this solution 

IS unique. 

It should be kept in mind that the two criteria given are of course not 

unique for deciding about the convergence of J(u) or J(z), but they have 

seemed to us most appropriate for our purpose. Before discussing their impli

cations, we shall first show on an example which can be exactly solved, how 

the general mathematical theory of the last three sections can be practically 

applied. 
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Moment and Continued Fraction Expansions 523 

§ 5. An example : the momentum autocorrelation function of an 

isotopic impurity in a linear chain of coupled harmonic oscillators 

As an illustration of the previous mathematical developments, we shall study 

the momentum autocorrelation function of an isotopic impurity in a linear chain 

ofcoupled harmonic oscillators. 

We consider a linear chain of atoms of mass M os~illating harmonically 

around sites labelled -N - (N-1) ... -2 1 1 2 ··· N-1 N with an 
' ' ' ' ' ' ' ' ' 

isotopic atom of mass M' = M(1 + 0) located at the center site 0. The atoms 

are coupled by springs of force constant K and the atoms at both ends of the 

chain are connected by springs to fixed walls. 

Such a model has been studied extensively by many authors from various 

points of view, either with respect to irreversibility by. Hemmer,16
l Rubin,17

l 

Takeno and Hori,18
l Turner/9

) or with respect to the theory of Brownian motion 

by Ullersma. 20
l 

If ui is the displacement of the j-th atom, it is convenient to introduce the 

coordinates x/=JMui(j=I=O), x'=JM'uo and to define the momenta by 

P/=JMuj(j=!=O),p'=Jill'uo so that p/=i/, po'=.i'. Then, if one ln

troduces the normal coordinates 

I 
x=x, 

p=i, 

-N<s<-1 

the Hamiltonian takes the form 

where 

ns w82 = 411 2 sin2 
· -----

2(N+1)' 

A 2= . 1 w 2(1 - w/) = J~ sin2 res 
8 

N + 1 
8 

4,d 2 N + 1 N+ 1 

l 
(5. 1); 

(5· 2) 

l (5· 3) 

With the Hamiltonian brought into the :form (5 · 2), the system can be considered 

as consisting of an isotopic atom coupled with 2N harmonic oscillators which 

are not coupled between each other. Under this form, the system was called 
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524 M. Dupuis 

modelS and also studied by Toda and Kogure. 21l From the Hamiltonian (5 · 2), 

we deduce the canonical equations of motion 

Ps = - Ws
2
Xs- WoAsX (5 · 4) 

(s= -N, ···, --1, 1, ···N), 
p = - Wo 2X- Wo I:; AsXs . 

s 
(5. 5) 

\Vhat we shall essentially investigate concerning this dynamical system are 

the moment and continued fraction expansions of the Laplace transform of the 

classical autocorrelation function of the impurity momentum. This Laplace 

transform has for expressiOn 

00 

,...,() ~ (p(t),p) -Ztlt 
.b z = ( ) e G • 

p,p 
(5. 6) 

The coefficients of the moment expansiOn and of the continued fraction expan

siOn are given by 
k k 

ck= (p, P) I (p, P) (5· 7) 

Lh2 
= ( fk, fk) I ( fk-l, fk-l) ' 

(5. 8) 

Uh=O, 
k 

where p = (dkp (t) I dtk)t=o, fk is the k-th random force acting on p and the inner 

product is the classical canonical average. As p (t) is Hermitian, all the coef

ficients wk vanish. 

vVe shall start by calculating the random forces h. It has been recently 

pointedoutby Sakurai 22lthat Ll 1

2=w0\Ll22=Lls2 =LI42=Ll 2 
and, then, if one assumes 

that L1n2 
= L/ 2 for any n> 1, that the continued fraction expansion of (5 · 6) can 

be summed exactly. In the following we shall establish the expressions of 

.the random forces to general order and show that indeed, in the limit N-HX) 

.Lin2 
= L/

2 
for any n> 1. 

In order to do so, we make use of the relations (3 · 8) and (3 · 9), to write 

down the expressions of the random forces of lowest order. The relations (3 · 8) 

and (3 · 9) appear to be here very practical, the sums SP <nl being easy to calcu

late. The resulting expressions which involve sums of the form I:; A8

2
(1) 8

2
n are 

h = - Wo
2
X- Wo ~ AsXs , ( J;,, J;,) = Wo

2 

I {3 , I 
};= -U)oL:; AsPs, (};, };) =cuo

2
L:;As

2
l/3, 

is= U)oL:;~s (w.~ 2 - L:;As2
) Xs, (is, fa) = Wo

2 
[L:;As

2:u./ (L:;A}) 
2

] I (3, 

s ( ~A 8 2 w/ ) .~ [ " (~A,'w,') 'J j 
h = woL:;As Ws

2
- s" 2 . Ps, (};,, };,) = Wo

2 
L:;As

2
W/- ~· 2 I {3, 

s .L.JAs s .L.JAs 
s 8 

(5·9) 

where {3 = (kT) -\ T being the absolute temperature and k Boltzmann's constant. 

The expressions of the random forces and their autocorrelation functions for 
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Moment and Continued Fraction Expansions 525-

higher orders become rather complicated, but in the limit N~oa, they simplify 

greatly because the sums 2:As
2
W8

2
n take the simple limiting value 

.~ 

(5 ·10) 

If we go over to this limit and then carefully inspect the resulting lowest order 

expressions-we went up to fr in our case--we are led to write for the general 

expressions in the same limit N ~ oa : 

];_ = - O)o
2
X- Wo 2.: Asx.~, 

8 

hn-1 = ( -1) nWo ~ As [ws2n-2- (2n 13) w.~2n-4.j2 + ... 

+ ( -1) p (2n -} -- P) U)
8
2n--2-2p .j2P + ... + ( -1) n-1J2n--2] Xs, 

. hn = ( -1) nWo ~ As[ Ws2n-2 _:_ (2n 1- 2) w/n-4.::12 + ... 

(n>1), 

(5 ·11) 

+ ( _ 1) p (2n -p1-P) U)
8
2n--2-2p J2P + ... + ( 1) n-1 (n ~ 

1
) J2n-2] Ps, (n>1), 

A12 = Wo
2

, An2 = .::1
2 

(n> 1). 

with, for the sums sp (n\ the general expressiOns 

S en)= (n- P) U) 2J2v-2 + (n- P) .dzp 
p p-1 0 p . (N->oa). (5 ·12) 

The proof of validity· of the expressions (5 ·11) offers no diffic'ulty: one just 

has to verify that they satisfy the recurrence. equation (3 · 13), which is easily 

done. 

Having calculated the random forces to general order, let us now turn to 

the moments. These also can be calculated to general order. 

In the limit N~oa, this calculation can be done in two ways. A first way 

is to apply the formulae (3 ·17) and (3 · 18) , since one knows the general ex

pressions of the sums Sv (n), given by (5 · 12) . This yields the following deter

minantal expressions for the even moments: 

C2n= 

(Vo2L14n-2_ [o>o2+ (2n-2)J2] (-1)nwo2L12n-2 0 0 0 

Wo2L14n-4 1 (-1)n-1[(n-1)wo2+J2]J2n-4 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 0 

1 - Wo
2 

0 1 

(5 ·13) 
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526 M. Dupuis 

and analogous expressions for the odd moments. The second way is to proceed 

directly, usmg repeatedly (5 · 4) and (5 · 5). After adequate rearrangements, one 

obtains 

2n 

( -1) np = AnP + Wo I: AsBn (s)Ps, 
s 

2n-l 
(- 1) np = AnX + Wo I: AsBn (s) Xs , l (5 ·14) 

s 

where An and Bn obey the recurrence relations 

Ao=1, A 1 =(J)0
2

, , 

A,.= w,' (A,._, -1- A,._,~ A,'+···+ A,._.~ A,'a>,'•-• + .. ·+A,~ A,'w,'" '), l (5 ·15) 

(n>2) J 

Bo(s) = 0, Bl(S) = 1, 

Bn(s)=Wo 2 (B,~
8
21 +B~

8
22 I: As2+ ··· +B,~·~P I: A

8

2Ws2p-
4 + ···B1(s) I: A/w

8

2
n-G) 

8 s s 

Since from (5 ·14) one has 
2n n n 

(- 1 y~ (p, P) = ( P, P) = An ( P, P) 

it follows from (5 ·15) that 

Wo 
2 

Wo 
2 I: As 

2 Wo 2 I: As 2Ws 2 Wo2 I: As2Ws2n-4 

-1 Wo 
2 

Wo 
2 I: A/ Wo2 ~ As2Ws2n-6 

n n 

Cn = (p_,_p_)= 0 -1 Wo 
2 

Wo2 I: A/ws2n-B 
(p, p) 

0 0 0 

l (5·16) 

(5 ·17) 

(5 ·18) 

We note that the expression (5·18) 1s valid for both finite and infinite values 

of N. If N-> oo the determinant (5 ·18) becomes 

Wo 
2 

Wo2L12 2wo 2 j4 1 (2n-2) 2L12n-2 - Wo 
n n-1 

-1 Wo 
2 Wo 2 j2 

1 ( 2n- 4) Wo 2 J2n-4 

n-1 n-2 
c = n (5 ·19) 

0 -1 Wo 
2 . 1 ( 2n- 6) Wo2L12n-6 

n-2 n-3 

0 0 0 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

7
/3

/5
0
2
/1

8
6
1
7
9
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Moment and Continued Fraction Expansions 527 

The fact that the determinants (5 ·13) and (5 ·19) have equal values is not easy 

to demonstrate generally, but can be easily verified for low values of n. 

Now that we are in possession of both sets of quantities Ll/ and ck, we can 

investigate the convergence of the expansions of E (z) . We find ourselves in 

the case where the coefficients Ll/ are extremely simple, whereas the moment 

expressions are heavier to handle. Therefore we use the criteria given in terms 

of the quantities Ll/. 

Since lim Lln2 
= Ll\ we conclude that there exists a fixed quantity l such that 

n n 

lim. (p_,_p) · = l 
n->oo n-1 n-1 

(p, p) 

(5· 20) 

and, usmg (3 · 27) and ( 4 · 8), we have 

Wo2 = c1_< __ E.11:.. .. <f< 4LI2. (5. 21) 
Co Cn-1 

Therefore the moment expansion does represent E(z) for izi > vl, Re z>O, but 

is a divergent series for lzl < vi 
For the convergence of the continued fraction, it follows from 

(5. 22) 

that the senes ~ kP is divergent, that is, the continued fraction expansion con-
P 

verges to E(z) for every z such that Re z>O. To compute the function which 

it converges to, we use the well-known resule2
) 

1 

1 + .\!.± ~2.~·-·· 
1+ z 

to obtain 

1+ z 

1+ 

1 

= .? .. ( --~· -~·t_t ··-- .. j ! -- i du 
rc J (1+tY-4tu u 1+4zu 

0 

(n>1), 

(5. 23) 

(5· 24) 

(5· 25) 

where we have taken for the radical the positive determination: as pointed out 

in § 4, we find indeed branch points on the imaginary axis. 

So far, we have not made explicit mention of the fact that the isotopic 

impurity had to be heavy in order to exhibit a Brownian motion. Let us then 

consider the limiting case where Q~oo, Ll~oo in such a way thae8
) 
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528 1\11. Dupuis 

2L1 . Wo 2 

lim-------- =hm---- =const 
Q->CO 1 + Q Q->CO L1 • 
d->CO d->CO 

(5. 26) 

As shown by (5 · 21), the lower bound of l goes to infinity like L1, whereas the 

upper bound goes also to infinity, but much faster, like L1 2 :*l that is the moment 

expansion becomes asymptotic. However, as shown by (5 · 22), the series :EP kP 

remains divergent and the continued fraction expansion renzains convergent. 

Thus we have clearly demonstrated on this particular example, how the con

tinued fraction representation can play the role of an analytic continuation 

for the moment expansion. 

Before closing this section, we would like to investigate briefly the analytic 

behaviour of E(z) in the half-plane Re z<O, especially with respect to Mori's 

long-time approximation. We shall mainly do it in the frame of the limiting 

case (5 · 26), for which (}) 0
2
/ L1 2 is an infinitesimally small quantity. 

First of all, we see that if we continue the function (5 · 24) into the half 

plane Re z<O on the Riemann sheet corresponding to the plus sign determina

tion for the radical in the denominator, E(z) has a pole exactly given by 

(5· 27) 

Now, to introduce Mori's n-th long time approximation means that writing E(z) as 

(5· 28) 

z+ 

+ 
z+En(z) 

where En (z) IS defined by Eq. (5 · 25), we neglect the z dependence of En (z) 

and take 

En (z) ~En (0) . 

For the present model, we deduce from (5 · 25) 

E1(0) =E2 (0) = ··· =E,JO) = ··· =.d- 1
• 

Thus the first approximation yields 

E(l) (z) =- -- 1 

z+wo
2
/L1 

to which corresponds a pole at 

*> Actually it can be seen from the expression (5·19) that 

lim lim ~~- _c}_t = 1 
Q-->co ru 02/ J = const n->co 4.12 

C n-1 . 
.:1->-00 

(5. 29) 

(5· 30) 

(5. 31) 
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Moment and Continued Fraction Expansions 

Zo(
1

) = - UJo2
/ L1. 

The second approximation yields 

with poles at 

2 
(2) _ U)o 

Z1 -- ----

j 

Finally the third approximation IS 

E<3) (z) = - -- - ~~± ~;~4_±_4__
2 

- ---

z3 + z2L1 + z (r»o2 + j2) + UJo2L1 

with poles at 

::::: l = ~ ~ + ~~ + o C,) ± i1~ [ J+ ~~ + o ( i) J , 1 

z,''' = ~ ~o'_ + o(~-) . J 

529 

(5· 32) 

(5. 33) 

(5· 34) 

(5· 35) 

(5· 36) 

We see that in all the first three approximations, we obtain one pole near the 

origin and close to the exact pole and other poles very far away: this result 

confirms perfectly Mori's general predictions. 2
> Namely, introducing the sequence 

of constants defined by 

E(O) = --t , Aj-1 = ~:~ (j>l) 
J 

(5· 37) 

we should expect, if An> An- 1 , • • ·, },1, Ao, n poles located near the on gin. In the 

present case, we have 

Ao = UJo
2

/ L1, (5· 38) 

and we find in the limitingcase (5·26),for which A.1>A.0,only one pole located 

near the origin. As for the other poles far away from the origin appearing 

in the second and third order approximations, they do not correspond to any 

singularity of E(z): the possible existence of such. meaningless poles was also 

suggested by Mori. 2> 

§ 6. On the general convergen<~e properties of the representations 

of time autocorrelation functions 

The example treated in the previous section has shown us that the moment 

. expansion could have a finite radius of convergence or could be an asymptotic 

series, whereas in both cases the continued fraction expansion was· representing 
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530 M. Dupuis 

the relaxation function in the entire right half-plane. 

A first question which arises is the following : In case of convergence, 

which expansion does converge faster ? 

We shall restrict ourselves to the case of Hermitian variables. Thus we 

can use inequalities established by Stieltjes14
) in the case of a real variable x. 

Applying them to our problem, we obtain 

£o_ __ El __ + ... _ _0n::-_1_< N2n(:x;_)_<E(x) < N2n+l(x) <Co_ C1 + ... + C271, 
X X 3 X 4n-l M2n(x) M2n+l (x) X X

3 
X

4
n+l ' 

(6·1) 

where Mn(x) and Nn(x) are the denominator and numerator of the n-th 

approximant of the continued fraction, as defined by (2 ·15). It is always 

advantageous to use the continued fraction to approximate E(x), because the 

successive approximants give closer values than the successive sums of the 

series. We may note that, even if the moment expansion is divergent, one can 

use it to obtain approximations of E(x): sums of an even number of terms will 

give us lower values, whereas sums with an odd number of terms will give us 

higher values. The same holds for the approximants of the continued fraction. 

A second question that one can ask is the following: is it possible that 

for any dynamical variable and all systems usually encountered in Statistical Me

chanics, the continued fraction expansion would be convergent for any z such 

that Re z>O? If the answer is yes, then, beyond the convergence problem, we 

shall have obtained a new general property of time autocorrelation functions, 

this property being best expressed through the condition imposed upon the 

moments. In this way we shall have attained in one point the ultimate goal of 

our convergence study, namely to discover new elements of information on the 

general behaviour of time autocorrelation functions. 

For this second question, we shall restrict ourselves again to the case of 

Hermitian variables. Before trying to answer the question, let us first discuss 

some implications and consequences of an affirmative answer. 

An affirmative answer implies that the series L:ncn -lf
2
n be divergent for any 

Hermitian dynamical variable attached to any statistical mechanical system. It 

is well known23
) in the theory of Probability that the quantity cn

1
;
2
n increases 

with n: this is readily proved by using Holder's inequality. Thus, for the series 

L:ncn -lf
2
n to be divergent, the quantity Cn112n must not increase too rapidly. This 

amounts to say that ~ (w) must not be too spread out, or equivalently that E(t) 

cannot decrease too steeply near the initial time. 

Now it is not easy to deduce from this divergence condition quantitative 

informations on the general behaviour of E(t) or ~ (w). The reason simply is 

that all the known criteria of convergence or divergence yield sufficient conditions 

but not necessary conditions. 

It is ~ (w) which seems most suitable for some quantitative statements: this 
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Monzent and Continued Fraction Expansions 531 

Is to be expected since it is the distribution function determining the moments 

Cn. Indeed, as it is customary to do when studying the rate of growth of a 

function, let us take the exponential functions exp( -alwla) (a>O) for reference 

functions : then it is known24
) that the series L:ncn- 1

1
2n is divergent if and only 

if a>l. If the distribution is more widely spread out (a<1), then one can 

add to g:(w) a multiple of a function such that exp(--JwJlf2)cosJw[lf\ all the 

moments of which are zero, so that the total moments are still the same : the 

moment problem thus is not determinate any more, the series z=ncn -lf2n no more 

divergent and the continued fraction no more convergent. 

There is a case where the previous statements can be verified and quanti

tatively discussed. It is the case of a Gaussian relaxatsion for which both E(t) 

and g.- ((I)) are Gaussian. If 

(6·2) 

then one finds that 

Cn= (1. 3. 5···2n-1)L/2
n (6· 3) 

and the series z=ncn- 1
;

2n diverges. Thus the continued fraction expansion con

verges, whereas the moment expansion is asymptotic, smce cn+1/cn= (2n+ 1)42
• 

Moreover, the coefficients Lln2 have simple expressions 

(6· 4) 

which illustrate the result of Stieltjes, according to which cn+ 1/ cn has no upper 

limit if Lln2 increases without bound with n. 

Another point we would like to mention is the connection between the 

convergence of the moment expansion of the relaxation function itself and the 

convergence of the continued fraction expansion of its Laplace transform. Indeed, 

if the series (1· 13) is analytic near the origin, then the continued fraction 

expansion is convergent for z such that Re z>O. The proof is simple. If the 

series (1·13) is analytic near the origin, then26
) it is sufficient and necessary 

that there exist two numbers M and (] such that for any n 

(6·5) 

This inequality has for consequence that the series ~nCn -
1
;

2
n is divergent 

and therefore the continued fraction converges for z such that Re z>O. 

These remarks on the implications of the convergence of the continued 

fraction expansion being made, let us come to the question of the proof. 

In order to study the convergence of the series 'L:ncn- 1
;

2n, we have chosen 

for inner product Kubo' s canonical product, as defined· by ( 4 · 4) and tried to 

find upper bounds for the moments Cn in the case of an Hermitian quantum. 

dynamical variable A (t). Indeed, it may be very difficult to calculate a quantity 

but much easier to find an upper bound for it. The details of the demonstra

tions are given in the Appendix and in the following we shall only state and 
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532 M. Dupuis 

discuss the results obtained. 
n n 

The expression of (A, A) can be brought into the form 

/3 

(A A) = l \ ( "HA -"HA)dJ. = 2 
[<AH 2

n-
1A)- ( 

211
-

1
) (HAH 2n- 2 A)+··· 

' . (3 j e e (3h2n 1 
I) 

(6· 6) 

The crudest way of finding an upper bound for this expression is to replace 

every term by the largest with a positive Sign. This leads to the exact ine

quality 

(6. 7) 

where M is a dimensionless constant, independent of n. 

To go further, we must calculate the n-dependence of (H4
n-

2
). Assuming 

the system large enough so that we can treat the energy spectrum as continuous, 

we have 

co 

(H4n-2) = ~ E4n--2e -/3Ep (E) dE, (6· 8) 

0 

where p(E) is the number of eigenstates with energy between E and E+dE. 

For an exact estimation of the right-hand side of the inequality (6 · 7), it be

comes at this point necessary to specify the system in order to know p (E). 

For simplicity let us first consider the case of a perfect gas of N particles 

of mass nz in a volume V and let us assume that we are in conditions such 

that we can take for p (E) the quasi-classical value 

E - 3N V N ( 2nm) sN;z EsN;2-1 

p( ---)- 2 N! h 2 T(3N)2+1) (6· 9) 

If keeping N fixed, we let n become very large, then we find that 

C -1j2n> /3h } . 
~n - 4 2n-1 

(6 ·10) 

Therefore for a classical perfect gas of a finite number of particles, the series 

2:ncn- 1
;

2n is divergent. The same conclusion holds for a finite system of weakly 

interacting harmonic oscillators of frequency v, for which27
) 

p(E)=N(-l)N _1 EN-l. 
hv , r Clv + 1) 

(6 ·11) 

More generally, for systems usually encountered in Statistical Mechanics, it has 

been suggested27
) or assumed28

> that the increase of p (E) with energy can be 

represented by a function of the form 
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Moment and Continued Fraction Expansions 533 

p(E) =CEN', (6 ·12) 

where N' is a fixed number of the order of the number of degrees of freedom 

and C a constant. Now, for such an energy dependence of p (E), the series 

L:ncn - 1
;

2
n is divergent. Thus, if the assumption (6 ·12) ·is correct, the convergence 

of the continued fraction expansion in the right half-plane would hold for any 

Hermitian dynamical variable attached to a usual statistical mechanical system 

of finite size. 

We can still state our result in the following way : For any 1--!ermitian 

dynamical variable attached to a sy:·;tem of perhaps ·very large but finite size 

which obeys (6 ·12), the continued fraction expansion of the Laplace transform 

of the relaxation function .is convergent for any z such that Re z>O. 

In the limiting case where N -> oo, V ~ oo, V / N = const, the inequality ( 6 · 7) 

leads to the trivial result cn-- 1
;

2n>o. T'he reason is that the expression (6·6) 

has been treated in a too simple way. Indeed this expression can be rewritten as 

-1- ......... 

+ ( 1) P ( 2np 1) (J-JP AIPn-1--p A- AHr; AI-Pn-l--1)) 

-+- ......... . 

+ ( -1) n-1 ( ~7-=-11) (J-pt-lAJ-InA -- AHn--lAJ-Tn)-1 . 

(6 ·13) 

Looking for the largest of the differences appeanng m the right-hand side, we 

obtain the inequality 

C < -~-- (?) 2n (A 
2
)

112 

_ (J-J:lm [A H2n---l-mJ 2)1/2 (6. 14) 
n-- 2(3 h (A, A) ' ' 

where m<2n may be zero or not. Now the upper limit found for cn depends 

upon the average of a quantity which does not increase to infinity when the 

system becomes infinitely large, because it contains the commutator of A with 

H 2n-l or H 2n-l-m and is not simply ll 4n-- 2
• 

If the expression (6 · 6) has then be treated in a more adequate way, we 

are now facing a much more -difficult problem in trying to evaluate the n

dependence of the upper bound (6 ·14). This problem is being presently in

vestigated. Although we cannot yet offer a rigorous justification, we think it 

likely that under the assumption (6 ·12), the continued fraction expansion remains 

convergent, if not for any Hermitian dynamical variable, at least for very general 

classes of Hermitian variables, even if the size of the system becomes infinitely 

large. 
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Appendix 
n n 

The problem is to find an upper bound for the moment en= (A, A)/ (A, A), 

where the inner product is Kubo's canonical product ( 4 · 4). 

Using repeatedly Heisenberg's equation of motion, we have 

2n 

(ih) 2nA= [···[[[A, H], H], H] ···] = 

AH2n- ( 2{z) HAH2n-1 + ( 2;) ~J2AH2n-2- ... + H2n A . (A·1) 

Let us then define the function 

A().)= e"H A e-HI (A·2) 

the 2n-th derivative of which has for expression 

A (2n) (A) = H2ne>.H Ae->.H- ( 2f) H2n-1e>.H AHe-AII 

+ ( 2; ) H2n-2e>.H AH2e->.II + ... + e"H AH2ne->.H . (A·3) 

Zn 

As expected, (ihYn A= A <
2
n) (0), since A (it/h) is the formal solution of Heisen-

berg's equation. Using (A·1) and (A·3), we may write 

n n 2n c·-)2n
13 

2n 

h2n (A, A) = (ihYn (A, A) = ~~~-~ ~ (e"rr A e-"IIA')dtl 

0 

/3 

= ~-- ~ (A <2
n) (A) At)dtl = ~- [(A <2

n-l) ((])At)- (A <2
n-l) (O) At)] . (A· 4) 

0 

Introducing the partition function Z=Tre- 13rr, Eq. (A·4) can be written: 

(]Zh2n (A, A) = [ Tr (H 2n-1Ae-/3H At) - ( 21111 ) Tr (H 2
n-

2 AHe-/3H At) 

+ · · ·-Tr (AH 2n-le-/3H At) J 

- [ Tr (H 2n-le-/3H AAt)- ( 21111 ) Tr (H 2n-2e- 13HAHAr) 

+ · · ·-Tr (e-/3H AH 2n-lAt) J (A·5) 

or, since the trace of a product is invariant under cyclic permutation of the factors, 
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Moment and Continued Fraction Expansions 535 

n u 

{3Zh2n (A, A) = Tr [H 2
n-l (Ae-.eii At+ Ate-.eii A)] 

- (2nl1 )Tr[Hzn-z(.A.e·-.SIIHAt+Ate-tniHA)] 

+ ........ . 

(A·6) 

From now on, we restrict ourselves to Hermitian variables ; thus (A· 6) reduces 

to 

n n 

t {3Zh 2n (A, A) = Tr (H 2n- 1Ae--.e1IA) 

- ( 
2n l 1

) Tr (H 2n- 2Ae-.S1IJ-JA) + .. ·-Tr (Ae-!:iiiHzn- 1A) (A·7) 

Furthermore, we shall assume that the energy of the system is defined in such 

a way that all the eigenvalues of the Hamiltonian are positive. It follows that 

all the terms of the right-hand side of (A· 7) are positive. Hence, if we want 
n n 

to find an upper bound for (A, A), we must find which is the largest term. 

Defining Xp by 

Xp = Tr (H 2n-l--p AHPe-/3II A) , 

we first show that the sequence of quantities xv IS convex, that is, 

x/<xp-lXp+l . 

(A·S) 

(A·9) 

In order to prove it, we make use of a well-known inequality in the theory of 

linear operators25
) and write 

[Tr (H 2
H

1 AH 2p+le-f31l A)] 2= [Tr (FiqAHP+le-/3IIJze- 131IJZH 21 AHN 1)] 2 

<Tr (Hq AHP+le- 131IHp+ 1AHq) Tr (HN 1AHPe- 13IIHv AHH 1
) , 

whence, by choosing p and q such that p + q = 2n- 1, 

Tr (H 2qAH 2v+ 2e- 13u A) Tr (H 2N 1AH 2p+le-!3II A) -------- ------ ---- --------------------------> ------- -- -------·-· ---------------------------- .... ------ -> ... 
Tr (H 2

H
1AH2p+le- 13IIA)- Tr (H 2N 2AH2Pe- 13IIA) 

Tr (H 2n- 2AHe- 13IIA) __ x1 > --- -- ----- ------------- ---------------------
- Tr (H 2

n-l ile-f3II A) Xo 

(A·10) 

(A·11) 

which establishes (A· 9). This inequality means that xv cannot go through a 

maximum: it may decrease steadily as p increases, or increase steadily or go 

through a minimum. 

If the sequence Xp decreases steadily, the largest term is x 0 and we may 

write 

n n ( 2n-1(2 1)) t {3Zh 2n (A, A)< 1 + ~ 1 n p Tr H 2n-- 1Ae- 131l A (A·12) 

or 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

7
/3

/5
0
2
/1

8
6
1
7
9
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



536 M. Dupuis 

(A·13) 

If the sequence xP increases steadily, or goes through a minimum, then one 

can always choose n large enough so that Xn is the largest term. Thus one 

has 

(A·14) 

or 

n n 

(3h2n (A, A) <22n(H4n-2)1!2(A 4/;2. (A ·15) 

In both cases (A ·13) and (A ·15), we thus find that 

C < M (-2) 2

n(H4n-2)1f2 
n- (3 h ' 

(A·16) 

where M is a dimensionless constant, independent of n. 

it 

or 

However, coming back to the expression (A·7), we note that we can write 

+········· 

+ ( -1y~- 1 
( 

211 - 1 ) Tr (HnAHn- 1e-!3H A- Hn- 1 AHne--!3H A) . (A ·17) 
n-1 

If the sequence is steadily increasing or decreasing, one may write 

t (3Zh 2n (A, A)< ( 1 + :~ ( 211 p 1 )) I Tr (H 2n- 1Ae-/3HA- ilH 2n-le-/3H A) I , 

(A·18) 

(A A)<-1 ~~-~-1 I(A[H2n-1 AJ)I 
' (3 Jz2n ' ' 

(A·19) 

whereas if the sequence is going through a minimum value equal to Xm, one 

may find n large enough so that 

t (3Zh 2n (A, A)< (1 +'I: ( 211 - 1 ) J Tr (AH 2n- 1e·-/3H A- H 2 n- 1 ~-m AHme-/3H A) 
P=l p I 

(A·20) 

or 

(A· 21) 
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Moment and Continued Fraction Expansions 537 

In both cases (A·l9) and (A·21), we find that 

en< -j§- (~--) 
2

n(t~~i- <H2m [A, J-[2n-1-m] 2)1/2, (A·22) 

where nz<2n may be zero or not. 
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