
 Open access  Proceedings Article  DOI:10.1109/ICFHR.2012.236

Moment-Based Image Normalization for Handwritten Text Recognition
— Source link 

Michal Kozielski, Jens Forster, Hermann Ney

Institutions: RWTH Aachen University

Published on: 18 Sep 2012 - International Conference on Frontiers in Handwriting Recognition

Topics: Intelligent character recognition, Normalization (image processing), Handwriting recognition,
Intelligent word recognition and Image moment

Related papers:

 Statistical methods for speech recognition

 Integrated handwriting recognition and interpretation using finite-state models

 The IAM-database: an English sentence database for offline handwriting recognition

 A Novel Connectionist System for Unconstrained Handwriting Recognition

 Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models

Share this paper:    

View more about this paper here: https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-
3xt76cwl0b

https://typeset.io/
https://www.doi.org/10.1109/ICFHR.2012.236
https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b
https://typeset.io/authors/michal-kozielski-2gfsqckeb0
https://typeset.io/authors/jens-forster-3u3sol1ink
https://typeset.io/authors/hermann-ney-c9wzp22mlk
https://typeset.io/institutions/rwth-aachen-university-11171osb
https://typeset.io/conferences/international-conference-on-frontiers-in-handwriting-kyex01fd
https://typeset.io/topics/intelligent-character-recognition-567on30f
https://typeset.io/topics/normalization-image-processing-35sk1f1o
https://typeset.io/topics/handwriting-recognition-3shw7xck
https://typeset.io/topics/intelligent-word-recognition-2yy6i1uy
https://typeset.io/topics/image-moment-25k7wkjd
https://typeset.io/papers/statistical-methods-for-speech-recognition-50llnp2718
https://typeset.io/papers/integrated-handwriting-recognition-and-interpretation-using-28pnpw7jd8
https://typeset.io/papers/the-iam-database-an-english-sentence-database-for-offline-4xv9j0inbi
https://typeset.io/papers/a-novel-connectionist-system-for-unconstrained-handwriting-yx43b6vvre
https://typeset.io/papers/improving-offline-handwritten-text-recognition-with-hybrid-9edvulunff
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b
https://twitter.com/intent/tweet?text=Moment-Based%20Image%20Normalization%20for%20Handwritten%20Text%20Recognition&url=https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b
https://typeset.io/papers/moment-based-image-normalization-for-handwritten-text-3xt76cwl0b


Moment-based Image Normalization for Handwritten Text Recognition

Michał Kozielski, Jens Forster, Hermann Ney

Human Language Technology and Pattern Recognition Group

Chair of Computer Science 6

RWTH Aachen University, D-52056 Aachen, Germany

{kozielski,forster,ney}@i6.informatik.rwth-aachen.de

Abstract

In this paper, we extend the concept of moment-based

normalization of images from digit recognition to the

recognition of handwritten text. Image moments pro-

vide robust estimates for text characteristics such as size

and position of words within an image. For handwrit-

ing recognition the normalization procedure is applied

to image slices independently. Additionally, a novel

moment-based algorithm for line-thickness normaliza-

tion is presented. The proposed normalization methods

are evaluated on the RIMES database of French hand-

writing and the IAM database of English handwriting.

For RIMES we achieve an improvement from 16.7%

word error rate to 13.4% and for IAM from 46.6% to

37.3%.

1. Introduction

Text in handwritten images typically shows strong

variability in appearance due to different writing styles.

Appearance differs in the size of the words, slant,

skew and stroke thickness. Such variability calls for

the development of normalization and preprocessing

techniques suitable for recognition of handwritten text.

Among the most common preprocessing steps applied

in current state-of-the art systems are noise removal,

binarization, skew and slant correction, thinning, and

baseline normalization [3]. For slant correction, Pas-

tor et al. [17] proposed to use the maximum variance of

the pixels in the vertical projection and Vinciarelli et

al. [21] observed that non-slanted words show long,

continuous strokes. Juan et al. [20] showed that nor-

malizing ascenders and descenders of the text reduces

significantly the vertical variability of handwritten im-

ages. A linear scaling method applied to whole images

has been used in various systems to reduce the overall

size variability of images of handwritten text [6, 3, 8].

A drawback of all those approaches is that they rely

on assumptions that may or may not hold for a given

database. A second drawback is that all those methods

are applied to whole images making it difficult to ad-

dress local changes. Furthermore, the methods for slant

correction rely on binarization which is a non-trivial

problem in itself and should be avoided if possible, as

Liu et al. [13] found in their benchmark paper. Recently

España-Boquera et al. [7] proposed using trained Multi-

Layer-Perceptrons for image cleaning and normaliza-

tion. While they report competitive results on standard

databases, the training and labeling process is time con-

suming. In contrast to the methods mentioned until

now, methods based on image statistics and moments do

not suffer from heuristical assumptions and have been

extensively studied in the area of isolated digit recog-

nition. Casey [4] proposed that all linear pattern vari-

ations can be normalized using second-order moments.

Liu et al. [14] used Bi-moment normalization based on

quadratic curve fitting and introduced a method to put a

constrain on the aspect ratio when the x and y axis are

normalized independently [12]. Miyoshi et al. [16] re-

ported that computing the moments from the contour of

a pattern, and not from the pattern itself, improves the

overall recognition results.

We propose a moment-based normalization scheme

for handwritten images. We use the image gradient and

zero-th order moments to globally normalize the stroke

thickness of a pattern. The algorithm operates directly

on grey-scale images and is not susceptible to local dis-

tortions. The image is segmented into slices using a

sliding window and size and shift of the sliding window

are estimated using moments. Finally, local variability

in size and position is modelled independently in sepa-

rate slices using second-order moments.



2. Normalization scheme

Consider a grey-scale image f(x, y) : N × N 7→ N

of width W and height H and pixels values in the range

0− 255.

Geometric moments of a p+qth order of f are given

by:

mpq[f ] =
∑

x

∑

y

xpyqf(x, y) (1)

From now on we omit the bracket [f ] when its clear

to which function we refer. The central moments are

given by:

µpq =
∑

x

∑

y

(x− x̄)p(y − ȳ)qf(x, y) (2)

where x̄ = m10/m00 and ȳ = m01/m00 are the co-

ordinates of the centre of gravity of an object contained

in this image. The second-order moments µ20 and µ02

reflect how much pixels deviate from the center of grav-

ity. We interpret them as the size of the object in x and

y direction independently.

Image moments give us important information about

the structure and density of the object and form a basis

for normalization algorithms described in this section.

2.1. Stroke thickness normalization

Images of handwritten text usually vary in the thick-

ness of strokes, which correspond to a different pressure

applied to a pen. Therefore a stroke thickness normal-

ization procedure that reduces this variability would be

of our high interest. We denote the normalized grey-

scale image as f ′(x, y) : N× N 7→ N.

Let us consider a shape that resembles a long, thin,

straight stroke. We assume that this shape has some

dimension τ , to which we refer as a stroke thickness

of that shape. We further assume that τ is constant

throughout the whole shape and we make τ a subject

of a normalization procedure. We define the thicken-

ing as an operation that linearly increases the value τ
and express it by means of morphological dilation with

a structuring element of a radius r.

f ′(x, y) = max
rx,ry :d(rx,ry)<r

f(x+ rx, y + ry)

for r ≥ 0
(3)

with d(rx, ry) being the Manhattan distance from the

center of the structuring element. For negative values of

r we express this operation by means of morphological

erosion.

f ′(x, y) = min
rx,ry :d(rx,ry)<−r

f(x+ rx, y + ry)

for r < 0
(4)

Rivest [19] defined the image gradient g(f) as the

difference between the dilation and erosion of that im-

age with a structuring element of a radius ρ. We observe

that a sum over all values of f ′ is proportional to the

area of a thickened shape. We refer to it as m00[f
′], re-

calling the geometric moment definition. Furthermore

we observe that a sum over all values of the image gra-

dient g(f) is proportional to the change of that area. We

refer to it as m00[g(f)]. If we apply the thickening op-

eration to the shape with some radius r, the value of

m00[f
′] will increase linearly with respect to r and the

increase will be proportional to τ . Following this ob-

servations we compute the stroke thickness of the shape

as:

τ = 2ρ
m00[f

′]

m00[g(f)]
(5)

Note that in case of images it is not possible to com-

pute the gradient for ρ → 0. Therefore we use the

smallest value that does not require interpolation, which

is 1.

Figure 1 shows the plot of the values m00[f
′] and

m00[g(f
′)] computed on an image thickened with a

structuring element of radius r. If we now treat the

moment m00 as a function of r, we can observe that

its characteristic deviates from the one of a linear func-

tion for real-world images, as our assumption about the

geometrical structure of the object is only a rough es-

timate of handwriting shapes. The dilation or erosion

operation creates an effect similar to the median filter

and therefore reduces the overall gradient and the in-

crease rate of m00[f
′]. Therefore we use the moment of

the original gradient m00[g(f)] in computation of the

stroke thickness, because it gives the best estimate of

the change in the area under the thickening operation.

If we now denote the stroke thickness of the normal-

ized image f ′ as T , which is a parameter to be opti-

mized, the normalization procedure is equivalent to di-

lating (eroding) the image f with a radius r = T − τ .

The value of r is real therefore we have to interpolate

the image appropriately.

To further overcome the deviation of m00[f
′](r)

from the characteristic of a linear function we apply

an iterative algorithm in which we recompute the value

τ after dilating (eroding) the image. If the condition

T − τ < ǫ is not met, with ǫ being a certain, small

threshold, the value of r is reestimated and the normal-

ization step is repeated.
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Figure 1: Plot of the m00[f
′] and m00[g(f

′)] with re-

spect to r for a sample image

Note that erosion is not the inverse of dilation, there-

fore special considerations have to be made during im-

plementation so that the final oscillation over T does

not degrade the image.

Figure 2 shows sample images with different stroke

thickness and their normalized versions. The dilation

(erosion) operation will also degrade the quality of the

image if the parameter T is too small or too big, which

is a natural effect. Therefore it is crucial to find a correct

value for T during optimization.

(a)

(b)

Figure 2: a) Sample images and b) their thickness-

normalized versions

2.2. Segmentation

Consider a grey-scale image f of height H and width

W which contains one line of text. The image is usually

cropped from a page of multiple lines of handwritten

text. The crop points can be affected by many factors

such as the size of ascenders and descenders, artefacts,

and segmentation errors. It is then possible as seen on

the figure 3, that the image contains too much or too

little whitespace and that the image height does not re-

flect the actual size of the text baseline. We then need to

reestimate the height of the image from the actual text

characteristics. We could use the original second-order

moments, but the their definition implies that the dis-

tance computed between pixels is squared and therefore

highly influenced by outliers. So we alter the computa-

tion formula of the vertical moment µ02 and define the

moment ν, which uses the absolute distance instead.

ν =
∑

x

∑

y

|y − ȳ|f(x, y) (6)

The height of the image is then recomputed by:

H ′ = β
ν

m00
(7)

The parameter β is merely for convenience and is

chosen in such a way that the average H is equal to av-

erage H ′ across a given corpus. The value of H ′ is a

better estimate of the vertical dimension of the image as

it depends on the density of the image. Figure 4 shows

an illustration of reestimated image height. Note that

we do not crop the image in any way, but we only use

the value of H ′ for the estimation of segmentation pa-

rameters.

Figure 3: Illustration of different bounding boxes of im-

ages with the same size of the baseline text

We segment the image with a sliding window of

height H , width γ1H
′, and shift γ2H

′. By relating the

size and shift of the sliding window to the image height

we ensure that different scaling of the original image

does not influence the aspect ratio and the quantity of

single slices. The crop points of a given slice are real

values and have to be rounded to natural values. We

then apply a horizontal cosine window to the slice in

order to smooth the borders. All slices segmented from

a single image are of the same size.

(a) (b)

Figure 4: a) Original and b) reestimated bounding box

of a sample image



2.3. Size and translation normalization

Let us use h to refer to a single slice of width W1 and

height H1. We are now interested in a normalization

procedure that will allow us to normalize every slice

with respect to size and translation independently.

We reestimate the area subject to scaling using mo-

ments:






δx = α
√

µ20[h]
m00[h]

δy = α
√

µ02[h]
m00[h]

(8)

where δx and δy are the new horizontal and vertical

dimensions of the slice. We use α = 4 for our experi-

ments.

Let us denote the normalized grey-scale image of

width W2 and height H2 as h′(x′, y′). The normaliza-

tion procedure that maps the normalized image to the

original image is implemented by the following back-

ward mapping:

{

x = ( x′

W2

− 1
2 )δx + x̄

y = ( y′

H2

− 1
2 )δy + ȳ

(9)

This procedure not only resizes the image but also

shifts the center of gravity to the center of the image

[W2

2 , H2

2 ]. We use 32 for H2 and W2 is computed by

γ1H2.

Note that scaling x and y axis independently has

a negative effect of changing the original aspect ra-

tio. This can lead to serious pattern degradation and

affect inter-class distances. We will alleviate this prob-

lem by incorporating additional information about the

original object characteristics into the feature vector as

described later. The figure 5 shows a few slices ex-

tracted from one sample image and their normalized

versions. The objects in slices are shifted to the center

and stretched according to the normalization procedure

described earlier.

2.4. Feature extraction

We extract feature vectors from separate slices. One

slice is transformed into one feature vector. We use sim-

ple pixel values (appearance based features) normalized

to the range [0, 1] as features. Note that the size nor-

malization procedure affects the original aspect ratio as

described in the previous subsection. Therefore we pro-

vide the classifier with an additional information about

the original characteristics of the object by adding the

following complementary features to the feature vector.

[

µ10

m00

W1
,

µ01

m00

H1
, 2

√

µ20

m00

W1
, 2

√

µ02

m00

H1

]

(10)

(a)

(b)

Figure 5: a) Sample image slices and b) their size-

normalized versions

The final feature vector is subject to PCA trans-

formation and number of components is reduced from

γ1(H2)
2 + 4 to 30.

3. Experiments

We applied the moment normalization scheme to the

RIMES [1] and IAM [15] corpora and compared it to

the results obtained using standard preprocessing steps

[18] [11] and with results reported by other groups.

We use the RIMES corpus from the ICDAR 2011

competition. The corpus consist of 59,202 images with

French handwriting: 51,738 for training and 7464 for

validation. The validation set has been used before as

the test set for the ICDAR 2009 competition, therefore

we compare our results with official results from this

competition [10]. The problem is defined as an isolated

word recognition in a closed-vocabulary scenario with

the size of vocabulary of 5335 words. We use an uni-

gram language model with perplexity 45.2.

The IAM database consist of handwritten English

text sentences, which have been built upon the LOB cor-

pus. There are 6161 images for training, 920 for valida-

tion, and 2781 for testing. We apply a trigram language

model that has been built upon the LOB, Brown, and

Wellington corpora. The sentences appearing in IAM

validation and test sets have been excluded for the pur-

pose of language model training. For the lexicon we ex-

tract the 50k most frequent words therefore producing

an open-vocabulary scenario. The perplexity of the lan-

guage model is equal to 258.7. The OOV rate is equal

to 4.01% for validation set and 3.47% for test set.

The baseline system have been optimized in the work

by Pesch [18] and Jonas [11]. For classification we use

a HMM model with 12 states for RIMES and 10 states

for IAM with every two subsequent states sharing the



Table 1: Comparison with the results reported by other

groups on RIMES

Systems WER [%] CER [%]

preprocessing baseline 16.7 8.3

moment normalization 13.4 5.5

TUM (RNN) [10] 9.0 -

UPV (MLP, HMM) [10] 16.8 -

ParisTech (HMM) [10] 23.7 -

IRISA (HMM) [10] 25.3 -

SIEMENS (HMM) [10] 26.8 -

Table 2: Results for moment normalization on RIMES

Systems WER [%] CER [%]

size norm. w/o comp. features 18.2 8.1

size normalization 15.6 6.8

+ height reestimation 14.4 6.1

+ thickness normalization 13.4 5.5

BIM size normalization 16.4 8.7

same output probabilities. The model is trained with

the Viterbi algorithm using maximum likelihood (ML)

as training criterion. The output probabilities are trained

with Gaussian mixtures with 10 splits for RIMES and 7

splits for IAM. We use the language model scaling of 20
for both corpora. The parameters of the sliding window

γ1, γ2 have been experimentally optimized. We take

0.03 for γ2 and for γ1 32/16 for RIMES and 32/14 for

IAM.

The table 1 shows the comparison of the results on

the RIMES database. We achieve an excellent word

error rate of 13.4%, which is comparable with today’s

state of the art systems. This result is obtained just us-

ing moment normalization scheme and HMM, we do

not use neural network or other preprocessing steps, that

are commonly applied by other groups. The preprocess-

ing baseline result has been obtained by using the same

HMM and language model, but optimized with different

parameters. We have used the following preprocessing

steps as described by Pesch [18]: median blurring, con-

trast normalization, deslanting, baseline normalization.

The results from other groups are from the ICDAR 2009

competition [10].

The table 2 summarizes the development of the

normalization scheme. Simple second-order moments

revisited in this paper perform better than the BIM

method proposed by Liu [14]. The introduction of the

hight reestimation method described in section 2.2 im-

proves the error rate by 1% absolute. The stroke thick-

ness normalization method improves the result by fur-

Table 3: Comparison with the results reported by other

groups on IAM

Systems WER [%] CER [%]

Devel Eval Devel Eval

preprocessing baseline 35.0 46.6 16.9 16.6

moment normalization 26.6 37.3 10.6 18.1

Espana. et al. [7] (HMM) 32.8 38.8 - 18.6

Bertol. et al. [2] (HMM) 30.9 35.5 - -

Dreuw et al. [6] (HMM) 31.9 38.9 8.4 11.7

D. et al. [5] (MLP/HMM) 22.7 32.9 7.7 12.4

Bertol. et al. [2] (HMMs) 26.8 32.8 - -

Graves et al. [9] (RNN) - 25.9 - 18.2

E. et al. [7] (MLP/HMM) 19.0 22.4 - 9.8

Table 4: Results for moment normalization on IAM

Systems WER [%] CER [%]

size normalization 28.7 11.7

+ height reestimation 27.9 11.1

+ thickness normalization 26.6 10.6

ther 1%. We noticed a high influence of the comple-

mentary features described in section 2.4 on the recog-

nition performance. The word error rate on the Rimes

corpus increased by 2.6% when we excluded those fea-

tures from the feature vector.

The table 3 shows the comparison of the results on

the IAM database. We achieve a word error rate of

37.3% on the test set. The baseline has been obtained

using similar preprocessing steps to those applied on

RIMES as described by Jonas [11]. The results from

other groups in the middle part of the table are reported

for HMM models with Gaussian Mixtures and prepro-

cessing. The results in the lower part include system

combinations or neural networks and are some of the

best results reported so far for IAM. Dreuw [6] applied

a discriminative-trained HMM model to features pre-

processed with feed-forward neural networks. España-

Boquera [7] preprocessed the images with several neu-

ral networks, one network for each preprocessing step.

Graves [9] used recurrent neural network. Bertolami [2]

applied a voting strategy to several HMM models.

The table 4 summarizes the performance of different

normalization steps on IAM. The height reestimation

method and the thickness normalization method give

similar improvements to the ones seen on the RIMES

database. In all our experiments using the moment nor-

malization on original images outperformed the prepro-

cessing schemes.



4. Conclusions

We showed that the use of moments improves sig-

nificantly the recognition performance in handwriting

recognition and outperforms other preprocessing ap-

proaches. On the RIMES database our moment and

HMM based system is the best pure HMM system and

achieves a performance of 13.4 word error rate. Ad-

ditionally, moment-based normalization of slice height

and line thickness improves the result over the base-

line moment method. For the IAM database we ob-

serve similar results as on the RIMES database and a

total improvement of 9% over the baseline from 46.6 to

37.3. Finally, the second-order moment normalization

technique described in this paper requires no training, is

not based on heuristics but on image statistics, is fast to

compute and easy to integrate into existing systems.
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