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Abstract: We extend the construction of moment-angle complexes to simplicial posets by associating a certain Tm-space ZS

to an arbitrary simplicial poset S on m vertices. Face rings Z[S] of simplicial posets generalise those of simplicial
complexes, and give rise to new classes of Gorenstein and Cohen–Macaulay rings. Our primary motivation is
to study the face rings Z[S] by topological methods. The space ZS has many important topological properties
of the original moment-angle complex ZK associated to a simplicial complex K. In particular, we prove that the
integral cohomology algebra of ZS is isomorphic to the Tor-algebra of the face ring Z[S]. This leads directly to
a generalisation of Hochster’s theorem, expressing the algebraic Betti numbers of the ring Z[S] in terms of the
homology of full subposets in S. Finally, we estimate the total amount of homology of ZS from below by proving
the toral rank conjecture for the moment-angle complexes ZS.
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1. Introduction

Simplicial posets describe the combinatorial structures underlying “generalised simplicial complexes” whose faces arestill simplices, but two faces are allowed to intersect in any subcomplex of their boundary, rather than just in a singleface. These are also known as “ideal triangulations” in low-dimensional topology, or as “simplicial cell complexes”.
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Moment-angle complexes from simplicial posets

Simplicial posets also attract a lot of interest in algebraic combinatorics and combinatorial commutative algebra. Stan-ley [17] introduced the face ring Z[S] of a simplicial poset S as a quotient of certain graded polynomial ring by ahomogeneous ideal determined by the poset relation in S (see Definition 2.1 below). The ring Z[S] generalises the
Stanley–Reisner face ring Z[K] of a simplicial complex K. The rings Z[S] have remarkable algebraic and homologicalproperties, albeit they are much more complicated than the Stanley–Reisner rings Z[K]. Unlike Z[K], the ring Z[S] isnot generated in the lowest positive degree. (For topological reasons it is convenient to double the grading making iteven; so that Z[K] is generated by degree-two elements, but Z[S] is not.) Face rings of simplicial posets were furtherstudied by Duval [7] and Maeda–Masuda–Panov [12, 13], among others. Cohen–Macaulay and Gorenstein* face ringsare particularly important; both properties are topological, that is, depend only on the topological type of the geometricrealisation |S|. Gorenstein* simplicial posets also feature in toric topology, as combinatorial structures associated toorbit quotients of torus manifolds with special cohomological properties [13].Here we suggest an approach to studying the face rings of simplicial posets by topological methods. We associate to Sa certain space ZS, called the moment-angle complex, which is glued from products of discs and circles (Definition 3.1).The original moment-angle complex was introduced by Buchstaber and Panov in [3] as a disc-circle decomposition ofthe Davis–Januszkiewicz universal space ZK associated to a simplicial complex K [6]; this decomposition was used inthe calculation of the cohomology ring of ZK in terms of the face ring of K [3].We therefore continue here the unifying theme of toric topology which links several aspects of equivariant topology tocombinatorial commutative algebra. Motivated by the categorical constructions in toric topology [15] we describe theface ring Z[S] as the (inverse) limit of a certain diagram of polynomial rings over the opposite face category catop(S)of S (Lemma 2.5). This generalises the limit description [16, (4.7)] for the Stanley–Reisner face ring Z[K] of a simplicialcomplex, and leads to an important functorial property (Proposition 2.6).The face ring Z[S] of a simplicial poset S with m vertices is naturally an algebra over the polynomial ring Z[v1, . . . , vm].We show that the corresponding Tor-algebra TorZ[v1,...,vm ](Z[S],Z) is isomorphic to the integral cohomology ring of ZSwith the appropriately refined grading (Theorem 3.5), therefore extending the result of [2] and [14] to simplicial posets.The Koszul complex calculating the Tor splits into the sum of subcomplexes corresponding to the full subposets Sa of S;the cohomology of these subcomplexes can be identified with the cellular cohomology of |Sa| after a shift of dimension.This leads to a generalisation of Hochster’s theorem calculating the algebraic Betti numbers of Z[S] (Corollary 3.10).Recently a lot of work has been done on generalising the construction of moment-angle complex ZK = ZK

(
D2, S1)to pairs of spaces (X,W ) different from (

D2, S1), and studying the resulting spaces from the homotopy-theoreticalperspective. See [11] and [1] for important advances in this direction. Among examples of these “generalised moment-angle complexes” we mention those corresponding to the pairs (D1, S0) (the real moment-angle complex RZK), (C,C\0)and (R,R \ 0) (the complex and real coordinate subspace arrangement complements respectively), and (CP∞, pt) (theso-called Davis–Januszkiewicz space, whose cohomology is the face ring Z[K]), see [2, Chapter 6].Here we follow a different route: instead of replacing the pair (D2, S1) in ZK = ZK

(
D2, S1) by a different pair, we extendthe “indexing structure” from a simplicial complex K to a simplicial poset S. One of the main reasons to keep the pair(

D2, S1) intact is that the space ZS = ZS

(
D2, S1) supports a Tm-action, like the original moment-angle complex ZK.Moreover, if the dimension of |S| is n − 1, then there is always an (m − n)-dimensional subtorus in Tm acting on ZSalmost freely (Corollary 4.3). A choice of such subtorus is equivalent to a choice of a linear system of parameters in the

Q-face ring Q[S] (Theorem 4.2). It has been shown recently by Cao–Lü [5] and Ustinovsky [18] that the total dimensionof the rational cohomology of ZK is at least 2m−n. Here we extend this result to ZS, thereby settling Halperin’s toral
rank conjecture for moment-angle complexes corresponding to simplicial posets (Corollary 4.7).We work over Z throughout most of the paper, as this is the most natural coefficient ring from topologist’s point of view.All our statements are readily generalised to an arbitrary commutative associative ring with unit.There is a clash of terminology between combinatorialists and homotopy theorists about using the term “simplicial”. Wedo not use simplicial homotopy theory in this paper, so that our simplicial posets and simplicial cell complexes do not
mean simplicial objects in the appropriate categories.
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2. Simplicial posets and their face rings

A poset (partially ordered set) S with the order relation 6 is called simplicial if it has an initial element 0̂ and for each
σ ∈ S the lower segment [0̂, σ ] is a boolean lattice (the face poset of a simplex). We assume all our posets to be finiteand sometimes refer to elements σ ∈ S as simplices. The rank function | · | on S is defined by setting |σ | = k for σ ∈ Sif [0̂, σ ] is the face poset of a (k − 1)-dimensional simplex. The rank of S is the maximum of ranks of its elements, andthe dimension of S is its rank minus one. The vertices of S are elements of rank one. We assume that S has m verticesand denote the vertex set by V (S) = [m] = {1, . . . , m}. Similarly we denote by V (σ ) the vertex set of σ , that is the setof i with i 6 σ .The face poset of a simplicial complex is a simplicial poset, but there are many simplicial posets that do not arise in thisway. We identify a simplicial complex with its face poset, thereby regarding simplicial complexes as particular cases ofsimplicial posets.To each σ ∈ S we assign a geometric simplex ∆σ whose face poset is [0̂, σ ], and glue these geometric simplices togetheraccording to the order relation in S. We get a regular cell complex in which the closure of each cell is identified witha simplex preserving the face structure, and all attaching maps are inclusions. We call it a simplicial cell complex anddenote its underlying space by |S|.Using a more formal categorical language, we consider the face category cat(S) whose objects are elements σ ∈ S andthere is a morphism from σ to τ whenever σ 6 τ. Then we may write

|S| = colim∆S,

where ∆S is a diagram (covariant functor) from cat(S) sending every morphism σ 6 τ to the inclusion of geometricsimplices ∆σ ↪→ ∆τ , and the colimit is taken in the category of (good) topological spaces.For every simplicial poset S there is the associated simplicial complex KS on the same vertex set V (S), whose simplicesare the sets V (σ ), σ ∈ S. There is a folding map of simplicial posets
S→ KS, σ 7→ V (σ ). (1)

The corresponding geometric folding |S| → |KS| is a “branched combinatorial covering” in the sense of [4]; it is theidentity on the vertices, and every simplex in KS is covered by a certain positive number of simplices of S.For any two simplices σ, τ ∈ S, denote by σ ∨ τ the set of their least common upper bounds (joins), and by σ ∧ τ the setof their greatest common lower bounds (meets). Since S is a simplicial poset, σ ∧τ consists of a single simplex whenever
σ ∨ τ is non-empty. It is easy to observe that S is a simplicial complex if and only if for any σ, τ ∈ S the set σ ∨ τ iseither empty or consists of a single simplex [12, Proposition 5.1]. In this case S coincides with KS.Now consider the graded polynomial ring Z[vσ : σ ∈ S] with one generator vσ of degree deg vσ = 2|σ | for every σ ∈ S.
Definition 2.1 ([17]).The face ring of a simplicial poset S is the quotient

Z[S] = Z[vσ : σ ∈ S] / IS,
where IS is the ideal generated by the elements v0̂ − 1 and

vσvτ − vσ∧τ ·
∑
η∈σ∨τ

vη. (2)
The sum over the empty set is assumed to be zero, so we have vσvτ = 0 in Z[S] if σ ∨ τ = ∅.The grading may be refined to a Zm-grading by setting mdeg vσ = 2V (σ ). Here V (σ ) is a subset of [m], and we identifysuch subsets a ⊂ [m] with vectors in {0, 1}m ⊂ Zm in the standard way: the unit coordinates of a vector correspond tothe elements in a subset. In particular, mdeg vi = 2ei (two times the ith basis vector).

717



Moment-angle complexes from simplicial posets

Remark 2.2.The definition above extends the notion of the face ring of a simplicial complex (also known as the Stanley–Reisner ring)to simplicial posets. In the case when S is a simplicial complex we may rewrite (2) as vσvτ − vσ∧τvσ∨τ (because σ ∨ τ iseither empty or consists of a single simplex), and use the latter relation to express any vσ as
vσ = ∏

i∈V (σ ) vi.

The relations between the vi coming from (2) can now be written as
vi1 · · · vik = 0 if {i1, . . . , ik} does not span a simplex of S. (3)

The face ring Z[S] is therefore isomorphic to the quotient of the polynomial ring Z[v1, . . . , vm] by (3), where deg vi = 2.This is the standard way of describing the face ring of a simplicial complex.

σ

21
τ

σ

(a) r = 2 (b) r = 3

1
3

2

τ

e

Figure 1. Simplicial cell complexes.

Example 2.3.1. The simplicial cell complex shown in Figure 1 (a) is obtained by gluing two segments along their boundaries andhas rank 2. The vertices are 1, 2 and we denote the 1-dimensional simplices by σ and τ. Then the face ring Z[S] is thequotient of the graded polynomial ring
Z[v1, v2, vσ , vτ ], deg v1 = deg v2 = 2, deg vσ = deg vτ = 4

by the two relations
v1v2 = vσ + vτ , vσvτ = 0.

2. The simplicial cell complex in Figure 1 (b) is obtained by gluing two triangles along their boundaries and has rank 3.The vertices are 1, 2, 3 and we denote the 1-dimensional simplices (edges) by e, f and g, and the 2-dimensional simplicesby σ and τ. The face ring Z[S] is isomorphic to the quotient of the graded polynomial ring
Z[v1, v2, v3, vσ , vτ ], deg v1 = deg v2 = deg v3 = 2, deg vσ = deg vτ = 6

by the two relations
v1v2v3 = vσ + vτ , vσvτ = 0.The generators corresponding to the edges can be excluded because of the relations ve = v1v2, etc.

The following lemma gives another perspective on the algebraic structure of the ring Z[S].
Lemma 2.4 ([13, Lemma 5.4]).
Every element of Z[S] can be uniquely written as a linear combination of monomials vα1τ1 vα2τ2 · · · vαkτk corresponding to chains
of totally ordered elements τ1 < τ2 < . . . < τk of S\0̂.
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In other words, the monomials vα1τ1 vα2τ2 · · · vαkτk with τ1 < τ2 < . . . < τk constitute a basis for the graded free abeliangroup Z[S]. We refer to the expansion of an element x ∈ Z[S] in terms of this basis as the chain decomposition of x. Theproof of the above lemma uses the straightening relation (2) inductively, which allows one to express a product of twoelements via products of elements in order. This can be restated by saying that Z[S] is an example of an algebra with
straightening law (see discussion in [17, p. 323]).As was observed in [16, (4.7)], the face ring Z[K] of a simplicial complex can be realised as the limit of a diagram ofpolynomial algebras over catop(K). A similar description exists for the face ring Z[S].
Z[S] as a limit

We consider the diagram (covariant functor) Z[·]S from the opposite face category catop(S) to the category cgr of commu-tative associative graded rings with unit. Its value on σ ∈ S is the polynomial ring Z[σ ] = Z[vi : i ∈ V (σ )], and its valueon the morphism σ 6 τ is the surjection Z[τ]→ Z[σ ] sending each vi with i /∈ V (σ ) to zero.
Lemma 2.5.
We have

Z[S] = limZ[·]S,
where the (inverse) limit is taken in the category cgr.
Proof. We enumerate the elements of S so that the rank function does not decrease, and proceed by induction. Wetherefore may assume the statement is proved for a simplicial poset T, and need to prove it for S which is obtained from
T by adding one element σ . Note that S<σ = {τ ∈ S : τ < σ} is the face poset of the boundary of the simplex ∆σ .Geometrically, we may think of |S| as obtained from |T| by attaching one simplex ∆σ along its boundary (if |σ | = 1, then∆σ is a single point, so |S| is a disjoint union of |T| and a point). We therefore need to prove that the following is apullback diagram:

Z[S] −−−−−→ Z[σ ] = Z[S6σ ]y y
Z[T ] −−−−−→ Z[S<σ ].

(4)
Here the vertical arrows are obtained by mapping vσ to 0, while the horizontal ones are obtained by mapping vτ to 0for τ 66 σ . Denote the pullback of (4) by A; we need to show that Z[S]→ A is an isomorphism.Since the limits in cgr are created in the underlying category cgg of graded abelian groups (graded Z-modules), theunderlying group of A is the direct sum of Z[T] and Z[σ ] with the pieces Z[S<σ ] identified in both groups. In other words,

A = T ⊕ Z[S<σ ]⊕ S, (5)
where T is the complement to Z[S<σ ] in Z[T], and S is the complement to Z[S<σ ] in Z[σ ]. By Lemma 2.4, the group
Z[S<σ ] has basis of monomials vα1τ1 vα2τ2 · · · vαkτk with τk < σ . Similarly, S has basis of those monomials with τk = σ and
αk > 0, while T has basis of those monomials with τk 66 σ and αk > 0. Yet another application of Lemma 2.4 gives adecomposition of Z[S] identical to (5): a basis element vα1τ1 vα2τ2 · · · vαkτk with αk > 0 has either τk 66 σ , or τk < σ , or τk = σ .These three possibilities map to T , Z[S<σ ] and S respectively. It follows that Z[S]→ A is a group isomorphism. Since itis a ring map, it is also a ring isomorphism, thus finishing the proof.
The description of Z[S] as a limit has the following corollary, describing the functorial properties of the face ring.
Proposition 2.6.
Let f : S→ T be a rank-preserving map of simplicial posets. Define a homomorphism

f∗ : Z[wτ : τ ∈ T] → Z[vσ : σ ∈ S]
by f∗(wτ ) =∑σ∈f−1(τ) vσ . Then f∗ descends to a ring homomorphism Z[T]→ Z[S], which we continue to denote by f∗.
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Moment-angle complexes from simplicial posets

Proof. The poset map f gives rise to a functor f : catop(S)→ catop(T) and therefore to
f∗ : [catop(T), cgr] → [catop(S), cgr],

where [catop(S), cgr] denotes the functors from catop(S) to cgr. It is easy to see that f∗Z[·]T = Z[·]S (see Lemma 2.5), sowe have the induced map of limits f∗ : Z[T ] → Z[S]. We also have that f∗(wτ ) = ∑
σ∈f−1(τ) vσ by the construction of limin cgr.

Example 2.7.The folding map (1) induces a monomorphism Z[KS] → Z[S], which embeds Z[KS] in Z[S] as the subring generated bythe elements vi.
Remark 2.8.The functoriality property for the face ring Z[K] of a simplicial complex was observed in [2, Proposition 3.4]. However,an attempt to prove Proposition 2.6 directly from the definition, by showing that f∗(IT) ⊂ IS, runs into a complicatedcombinatorial analysis of the poset structure. This is an example of a situation where the use of an abstract categoricaldescription of Z[S] proves to be beneficial.The lim-construction of Z[S] also opens the way to further generalisations of the face ring, to more general posets andmaybe to simplicial sets. Whether these rings would have a nice algebraic description like that of Definition 2.1 isquestionable though.
3. Moment-angle complexes

Let D2 denote the standard unit 2-disc and S1 its boundary circle. We further consider the unit polydisc
(
D2)m in thecomplex space Cm: (

D2)m = {(z1, . . . , zm) ∈ Cm : |zi| 6 1, i = 1, . . . , m}.
For every σ ∈ S, consider the following subset in (D2)m:

Bσ = {(z1, . . . , zm) ∈ (D2)m : |zj | = 1 if j 66 σ
}
.

Then Bσ is homeomorphic to a product of |σ | discs and m− |σ | circles. We have an inclusion Bτ ⊂ Bσ whenever τ 6 σ .It follows that the assignment σ 7→ Bσ defines a diagram from cat(S) to top, which we denote (D2, S1)S.
Definition 3.1.The moment-angle complex corresponding to a simplicial poset S is

ZS = colim (D2, S1)S. (6)
The space ZS is glued from the “moment-angle blocks” Bσ according to the poset relation in S. When S is a simplicialcomplex K it becomes the standard moment-angle complex ZK of [2, §6.2].
Remark 3.2.The definition of ZS is readily generalised to an arbitrary pair of spaces (X,W ) as ZS(X,W ) = colim(X,W )S. An easyargument similar to [14, Proposition 3.5] shows that

H∗
(colim (CP∞, pt)S;Z) ∼= Z[S].
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Example 3.3.Let S be the simplicial poset of Figure 1 (a). Then ZS is obtained by gluing two copies of D2 ×D2 along their boundary
S3 = D2×S1 ∪ S1×D2. Therefore, ZS

∼= S4. Here, KS = ∆1 (a segment), and the moment-angle complex map inducedby (1) folds S4 onto D4. Similarly, if S is of Figure 1 (b), then ZS
∼= S6. Note that even-dimensional spheres do notappear as moment-angle complexes ZK for simplicial complexes K.

The polydisc (D2)m has the natural coordinatewise action of the m-torus Tm, with quotient the m-cube Im. Since everyinclusion Bτ ⊂ Bσ is Tm-equivariant, the moment-angle complex ZS acquires a Tm-action.The join of simplicial posets S1 and S2 is the simplicial poset S1∗S2 whose elements are pairs (σ1, σ2), with (σ1, σ2) 6 (τ1, τ2)whenever σ1 6 τ1 in S1 and σ2 6 τ2 in S2.The following properties of ZS are similar to those of ZK and can be proved in a very much similar fashion;see [2, Chapter 6].
Proposition 3.4.(a) ZS1∗S2 ∼= ZS1×ZS2 ;(b) the quotient ZS/Tm is homeomorphic to the cone over |S|;

(c) if |S| ∼= Sn−1, then ZS is a manifold of dimension m+ n.

An important series of examples of simplicial posets S with |S| ∼= Sn−1 comes from the inverse face posets of face-acyclic
manifolds with corners in the sense of [13]. These manifolds with corners Q provide decompositions of an n-dimensionalball into faces, generalising those face decompositions coming from simple n-polytopes P. We therefore obtain moment-
angle manifolds ZQ generalising the manifolds ZP corresponding to simple polytopes.
Construction (cell decomposition).The disc D2 decomposes in the standard way into three cells of dimensions 0, 1 and 2, which we denote ∗, T and Drespectively. The polydisc (D2)m then acquires the product cell decomposition, with each Bτ ⊂ Bσ being an inclusionof cellular subcomplexes for τ 6 σ . We therefore obtain a cell decomposition of ZS. Each cell in ZS is determined by anelement σ ∈ S and a subset ω ∈ V (S) with V (σ ) ∩ ω = ∅. Such a cell is a product of |σ | cells of D-type, |ω| cells of
T -type and the rest of ∗-type. We denote this cell by κ(ω, σ ).The resulting cellular cochain complex C ∗(ZS) has an additive basis consisting of cochains κ(ω, σ )∗ dual to the corre-sponding cells. We introduce a (Z⊕Zm)-grading on the cochains by setting

mdeg κ(ω, σ )∗ = (−|ω|, 2V (σ ) + 2ω),
where we think of both V (σ ) and ω as vectors in {0, 1}m ⊂ Zm. The cellular differential does not change the Zm-part ofthe multigrading, so we obtain a decomposition

C ∗(ZS) = ⊕
a∈Zm

C ∗,2a(ZK)
into a sum of subcomplexes. In fact the only nontrivial subcomplexes are those for which a is in {0, 1}m. The cellularcohomology of ZS thereby acquires an additional grading, and we may define the multigraded Betti numbers b−i,2a(ZS)by

b−i,2a(ZS) = rankH−i,2a(ZS), i = 1, . . . , m, a ∈ Zm.

For the ordinary Betti numbers we have bk (ZS) =∑2|a|−i=k b−i,2a(ZS).
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The face ring Z[S] acquires a Z[v1, . . . , vm]-algebra structure via the map Z[v1, . . . , vm]→ Z[S] sending each vi identically.(Unlike the case of simplicial complexes, this map is generally not surjective.) The (Z⊕Zm)-graded Tor-algebra of Z[S]is defined in the standard way [2, § 3.4]:
TorZ [v1,...,vm ](Z[S],Z) = ⊕

i>0,a∈ZmTor−i, 2a
Z [v1,...,vm ](Z[S],Z).

Note that the first degree is always nonpositive, which is because we number the terms in a free resolution by nonpositiveintegers.
Theorem 3.5.
There is a graded ring isomorphism

H∗(ZS;Z) ∼= TorZ [v1,...,vm ](Z[S],Z)
whose graded components are given by the group isomorphisms

Hp(ZS;Z) ∼= ⊕
−i+2|a|=pTor−i, 2a

Z [v1,...,vm ](Z[S],Z) (7)
in each degree p. Here |a| = j1 + · · ·+ jm for a = (j1, . . . , jm).
Using the Koszul resolution for the trivial Z[v1, . . . , vm]-module Z (see [2, Lemma 3.29]) we restate the above theorem asfollows:
Theorem 3.6.
There is a graded ring isomorphism

H∗(ZS;Z) ∼= H
[Λ[u1, . . . , um]⊗ Z[S], d].

Here on the right hand side stands the cohomology of a differential (Z⊕Zm)-graded ring with

mdegui = (−1, 2ei), mdeg vσ = (0, 2V (σ )), dui = vi, dvσ = 0,
where ei ∈ Zm is the ith basis vector, for i = 1, . . . , m.

Proof. The proof given here structurally resembles the proof of [14, Theorem 4.7] (for the case of ZK). However,algebraic arguments used in the proof for ZK do not work in the case of simplicial posets. Instead, we use topologicaland categorical arguments at the appropriate places of this proof.We consider the quotient differential graded ring
R∗(S) = Λ[u1, . . . , um] ⊗ Z[S]/IR ,

where IR is the ideal generated by the elements
uivσ with i ∈ V (σ ), vσvτ with σ ∧ τ 6= 0̂.

Note that the latter condition is equivalent to V (σ ) ∩ V (τ) 6= ∅.We claim that the quotient projection
ρ : Λ[u1, . . . , um]⊗Z[S] → R∗(S)

722



Z. Lü, T. Panov

is a quasi-isomorphism, that is, it induces an isomorphism in cohomology.Lemma 2.4 implies that R∗(S) is generated, as an abelian group, by the monomials uωvσ , where ω ⊆ V (S), σ ∈ S,
ω ∩ V (σ ) = ∅, and uω = ui1 . . . uik for ω = {i1, . . . , ik}. In particular, R∗(S) is a free abelian group of finite rank. It isnow easy to observe that the map

g : R∗(S)→ C ∗(ZS), uωvσ 7→ κ(ω, σ )∗ (8)
is an isomorphism of cochain complexes. Indeed, the additive bases of the two groups are in one-to-one correspondence,and the differential in R∗(S) acts (in the case |ω| = 1 and i /∈ V (σ )) as

d(uivσ ) = vivσ = ∑
η∈i∨σ

vη.

This is exactly how the cellular differential in C ∗(ZS) acts on κ(i, σ )∗. The case of an arbitrary ω is treated similarly.It follows that we have an isomorphism of cohomology groups Hj [R∗(S)] ∼= Hj (ZS) for all j .The differential ring Λ[u1, . . . , um]⊗Z[S] also may be identified with the cellular cochains of a certain space. Namely,consider the space ZS

(
S∞, S1) defined in the same way as (6), but with D2 replaced by an infinite-dimensional sphere S∞.The latter is a contractible space which has a cell decomposition with one cell in every dimension. The boundary ofevery 2k-dimensional cell is the closure of the (2k − 1)-cell, while the boundary of an odd-dimensional cell is zero. Thecellular cochains of S∞ can be identified with the Koszul differential ring

Λ[u]⊗Z[v ], degu = 1, deg v = 2, du = v, dv = 0.
As in the case of (8), Lemma 2.4 implies that there is an isomorphism of cochain complexes

g′ : Λ[u1, . . . , um]⊗Z[S] → C ∗
(
ZS

(
S∞, S1)).

We also have a deformation retraction D2 ↪→ S∞ → D2. It follows from the standard functoriality arguments that wealso have a deformation retraction
ZS = colim (D2, S1)S ↪→ colim (S∞, S1)S → colim (D2, S1)S

onto a cellular subcomplex. Therefore the cochain map C ∗(ZS

(
S∞, S1)) → C ∗(ZS) induced by the inclusion is a coho-mology isomorphism.Summarising the above observations we obtain the commutative square

Λ[u1, . . . , um]⊗Z[S] g′−−−−−→ C ∗(ZS(S∞, S1))
ρ
y y

R∗(S) g−−−−−→ C ∗(ZS)
(9)

in which the horizontal arrows are isomorphisms of cochain complexes, and the right vertical arrow induces a cohomologyisomorphism. It follows that the left arrow is a quasi-isomorphism, as claimed.
Remark 3.7.There is an obvious inclusion of cochain complexes ι : R∗(S) → Λ[u1, . . . , um]⊗Z[S], which is not a ring homomorphismthough. It is possible to prove that ρ is a cohomology isomorphism by constructing a cochain homotopy s between themaps id and ι ·ρ from Λ[u1, . . . , um]⊗Z[S] to itself. However, in the construction of s we cannot use an inductive argumentas in [14, Lemma 4.4], and the general formula for s is rather cumbersome.
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The additive isomorphism of (7) now follows from (9). To establish the ring isomorphism we need to analyse the multi-plication of cellular cochains in C ∗(ZS).We consider the diagonal approximation map ∆̃ : D2 → D2×D2, defined in polar coordinates z = ρeiφ ∈ D2, 0 6 ρ 6 1,0 6 φ < 2π, as follows:
ρeiφ 7→

{(1 + ρ(e2iφ − 1), 1) for 0 6 φ 6 π,(1, 1 + ρ(e2iφ − 1)) for π 6 φ < 2π.
This is a cellular map homotopic to the diagonal ∆: D2 → D2×D2. Taking an m-fold product, we obtain a cellulardiagonal approximation ∆̃ : (D2)m → (

D2)m×(D2)m.
It restricts to a map Bσ → Bσ×Bσ for every σ ∈ S and gives rise to a map of diagrams

(
D2, S1)S → (

D2, S1)S×(D2, S1)S.
By definition, the colimit of the latter is ZS∗S, which is identified with ZS×ZS. We therefore obtain a cellular ap-proximation ∆̃ : ZS → ZS×ZS for the diagonal map of ZS. It induces a ring structure on the cellular cochains via thecomposition

C ∗(ZS)⊗C ∗(ZS) ×−−−−−→ C ∗(ZS×ZS) ∆̃∗−−−−−→ C ∗(ZS).We claim that, with this multiplication in C ∗(ZS), the map (8) becomes a differential graded ring isomorphism. To seethis we first observe that since (8) is a linear map, it is enough to consider the product of two generators uωvσ and uψvτ .If any two of the subsets ω, V (σ ), ψ and V (τ) have nonempty intersection, then uωvσ · uψvτ = 0. Otherwise (if all of thefour subsets are complementary) we have
g(uωvσ · uψvτ ) = g

(
uωtψ ·

∑
η∈ σ∨τ

vη

) = ∑
η∈ σ∨τ

κ (ωtψ, η)∗. (10)
We also observe that ∆̃κ(χ, η) = ∑

ωtψ=χ
σ∨τ3 η

κ(ω, σ )×κ(ψ, τ)
whenever χ ∩ V (η) = ∅. Therefore,

g(uωvσ )·g(uψvτ ) = κ(ω, σ )∗ ·κ(ψ, τ)∗ = ∆̃∗(κ(ω, σ )×κ(ψ, τ))∗ = ∑
η∈ σ∨τ

κ(ωtψ, η)∗.
Comparing this with (10) we deduce that (8) is a ring map, concluding the proof of Theorem 3.6.
Remark 3.8.Using the monoid structure on D2 as in [14, Lemma 4.2] one easily sees that the construction of ZS is functorial withrespect to maps of simplicial posets. This together with Proposition 2.6 makes the isomorphism of Theorem 3.5 functorial.
We have the following important corollary.
Corollary 3.9.
The groups Tor−i, 2a

Z [v1,...,vm ](Z[S],Z) vanish for a /∈ {0, 1}m.

Proof. The multigraded component R−i, 2a(S) is zero for a /∈ {0, 1}m.
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Denote by Sa the subposet of S consisting of those σ for which V (σ ) ⊂ a. As a further corollary of Theorems 3.5 and 3.6we obtain the following generalisation of Hochster’s theorem to simplicial posets.
Corollary 3.10.
For every a ∈ {0, 1}m there is an isomorphism

Tor−i, 2a
Z[v1,...,vm ](Z[S],Z) ∼= H̃ |a|−i−1(|Sa|

);
here we follow the standard convention that H̃−1(∅) = Z.

Proof. The argument is identical to that of [14, Theorem 5.1]: there is an isomorphism of cellular cochain complexes
C̃ ∗
(
|Sa|
)
→ C ∗+1−|a|, 2a(ZK), σ ∗ 7→ κ

(
a\V (σ ), σ)∗,

inducing the required isomorphisms in cohomology.
Remark 3.11.The statement of Corollary 3.10 was obtained by Duval [7] (with field coefficients, and without considering the ringstructure in Tor).It is clear from Corollary 3.10 that the cohomology of ZS may contain an arbitrary amount of additive torsion; just take
|S| to be a triangulation of a space with the appropriate torsion in cohomology.
The multigraded algebraic Betti numbers of Z[S] are defined as

β−i, 2a(Z[S]) = rk Tor−i, 2a
Z [v1,...,vm ](Z[S],Z) = rkH−i, 2a(ZS)

for i = 1, . . . , m, a ∈ Zm. We also set β−i(Z[S]) =∑a∈Zm β−i, 2a(Z[S]).
Example 3.12.Let us see how the isomorphism of Theorem 3.6 looks in the case of the simplicial poset S of Example 2.3.1. Theelements 1, v1, v2, vσ and vτ of R0,∗ are all cocycles. Moreover, v1, v2 and vσ + vτ are coboundaries, the latter because
d(u1v2) = v1v2 = vσ + vτ . It therefore follows that β0,(0,0)(Z[S]) = β0,(2,2)(Z[S]) = 1, while β0,(2,0)(Z[S]) = β0,(0,2)(Z[S]) = 0.Also, a direct computation shows that β−i,2a(Z[S]) = 0 for i > 0. This implies that Z[S] is a free Z[v1, v2]-module with twogenerators, 1 and vσ . The multigraded decomposition (7) in cohomology of ZS

∼= S4 is as follows:H0(ZS) = H0,(0,0)(ZS) ∼= Zand H4(ZS) = H0,(2,2)(ZS) ∼= Z.
The reader may compare this with similar computations of [14, Examples 4.8, 5.7] in the case of moment-angle complexes
ZK. Note that unlike the case of simplicial complexes, β0(Z[S]) may be bigger than 1. In fact, Corollary 3.10 implies thefollowing.
Proposition 3.13.
The number of generators of Z[S] as a Z[v1, . . . , vm]-module equals

β0(Z[S]) = ∑
a⊂[m] rk H̃ |a|−1(|Sa|

)
.

We finish this section by considering a poset S slightly more complicated than the toy examples we saw before, andcalculating the cohomology of ZS accordingly.
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Figure 2. Manifold with corners Q and the dual poset S.

Example 3.14.Let Q be the 3-dimensional manifold with corners shown in Figure 2 (left). It is a 3-ball with m = 5 facets F1, . . . , F5numbered as shown. We denote the edges e, f, g and the vertex σ of Q as shown. The corresponding moment-anglecomplex ZQ is an 8-dimensional manifold.The inverse face poset of Q is the simplicial poset S shown in Figure 2 (right). Note that the facets of Q correspond tothe 5 vertices of S, while σ corresponds to a certain 2-simplex of S. The face ring Z[S] is the quotient of the polynomialring
Z[S] = Z[v1, . . . , v5, ve, vf , vg], deg vi = 2, deg ve = deg vf = deg ve = 4by the relations

v1v2 = ve + vf + vg,
v3v4 = v3v5 = v4v5 = v3ve = v4vf = v5vg = vevf = vevg = vevf = 0.

The other generators and relations in the original presentation can be derived from these; e.g., vσ = v3vf .Given a vector a ∈ {0, 1}m regarded as a subset of [m], set
Qa =⋃

i∈a
Fi ⊂ Q.

It is a subspace in the boundary of Q. Using the barycentric subdivision it is easy to see that |Sa| is a deformationretract of Qa . Then Theorem 3.5 and Corollary 3.10 give the following formula for the multigraded cohomology of ZQ :
H−i, 2a(ZQ) ∼= H̃ |a|−i−1(Qa). (11)

Using this formula we calculate the nontrivial cohomology groups of ZQ as follows:
H0,(0,0,0,0,0)(ZQ) = H̃−1(∅) = Z 1
H−1,(0,0,2,2,0)(ZQ) = H̃0(F3∪F4) = Z u3v4
H−1,(0,0,2,0,2)(ZQ) = H̃0(F3∪F5) = Z u5v3
H−1,(0,0,0,2,2)(ZQ) = H̃0(F4∪F5) = Z u4v5
H−2,(0,0,2,2,2)(ZQ) = H̃0(F3∪F4∪F5) = Z⊕Z u5u3v4, u5u4v3
H0,(2,2,0,0,0)(ZQ) = H̃1(F1∪F2) = Z⊕Z ve, vf
H−1,(2,2,2,0,0)(ZQ) = H̃1(F1∪F2∪F3) = Z u3ve
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H−1,(2,2,0,2,0)(ZQ) = H̃1(F1∪F2∪F4) = Z u4vf
H−1,(2,2,0,0,2)(ZQ) = H̃1(F1∪F2∪F5) = Z u5vg
H−2,(2,2,2,2,2)(ZQ) = H̃2(F1∪ . . . ∪F5) = Z u5u4v3vf = u5u4vσ .

It follows that the ordinary (1-graded) Betti numbers of ZQ are given by the sequence (1, 0, 0, 3, 4, 3, 0, 0, 1). In theright column of the table above we include the cocycles in the differential graded ring Λ[u1, . . . , u5]⊗Z[S] representinggenerators of the corresponding cohomology group. This allows us to determine the ring structure in H∗(ZS). For example,
[u5u3v4] · [vf ] = [u5u3v4vf ] = 0 = [u5u4v3] · [ve].

On the other hand,
[u5u3v4] · [ve] = −[u3u5v4ve] = −[u3u4v5ve] = [u3u4v5vf ] = [u5u4v3vf ] = [u5u4v3] · [vf ].

Here we have used the relations d(u3u4u5ve) = u3u4v5ve − u3u5v4ve and d(u1u3u4v2v5) = u3u4v5ve + u3u4v5vf . In fact,all nontrivial products come from the Poincaré duality. These calculations may be summarised by the cohomology ringisomorphism
H∗(ZQ) ∼= H∗

((
S3×S5)#3 # (S4×S4)#2),

where the manifold on the right hand side is the connected sum of three copies of S3×S5 and two copies of S4×S4. Weexpect that this cohomology isomorphism is induced by a homeomorphism; one might be able to prove this by using thesurgery techniques of [10].
4. Almost free torus actions

Halperin’s toral rank conjecture states that if a torus T k acts almost freely on a finite-dimensional space X , then the“total amount of homology” of X is at least that of the torus, that is,∑
i

rkHi(X ) > 2k .
(An action is almost free if all isotropy subgroups are finite.) We refer to ∑i rkHi(X ) as the homology rank of X anddenote it hrkX .It has been shown in the recent works of Cao–Lü [5] and Ustinovsky [18] that the toral rank conjecture holds for therestricted torus action on the moment-angle complex ZK. Here we show that the same holds for ZS.We define the toral rank trkZS as the maximal dimension of a subtorus T k ⊂ Tm acting almost freely on ZS. Assumethat dim S = n− 1; then dimZS = m+ n. The isotropy subgroups of the Tm-action on ZS are coordinate subtori in Tmof the form

T σ = {(z1, . . . , zm) ∈ Tm : zi = 1 for i /∈ V (σ )}, (12)where σ ∈ S. The maximal dimension of these subgroups is n, hence trkZS 6 m− n.Let t = (t1, . . . , tn) be a sequence of linear (degree-two) elements in Z[S]. We may write
ti = λi1v1 + · · ·+ λimvm, i = 1, . . . , n. (13)

Given σ ∈ S, define the restriction homomorphism

sσ : Z[S] → Z[S]/(vτ : τ 66 σ ).
Its image may be identified with the polynomial ring Z[σ ] on |σ | generators. Note that sσ is induced by the inclusion ofposets S6σ → S. Remember that t is called an lsop (linear system of parameters) in Z[S] if it consists of algebraicallyindependent elements and Z[S] is a finitely generated Z[t1, . . . , tn]-module (equivalently, Z[S]/(t) has finite rank as anabelian group).
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Lemma 4.1.
A degree-two sequence t = (t1, . . . , tn) is an lsop in Z[S] if and only if for every σ ∈ S the elements sσ (t1), . . . , sσ (tn)
generate the positive degree ideal Z[σ ]+.

Proof. Assume (13) is an lsop. Every sσ induces an epimorphism of the quotient rings:
Z[S]/(t) → Z[σ ]/sσ (t).

Since t is an lsop, Z[S]/(t) has finite rank as a group. Therefore, Z[σ ]/sσ (t) is also of finite rank, which happens only if
sσ (t) generates Z[σ ]+.The other direction is proved by considering the sum of the restrictions:

Z[S] →⊕
σ∈S

Z[σ ].
This is an injective Z[t1, . . . , tn]-module map by [13, Lemma 5.6]. Since Z[t1, . . . , tn] is a Noetherian ring and ⊕σ∈S Z[σ ]is finitely generated as a Z[t1, . . . , tn]-module by assumption, its submodule Z[S] is also finitely generated. This impliesthat t is an lsop.
We organise the coefficients in (13) into an (n×m)-matrix Λ = (λij ). For any σ ∈ S denote by Λσ the (n×|σ |)-submatrixformed by the elements λij with j ∈ V (σ ). The matrix Λ defines homomorphisms Zm → Zn and λ : Tm → T n. Let
TΛ = ker λ ⊂ Tm.
Theorem 4.2.
The following conditions are equivalent:(a) the sequence (13) is an lsop in the rational face ring Q[S];(b) for every σ ∈ S the matrix Λσ has rank |σ |;(c) TΛ is the product of an (m−n)-torus and a finite group, and TΛ acts almost freely on ZS.

Proof. The equivalence of (a) and (b) is the Q-version of Lemma 4.1. Now, (b) holds if and only if TΛ ∩ T σ is a finitegroup for every σ ∈ S, which means that TΛ acts almost freely on ZS (see (12)). The fact that TΛ contains an (m−n)-torusalso follows from (b), because there is σ ∈ S with |σ | = n.
Corollary 4.3.
If S is of rank n with m vertices, then trkZS = m− n.

Proof. Consider the ring Q[KS]. Since it is generated by the degree-two elements, it has an lsop t (this is where weneed the Q-coefficients). Since Q[S] is integral over Q[KS] by [17, Lemma 3.9], t is also an lsop for Q[S]. By multiplyingby a common denominator, we may assume that t is in Z[S] (although it may fail to be an integral lsop). Then there isan (m−n)-subtorus acting almost freely on ZS by Theorem 4.2.
There is also an integral version of Theorem 4.2, which is proved similarly:
Theorem 4.4.
The following conditions are equivalent:(a) the sequence (13) is an lsop in Z[S];(b) for every σ ∈ S the columns of Λσ form a part of a basis of Zn;(c) TΛ is an (m−n)-torus acting freely on ZS.
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Remark 4.5.Unlike the case of Q[S], an lsop in Z[S] may fail to exist, which means the there is no (m−n)-subtorus acting freely onthe corresponding ZS. The maximal dimension s(S) of a subtorus T s ⊂ Tm acting freely on ZS is also known as the
Buchstaber invariant of S. It is a much more subtle characteristic than trkZS and is usually difficult to determine. Formore information about the Buchstaber invariant for polytopes and simplicial complexes see [8] and [9].
Proposition 4.6.
We have that hrkZS > hrkZKS

.

Proof. The folding map |S| → |KS| has an obvious section, which means that it is a retraction. It follows thatrk H̃i(|S|) > rk H̃i(|KS|). The same holds for every subposet Sa . Now the result follows from Theorem 3.5 and Corol-lary 3.10.
Corollary 4.7.
The toral rank conjecture holds for the restricted torus action on ZS, that is, hrkZS > 2trkZS .

Proof. We have that trkZS = trkZKS
= m−n by Corollary 4.3, and hrkZKS

> 2m−n by [5, Corollary 1.4] or [18, § 3].Therefore, hrkZS > hrkZKS
> 2m−n,

as claimed.
Remark 4.8.In fact, according to [18, Theorem 3.2], the sharper bound hrkZS > 2m−mrkS holds, where mrk S is the minimal rank ofmaximal elements in S. It equals n (the rank of S) if and only if S is pure, that is, all maximal elements of S have thesame rank.
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730


	Introduction
	Simplicial posets and their face rings
	Moment-angle complexes
	Almost free torus actions
	Acknowledgements
	References

