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Moment-Based Parameter Estimation and
Blind Spectrum Sensing for

Quadrature Amplitude Modulation
Tao Cui, Jia Tang, Feifei Gao, and Chintha Tellambura, Senior Member, IEEE

Abstract—Knowing accurate noise variance and signal power
is crucial to most spectrum-sensing algorithms such as energy
detection, matched filter detection, and cyclostationary detection.
In this paper, we consider a practical scenario when these two
parameters are unknown and are needed to be estimated before
the spectrum sensing. This task is non-trivial without knowing the
status of the primary user, and we categorize the related spectrum
sensing as a blind one. We develop the estimation algorithms for
unknown parameters by exploiting the signal constellation of the
primary user. Three different parameter estimators that do not
require any training are then proposed based on the moments of
the received signals. Since the secondary user may not know the
primary user’s signal constellation, we develop a robust approach
that approximates a finite quadrature amplitude modulation
(QAM) constellation by a continuous uniform distribution. We
also derive the modified Cramér-Rao bound (CRB) for noise
variance estimation. Then the optimal moment pair is found
from minimizing the mean squared error (MSE) of the signal-to-
noise ratio (SNR). The method of choosing the spectrum sensing
threshold by taking into consideration the estimation error is
also discussed.

Index Terms—Blind spectrum sensing, cognitive radio, noise
variance estimation, SNR estimation.

I. INTRODUCTION

W ITH the rapid development of wireless applications,
spectrum resources are facing ever increasing demand.

In traditional spectrum management, spectrum bands are ex-
clusively allocated to specific licensed users, and unlicensed
users are not allowed to access these bands, even when
they are not being used at a certain period. This drawback
greatly reduces the efficiency of spectrum usage and results
in spectrum scarcity. Cognitive radio (CR) [1] is a promising
technology to remedy the spectrum scarcity by allowing the
unlicensed (secondary) users to opportunistically access the
spectrum assigned to the licensed (primary) users, provided
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that no harmful interference is experienced by the incumbent
users.

Because the unlicensed user must reliably detect the ex-
istence of the incumbent primary users, the key technique
for successfully applying CR is the spectrum sensing. The
existing spectrum-sensing techniques include energy detection
[2]–[6], cyclostationary detection [7], and wavelet detection
[8], of which energy detection is the most promising candidate
for practical employment due to its very low computational
complexity. Specifically, energy detection compares the aver-
age received power with a pre-defined threshold to determine
the presence of the primary user. The detection threshold
is related to the false alarm probability, and is a function
of both the noise variance and the signal power. In most
works, these two parameters are assumed perfectly known
[3]. Although, in the absence of the primary user, the noise
variance can be estimated from the average received power,
the a priori knowledge of the existence of the primary user
is never possible before executing the spectrum sensing, and
this situation becomes a chicken and egg problem.

In this paper, we consider the blind spectrum sensing
problem by treating both the signal power of the primary
user and the noise variance as unknown parameters that are
to be estimated before knowing the status of the primary user.
Motivated by the signal-to-noise ratio (SNR) estimators in [9]–
[11], we propose to estimate the unknown parameters by using
three different approaches; the direct estimator, approximate
maximum likelihood (ML) estimator, and pseudo-linear min-
imum mean square error (MMSE) estimator. We find that the
signal structure of the primary user is crucial to the estimators’
performance. Furthermore, since the constellation used by the
primary user may not be known to the secondary user, we
utilize a robust approach that approximates binary phase-shift
keying (BPSK) or a finite quadrature amplitude modulation
(QAM) constellation by a continuous uniform distribution.
The modified Cramér-Rao bound (CRB) for noise variance
estimation is also derived and the optimal moment pair is
found by minimizing the mean square error (MSE) of the
SNR. Moreover, we propose a modified energy detector by
using the estimated SNR, discuss the effects of the estimation
errors on spectrum sensing, and provide several approaches to
choose the detection threshold under estimation errors.

The rest of this paper is organized as follows. In Section II,
we briefly review the model of the cognitive network as well
as the energy detector. In Section III, we propose three signal
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power and noise variance estimators. In addition, spectrum
sensing in the presence of the estimation errors is discussed
in this section. In Section IV, we derive the modified CRB and
optimize the moment pair. The simulation results are given in
Section V and conclusions are made in Section VI.

II. SYSTEM MODEL

We consider a simple cognitive network with one secondary
user and one primary user, denoted by 𝕌 and ℙ, respectively.
The received signal by 𝕌 at time 𝑖 is

𝑦𝑖 = 𝜃𝑒𝚥(𝜖𝑖+𝜙)𝑥𝑖ℎ𝑖 + 𝜎𝑤𝑖, (1)

where 𝜃 ∈ {0, 1} is the primary user indicator, 𝑥𝑖 is the
transmitted signal from ℙ, ℎ𝑖 is the Rayleigh channel gain
between ℙ and 𝕌 (a real number), 𝑤𝑖 is white Gaussian noise
with zero mean and unit variance, 𝜎 is the noise variance,
and 𝜖 and 𝜙 are the frequency offset and the phase offset,
respectively.1 To keep the discussion general, we assume that
𝜖 and 𝜙 are unknown to the secondary user. Moreover, the
signal constellation 𝒞 contains 𝑀 elements 𝑐1, . . . , 𝑐𝑀 and
has zero mean and unit energy.

Assume 𝑁 consecutive symbols are observed at 𝕌, during
which period both ℎ𝑖 and 𝜃 remain unchanged. For simplicity,
we denote ℎ𝑖 as ℎ. Taking WCDMA as an example, the
constant channel can be assumed in each subframe (2 ms),
which contains 960 symbols [12]. The probability density
function (pdf) of 𝑦𝑖 given 𝜖 and 𝜙 is

Pr(𝑦1, . . . , 𝑦𝑁 ∣𝜃 = 0, 𝜖, 𝜙) =
1

(2𝜋)𝑁𝜎2𝑁
𝑒−

∑𝑁
𝑖=1 ∣𝑦𝑖∣2

𝜎2 ,

Pr(𝑦1, . . . , 𝑦𝑁 ∣𝜃 = 1, 𝜖, 𝜙) =

1

(2𝜋)𝑁𝜎2𝑁

𝑁∏
𝑖=1

∑
𝑥𝑖∈𝒞

𝑒−
∣𝑦𝑖−𝑒𝚥(𝜖𝑖+𝜙)ℎ𝑥𝑖∣2

𝜎2 Pr(𝑥𝑖).

(2)

The optimal detector is derived from the likelihood ratio test:

Λ(𝑦1, . . . , 𝑦𝑁 ∣𝜖, 𝜙) = Pr(𝑦1, . . . , 𝑦𝑁 ∣𝜃 = 1, 𝜖, 𝜙)

Pr(𝑦1, . . . , 𝑦𝑁 ∣𝜃 = 0, 𝜖, 𝜙)

=

𝑁∏
𝑖=1

∑
𝑥𝑖∈𝒞

𝑒−
∣ℎ𝑥𝑖∣2−2ℜ{𝑦∗𝑖 𝑒𝚥(𝜖𝑖+𝜙)ℎ𝑥𝑖}

𝜎2 Pr(𝑥𝑖),

(3)

where ℜ{⋅} denotes the real part of the operand.
In the following, we focus on the energy detector that

compares
∑𝑁

𝑖=1 ∣𝑦𝑖∣2 with a threshold 𝜆. If
∑𝑁

𝑖=1 ∣𝑦𝑖∣2 > 𝜆,
then the secondary user decides 𝜃 = 1; otherwise, the
decision 𝜃 = 0 will be made. There are two reasons why
we consider energy detector. First, in low SNR, by assuming
∣ℎ𝑥𝑖∣2−2ℜ{𝑦∗𝑖 𝑒𝚥(𝜖𝑖+𝜙)ℎ𝑥𝑖}

𝜎2 ≪ 1 and using Taylor series expan-
sion 𝑒𝑥 ≈ 1+𝑥+ 𝑥2

2 , it can be shown that the energy detector∑𝑁
𝑖=1 ∣𝑦𝑖∣2 is nearly optimal. Second, if 𝑥𝑖 is considered

as Gaussian with zero mean and unit variance,2 then it is
easy to verify that Λ(𝑦1, . . . , 𝑦𝑁 ∣𝜖, 𝜙) in (2) is a strictly
increasing function in

∑𝑁
𝑖=1 ∣𝑦𝑖∣2. Hence, energy detector is

1In the CR scenario, achieving perfect synchronization between the sec-
ondary user and the primary user is difficult.

2This assumption is applied to show the optimality of energy detector. We
do not make this assumption in the remaining paper.

again optimal. Note that Λ(𝑦1, . . . , 𝑦𝑁 ∣𝜖, 𝜙) is not affected by
the synchronization errors 𝜖 and 𝜙.

The key metrics in spectrum sensing are the probability of
detection and the probability of false alarm, defined as

𝑃𝑑 = Pr(𝜃 = 1∣𝜃 = 1), 𝑃𝑓 = Pr(𝜃 = 1∣𝜃 = 0). (4)

Since
∑𝑁

𝑖=1 ∣𝑦𝑖∣2 is a central chi-square random variable when
𝜃 = 0 and is a non-central chi-square random variable when
𝜃 = 1, the probability of false alarm can be obtained as

𝑃𝑓 (𝜆) =

∫ +∞

𝜆

1

𝜎2𝑁Γ(𝑁)
𝑡𝑁−1 exp

(
− 𝑡

𝜎2

)
𝑑𝑡 =

Γ
(
𝑁, 𝜆

𝜎2

)
Γ (𝑁)

,

(5)
and the probability of detection is

𝑃𝑑(𝜆) =
∑

𝑥1,...,𝑥𝑁∈𝒞

𝑁∏
𝑖=1

Pr(𝑥𝑖)
1

Γ (𝑁)

×
∞∑
𝑗=0

𝑒−𝜉(𝑥1,...,𝑥𝑁) 𝜉
𝑗(𝑥1, . . . , 𝑥𝑁 )

𝑗!
Γ (𝑁 + 2𝑗, 𝜆) ,

(6)

where Γ(⋅, ⋅) is the upper incomplete gamma function, Γ(⋅) is
the gamma function, and

𝜉(𝑥1, . . . , 𝑥𝑁 ) =
ℎ2

𝜎2

𝑁∑
𝑖=1

∣𝑥𝑖∣2. (7)

A typical practical design strategy is to fix the false alarm
probability and then try to maximize the detection probability,
i.e., the constant false alarm rate detector. Thus, let the false
alarm probability 𝑃𝑓 (𝜆) = 𝜁. We can find the threshold 𝜆
and compute the corresponding correct detection probability
using (6). The value of the threshold 𝜁 depends on 𝜎 and ℎ
which are assumed known in many existing works, e.g., [3].
In practice, however, all these parameters have to be obtained
from the estimation. In cognitive radio scenario, estimating
𝜎 is difficult because we do not know the presence of the
primary user; namely, 𝜃 is unknown.

To overcome this problem, 𝜃 and 𝜎 are directly estimated
from the received signals in our proposed approach. To this
end, let us define �̃� = 𝜆/𝜎2. Then, the probability of false
alarm (5) depends on �̃� only, while the probability of detection
(6) depends on �̃� and SNR 𝜌 = ℎ2

𝜎2 only. Therefore, the
presence of the primary user can be determined by comparing
the estimated SNR with �̃�. The problem is therefore equivalent
to estimating 𝜎2 and SNR (or, equivalently, 𝜎 and ℎ) by
using only the received signals. Because of this equivalence,
energy detection combined with the parameter estimation will
be categorized as a type of blind energy detection.

III. NOISE VARIANCE ESTIMATION AND BLIND

SPECTRUM SENSING

In this section, we derive several non-data-aided noise
variance and signal power estimators and then propose the
blind spectrum sensing algorithm.
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A. ML Noise Variance Estimation

We first consider the ML estimation of ℎ and 𝜎 to gain
insight into the structure of the estimator. Note that, if we can
estimate 𝜃ℎ, then 𝜃 can be readily obtained with a threshold
detector. With a slight abuse of notation, we will still use ℎ to
represent 𝜃ℎ. This strategy is crucial to avoid the chicken-egg
problem by considering 𝜃ℎ as a single parameter. The joint
pdf of 𝑦1, . . . , 𝑦𝑁 given ℎ, 𝜎, 𝜖 and 𝜙 is

𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎, 𝜖, 𝜙) =
1

𝜋𝑁𝜎2𝑁

𝑁∏
𝑖=1

∑
𝑥𝑖∈𝒞

Pr(𝑥𝑖) exp

(
−
∣∣𝑦𝑖 − 𝑒𝚥(𝜖𝑖+𝜙)ℎ𝑥𝑖

∣∣2
𝜎2

)
.

(8)

For BPSK with 𝒞 = {1,−1} and Pr(1) = Pr(−1) = 1
2 , we

have

𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎, 𝜖, 𝜙) =
1

𝜋𝑁𝜎2𝑁

𝑁∏
𝑖=1

exp

(
−∣𝑦𝑖∣2 + ∣ℎ∣2

𝜎2

)
cosh

2ℜ{𝑒𝚥(𝜖𝑖+𝜙)ℎ𝑦∗𝑖 }
𝜎2

.

(9)

The ML estimates of ℎ, 𝜎, 𝜖 and 𝜙 are obtained by maximizing
the joint pdf in (9). As 𝜖, 𝜙 appear in each of the terms in (9),
the closed-form solution for 𝜖, 𝜙 is complicated. Instead, we
define 𝜓𝑖 = 𝜖𝑖 + 𝜙 and maximize each term in (9) over 𝜓𝑖
individually. This action yields

𝜓𝑖 = ∠ℎ𝑦∗𝑖 . (10)

Substituting (10) into (9), we obtain

𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) =
1

𝜋𝑁𝜎2𝑁

𝑁∏
𝑖=1

exp

(
−∣𝑦𝑖∣2 + ∣ℎ∣2

𝜎2

)
cosh

2∣ℎ𝑦∗𝑖 ∣
𝜎2

.
(11)

Taking the derivative of log 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) with respect
to ℎ and setting the resulting equation to zero, we get

ℎ =

𝑁∑
𝑖=1

1

𝑁
tanh

∣ℎ𝑦∗𝑖 ∣
𝜎2

∣𝑦𝑖∣ ≈
∑𝑁

𝑖=1 ∣𝑦𝑖∣
𝑁

, (12)

where the approximation holds for high SNR. Taking the
derivative of log 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) with respect to 𝜎 and
substituting (12) into the resulting equation, we obtain

𝜎2 =

∑𝑁
𝑖=1 ∣𝑦𝑖∣2 +𝑁ℎ2 − 2ℎ

∑𝑁
𝑖=1 ∣𝑦𝑖∣ tanh ∣ℎ𝑦∗𝑖 ∣

𝜎2

𝑁

≈
∑𝑁

𝑖=1 ∣𝑦𝑖∣2
𝑁

−
(∑𝑁

𝑖=1 ∣𝑦𝑖∣
𝑁

)2

.

(13)

After obtaining ℎ and 𝜎2, the SNR can be estimated from

𝜌 =
ℎ2

𝜎2
=

(∑𝑁
𝑖=1 ∣𝑦𝑖∣
𝑁

)2
∑

𝑁
𝑖=1 ∣𝑦𝑖∣2
𝑁 −

(∑
𝑁
𝑖=1 ∣𝑦𝑖∣
𝑁

)2 . (14)

Hence, the SNR estimate depends on the amplitude 𝐴 and
energy 𝐸, defined as

𝐴 =

∑𝑁
𝑖=1 ∣𝑦𝑖∣
𝑁

�̄� =

∑𝑁
𝑖=1 ∣𝑦𝑖∣2
𝑁

. (15)

The SNR estimator (14) is similar to the squared signal-
to-noise variance (SNV) estimator in [9] for real systems.
Our results show that the SNV estimator is an approximate
ML estimator for BPSK even in complex systems and in
the presence of synchronization errors. Different from SNR
estimation, we, here, are interested in estimating ℎ, 𝜎 rather
than 𝜌.

When 𝑥𝑖 is also Gaussian, (8) becomes

𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) = 1

𝜋𝑁 (ℎ2 + 𝜎2)𝑁

𝑁∏
𝑖=1

exp

(
− ∣𝑦𝑖∣2
ℎ2 + 𝜎2

)
.

(16)
By maximizing 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎), we can obtain ℎ2 + 𝜎2

only, but not ℎ and 𝜎 separately. Therefore, the ML estimator
cannot be used for Gaussian signals. Thus, the structure of the
signal constellation is crucial for estimating ℎ and 𝜎.

B. Suboptimal Noise Variance Estimation

For higher-order constellations, deriving or approximating
the ML estimator in closed-form is difficult. The approximate
ML estimator for BPSK uses the two moments 𝐸{∣𝑦𝑖∣} and
𝐸{∣𝑦𝑖∣2}. Motivated by this use of the moments, we then
propose to use a high-order moment estimator to approximate
the ML estimator.

First, we note that

∣𝑦𝑖∣𝑘 =
∣∣∣𝜃𝑒𝚥(𝜖𝑖+𝜙)𝑥𝑖ℎ𝑖 + 𝜎𝑤𝑖

∣∣∣𝑘

=

∣∣∣∣∣∣𝜃𝑥𝑖ℎ𝑖 + 𝜎 𝑒−𝚥(𝜖𝑖+𝜙)𝑤𝑖︸ ︷︷ ︸
�̃�𝑖

∣∣∣∣∣∣
𝑘

, 𝑘 = 1, 2,
(17)

where �̃�𝑖 = 𝑒−𝚥(𝜖𝑖+𝜙)𝑤𝑖 has the same distribution as 𝑤𝑖.
Therefore, the synchronization error does not change the
statistic of ∣𝑦𝑖∣𝑘 and will be omitted in the rest of the paper.

The pdf of ∣𝑦𝑖∣ is a mixed Ricean distribution and is given
by

𝑓∣𝑦𝑖∣(∣𝑦𝑖∣) =
∑
𝑥𝑖∈𝒞

Pr(𝑥𝑖)
2∣𝑦𝑖∣
𝜎2

× exp

(
−∣ℎ∣2∣𝑥𝑖∣2

𝜎2
− ∣𝑦𝑖∣2

𝜎2

)
𝐼0

(
2∣𝑦𝑖∣∣ℎ𝑥𝑖∣

𝜎2

)
,

(18)

where 𝐼0(⋅) is the zero-order modified Bessel function of the
first kind. The 𝑘-th moment of the mixed Ricean distribution
in (18) is [11]

𝐸{∣𝑦𝑖∣𝑘} =ℎ𝑘
∑
𝑥𝑖∈𝒞

Pr(𝑥𝑖)
1

2
𝑘
2

𝜌−
𝑘
2 Γ

(
𝑘

2
+ 1

)

× exp
(−𝜌∣𝑥𝑖∣2

)
1𝐹1

(
𝑘

2
+ 1; 1; 𝜌∣𝑥𝑖∣2

)
,

(19)

where 1𝐹1(⋅; ⋅; ⋅) is the confluent hypergeometric function, and
Γ(⋅) is the gamma function.

1) When 𝑘 is even, we can compute 𝐸{∣𝑦𝑖∣𝑘} in an alternate
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form, i.e.,

𝐸{∣𝑦𝑖∣𝑘} =
1

2𝜋𝜎2

∑
𝑥𝑖∈𝒞

Pr(𝑥𝑖)

∫
∣𝑡+ ℎ𝑥𝑖∣𝑘 𝑒−

∣𝑡∣2
𝜎2 𝑑𝑡

=
1

2𝜋𝜎2

∑
𝑢𝑖+𝚥𝑣𝑖∈𝒞

Pr(𝑢𝑖 + 𝚥𝑣𝑖)

𝑘
2∑

𝑗=0

(𝑘
2

𝑗

)

×
∫ ∫ ∞

−∞
(𝑡1 + ℎ𝑢𝑖)

2𝑗 (𝑡2 + ℎ𝑣𝑖)
𝑘−2𝑗 𝑒−

𝑡21+𝑡22
𝜎2 𝑑𝑡1𝑑𝑡2.

(20)

Define

𝐺(ℎ𝑧, 𝑘, 𝜎) =
1√
2𝜋𝜎2

∫ ∞

−∞
(𝑡+ ℎ𝑧)

𝑘
exp

(
− 𝑡2

𝜎2

)
𝑑𝑡

=

𝑘/2∑
𝑗=0

(
𝑘

2𝑗

)
(ℎ𝑧)𝑘−2𝑗 (2𝑗)!

22𝑗𝑗!
𝜎2𝑗 .

(21)

Equation (20) can be rewritten as

𝐸{∣𝑦𝑖∣𝑘} =
∑

𝑢𝑖+𝚥𝑣𝑖∈𝒞
Pr(𝑢𝑖 + 𝚥𝑣𝑖)

×
𝑘
2∑

𝑗=0

(𝑘
2

𝑗

)
𝐺(ℎ𝑢𝑖, 2𝑗, 𝜎)𝐺(ℎ𝑣𝑖, 𝑘 − 2𝑗, 𝜎).

(22)

2) When 𝑘 is odd, we must compute 𝐸{∣𝑦𝑖∣𝑘} from (19).
From (20)-(22), we find that the 𝑘-th moment can be written

as

𝑚𝑘 = 𝐸{∣𝑦𝑖∣𝑘} = ℎ𝑘𝑓𝑘(𝜌), (23)

where 𝑓𝑘(𝜌) is a function depending only on modulation and
𝜌. Therefore, we have

∏𝑃
𝑝=1𝐸{∣𝑦𝑖∣𝑘𝑝}∏𝑄
𝑞=1 𝐸{∣𝑦𝑖∣𝜅𝑞} =

∏𝑃
𝑝=1 𝑓𝑘𝑝(𝜌)∏𝑄
𝑞=1 𝑓𝜅𝑞(𝜌)

= 𝐹 (𝜌), (24)

if
∑𝑃

𝑝=1 𝑘𝑝 =
∑𝑄

𝑞=1 𝜅𝑞. For any SNR, we can optimize {𝑘𝑝}
and {𝜅𝑞} by minimizing the average MSE as discussed in
Section IV-B.

1) Direct Estimator: Without considering the distribution
of
∑𝑁

𝑖=1 ∣𝑦𝑖∣𝑘, the direct SNR estimator can be obtained by
replacing 𝐸{∣𝑦𝑖∣𝑘} with its time average 1

𝑁

∑𝑁
𝑖=1 ∣𝑦𝑖∣𝑘, i.e.,

𝜌 = 𝐹−1

(∏𝑃
𝑝=1

∑𝑁
𝑖=1 ∣𝑦𝑖∣𝑘𝑛∏𝑄

𝑞=1

∑𝑁
𝑖=1 ∣𝑦𝑖∣𝜅𝑞

)
, (25)

where
∑𝑃

𝑝=1 𝑘𝑝 =
∑𝑄

𝑞=1 𝜅𝑞 and 𝑘𝑝 ∕= 𝜅𝑞 for any 1 ≤ 𝑝 ≤ 𝑃
and 1 ≤ 𝑞 ≤ 𝑄. After estimating 𝜌, we can obtain

ℎ̂ =
√
𝜌

𝐿∑
𝑙=1

𝛼𝑙
𝑘𝑙

√
𝐸{∣𝑦𝑖∣𝑘𝑙}
𝑓𝑘𝑙(𝜌)

, �̂� =

𝐿∑
𝑙=1

𝛽𝑙
𝑘𝑙

√
𝐸{∣𝑦𝑖∣𝑘𝑙}
𝑓𝑘𝑙(𝜌)

,

(26)
where 𝛼𝑙 and 𝛽𝑙 are weights to balance the different moments,
and

∑𝐿
𝑙=1 𝛼𝑙 =

∑𝐿
𝑙=1 𝛽𝑙 = 1.

2) Moment ML Estimator: As shown in Section III-A,
the exact ML estimator is complicated. Instead of using
it, we consider two statistics: �̂�𝑝 = 1

𝑁

∑𝑁
𝑖=1 ∣𝑦𝑖∣𝑝 and

�̂�𝑞 = 1
𝑁

∑𝑁
𝑖=1 ∣𝑦𝑖∣𝑞 . The exact pdf’s of �̂�𝑝 and �̂�𝑞 are

hard to derive. Considering the central limit theorem, we can
approximate �̂�𝑝 and �̂�𝑞 as Gaussian random variables. Then
the corresponding means are

𝑚𝑝 = 𝐸{�̂�𝑝} = 𝜎𝑝𝑓𝑝(𝜌), 𝑚𝑞 = 𝐸{�̂�𝑞} = 𝜎𝑞𝑓𝑞(𝜌),

𝐸{∣�̂�𝑝∣2} =
1

𝑁
𝜎2𝑝
(
𝑓2𝑝(𝜌) + (𝑁 − 1)𝑓2

𝑝 (𝜌)
)
,

𝐸{∣�̂�𝑞∣2} =
1

𝑁
𝜎2𝑞
(
𝑓2𝑞(𝜌) + (𝑁 − 1)𝑓2

𝑞 (𝜌)
)
,

𝐸{�̂�𝑝�̂�𝑞} =
1

𝑁
𝜎𝑝+𝑞 (𝑓𝑝+𝑞(𝜌) + (𝑁 − 1)𝑓𝑝(𝜌)𝑓𝑞(𝜌)) ,

(27)

while the variances and covariances are

𝜈𝑝 =𝐸{∣�̂�𝑝∣2} − 𝐸{∣�̂�𝑝∣}2

=
1

𝑁
𝜎2𝑝
(
𝑓2𝑝(𝜌)− 𝑓2

𝑝 (𝜌)
)
= 𝜎2𝑝𝑔𝑝,𝑝(𝜌,𝑁)

𝜈𝑞 =𝐸{∣�̂�𝑞∣2} − 𝐸{∣�̂�𝑞∣}2

=
1

𝑁
𝜎2𝑞
(
𝑓2𝑞(𝜌)− 𝑓2

𝑞 (𝜌)
)
= 𝜎2𝑞𝑔𝑞,𝑞(𝜌,𝑁)

𝜂𝑝,𝑞 =𝐸{�̂�𝑝�̂�𝑞} − 𝐸{�̂�𝑝}𝐸{�̂�𝑞}
=
𝜎𝑝+𝑞

𝑁
(𝑓𝑝+𝑞(𝜌)− 𝑓𝑝(𝜌)𝑓𝑞(𝜌)) = 𝜎𝑝+𝑞𝑔𝑝,𝑞(𝜌,𝑁).

(28)

The joint distribution of �̂�𝑝, �̂�𝑞 conditioned on 𝜎 and 𝜌 is
written as (29) on the top of next page. Then �̂�𝑝, �̂�𝑞 can
be found by maximizing 𝜓(�̂�𝑝, �̂�𝑞∣𝜎, 𝜌). For each given 𝜌,
the optimal 𝜎∗(𝜌) is obtained from the root of the partial
derivative of 𝜓(�̂�𝑝, �̂�𝑞∣𝜎, 𝜌) with respect to 𝜎, i.e., (30) on
the top of next page, which is polynomial in 𝜎. If several
positive roots exist, we may choose the one that is close to
that estimated from (13) or (26). We substitute 𝜎∗(𝜌) back into
(29) and then 𝜓(�̂�𝑝, �̂�𝑞∣𝜎∗(𝜌), 𝜌) is a function of 𝜌 only.
Maximizing this function over 𝜌 near that in (12) or (26)
yields the approximate ML estimate 𝜌∗, from which we further
obtain the ML estimates 𝜎∗(𝜌∗) and ℎ∗ = 𝜎∗(𝜌∗)

√
𝜌∗. This

procedure can be implemented by using a one-dimensional
grid search.

3) Approximate Moment ML Estimator: The estimator
based on (29) is complicated because the estimations of 𝜌 and
𝜎 are coupled. We further consider a decoupled ML estimator
by using the following special statistic,

𝐹 =
�̂�𝑞
𝑝

�̂�𝑝
𝑞
=

(𝑚𝑝 + 𝜖𝑝)
𝑞

(𝑚𝑞 + 𝜖𝑞)
𝑝 ≈ 𝑚𝑞

𝑝

𝑚𝑝
𝑞
+
𝑞𝑚𝑞−1

𝑝

𝑚𝑝
𝑞

𝜖𝑝−
𝑝𝑚𝑞

𝑝

𝑚𝑝+1
𝑞

𝜖𝑞, (31)

where 𝜖𝑝 and 𝜖𝑞 are errors between �̂�𝑝, �̂�𝑞 and 𝑚𝑝, 𝑚𝑞

and the approximation follows from the first order Taylor’s
expansion. The variance of 𝐹 can be computed as

𝜈𝐹 (𝜌,𝑁) = 𝐸

⎧⎨
⎩
∣∣∣∣∣𝑞𝑚

𝑞−1
𝑝

𝑚𝑝
𝑞

𝜖𝑝 −
𝑝𝑚𝑞

𝑝

𝑚𝑝+1
𝑞

𝜖𝑞

∣∣∣∣∣
2
⎫⎬
⎭

=𝐹 2(𝜌)

(
𝑞2𝑔𝑝,𝑝(𝜌,𝑁)

𝑓2
𝑝 (𝜌)

+
𝑝2𝑔𝑞,𝑞(𝜌,𝑁)

𝑓2
𝑞 (𝜌)

− 2𝑝𝑞𝑔𝑝,𝑞(𝜌,𝑁)

𝑓𝑝(𝜌)𝑓𝑞(𝜌)

)
,

(32)
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𝜓(�̂�𝑝, �̂�𝑞∣𝜎, 𝜌) = 1

2𝜋
√
𝜈𝑝𝜈𝑞 − 𝜂2𝑝,𝑞

exp

(
−𝜈𝑞(�̂�𝑝 −𝑚𝑝)

2 + 𝜈𝑝(�̂�𝑞 −𝑚𝑞)
2 − 2𝜂𝑝,𝑞(�̂�𝑝 −𝑚𝑝)(�̂�𝑞 −𝑚𝑞)

2(𝜈𝑝𝜈𝑞 − 𝜂2𝑝,𝑞)

)

=

exp

(
− 1

2(1−𝜉2(𝜌,𝑁))

(
(�̂�𝑝−𝑚𝑝)

2

𝜎2𝑝𝑔𝑝,𝑝(𝜌,𝑁) +
(�̂�𝑞−𝑚𝑞)

2

𝜎2𝑞𝑔𝑞,𝑞(𝜌,𝑁) − 2𝜉(𝜌,𝑁)(�̂�𝑝−𝑚𝑝)(�̂�𝑞−𝑚𝑞)

𝜎𝑝+𝑞
√
𝑔𝑝,𝑝(𝜌,𝑁)𝑔𝑞,𝑞(𝜌,𝑁)

))
2𝜋𝜎𝑝+𝑞

√
𝑔𝑝,𝑝(𝜌,𝑁)𝑔𝑞,𝑞(𝜌,𝑁)(1− 𝜉2(𝜌,𝑁))

.

(29)

𝑝
(
�̂�2
𝑝𝜎

−2𝑝 − �̂�𝑝𝑓𝑝(𝜌)𝜎
−𝑝)

𝑔𝑝,𝑝(𝜌,𝑁)
+

𝑞
(
�̂�2
𝑞𝜎

−2𝑞 − �̂�𝑞𝑓𝑞(𝜌)𝜎
−𝑞)

𝑔𝑞,𝑞(𝜌,𝑁)

− 𝜉(𝜌,𝑁)
(
(𝑝+ 𝑞)�̂�𝑝�̂�𝑞𝜎

−(𝑝+𝑞) − 𝑞�̂�𝑞𝑓𝑝(𝜌)𝜎
−𝑞 − 𝑝�̂�𝑝𝑓𝑞(𝜌)𝜎

−𝑝)√
𝑔𝑝,𝑝(𝜌,𝑁)𝑔𝑞,𝑞(𝜌,𝑁)

= −
√
1− 𝜉2(𝜌,𝑁)(𝑝+ 𝑞).

(30)

where 𝐹 (𝜌) =
𝑓𝑞
𝑝 (𝜌)

𝑓𝑝
𝑞 (𝜌)

. Therefore, 𝐹 is approximately a Gaus-
sian random variable with pdf

𝜓(𝐹 ∣𝜌) = 1√
2𝜋𝜈𝐹 (𝜌,𝑁)

exp

⎛
⎜⎝−

(
𝐹 − 𝐹 (𝜌)

)2
2𝜈𝐹 (𝜌,𝑁)

⎞
⎟⎠ . (33)

The approximate ML estimator for 𝜌 can be obtained by
maximizing 𝜓(𝐹 ∣𝜌) over 𝜌. A remarkable property of 𝜓(𝐹 ∣𝜌)
is that it depends on 𝜌 only but not on 𝜎. Therefore, the
estimations of 𝜌 and 𝜎 are decoupled.

After obtaining 𝜌∗ from maximizing 𝜓(𝐹 ∣𝜌), we can sub-
stitute it into (30) and estimate 𝜎. We can use only either �̂�𝑝

or �̂�𝑞 to estimate 𝜎, so that the complexity is reduced. For
example, we consider �̂�𝑝 as Gaussian with pdf

𝜓(�̂�𝑝∣𝜌, 𝜎) = 1√
2𝜋𝜈𝑝

exp

(
− (�̂�𝑝 −𝑚𝑝)

2

2𝜈𝑝

)
, (34)

where 𝜈𝑝 is defined in (28). Maximizing 𝜓(�̂�𝑝∣𝜌, 𝜎) over 𝜎
gives the ML estimate of 𝜎 as

𝜎∗ = 𝑝

√√√⎷ 2�̂�𝑝

𝑓𝑝(𝜌∗) +
√
𝑓2
𝑝 (𝜌

∗) + 4𝑔𝑝,𝑝(𝜌∗, 𝑁)
. (35)

Comparing (35) with the direct estimator (26), we find that
the former reduces to the latter if we choose 𝑔𝑝,𝑝(𝜌

∗, 𝑁) = 0
in (35), i.e., if 𝑁 → ∞. Therefore, the direct estimator is
asymptotically ML. From (30), we can see that the true ML
estimate 𝜎 depends on both �̂�𝑝 and �̂�𝑞. Let 𝜎∗

𝑝 and 𝜎∗
𝑞 denote

the solution of (35) using �̂�𝑝 and �̂�𝑞, respectively. We can
use a linear combination of 𝜎∗

𝑝 and 𝜎∗
𝑞 , i.e., (1− 𝛾)𝜎∗

𝑝 + 𝛾𝜎∗
𝑞

as the final estimate.
4) Pseudo LMMSE Estimator: We next consider another

popular estimator: the linear MMSE. From the direct estima-
tor, we obtain

𝜌 =𝐹−1

(
(𝑚𝑝 + 𝜖𝑝)

𝑞

(𝑚𝑞 + 𝜖𝑞)
𝑝

)
≈ 𝜌+

1

𝐹 ′(𝜌)

(
𝑞𝑚𝑞−1

𝑝

𝑚𝑝
𝑞

𝜖𝑝 − 𝑝𝑚𝑞
𝑝

𝑚𝑝+1
𝑞

𝜖𝑞

)

=𝜌+
1

𝑞
𝑓 ′
𝑝(𝜌)

𝑓𝑝(𝜌)
− 𝑝

𝑓 ′
𝑞(𝜌)

𝑓𝑞(𝜌)

(
𝑞

𝜎𝑝𝑓𝑝(𝜌)
𝜖𝑝 − 𝑝

𝜎𝑞𝑓𝑞(𝜌)
𝜖𝑞

)
,

�̂� = 𝑝

√
𝑚𝑝 + 𝜖𝑝
𝑓𝑝(𝜌+ 𝜖𝜌)

≈ 𝜎 +
1

𝑝

(
1

𝜎𝑝−1𝑓𝑝(𝜌)
𝜖𝑝 − 𝜎𝑓 ′

𝑝(𝜌)

𝑓𝑝(𝜌)
𝜖𝜌

)
,

(36)

where 𝜖𝜌 is the error between 𝜌 and 𝜌. The variances of 𝜌 and
𝜎 can be computed as

𝜈𝜌(𝜌,𝑁) = 𝐸

⎧⎨
⎩
(

𝑞
𝜎𝑝𝑓𝑝(𝜌)

𝜖𝑝 − 𝑝
𝜎𝑞𝑓𝑞(𝜌)

𝜖𝑞

)2
(
𝑞
𝑓 ′
𝑝(𝜌)

𝑓𝑝(𝜌)
− 𝑝

𝑓 ′
𝑞(𝜌)

𝑓𝑞(𝜌)

)2
⎫⎬
⎭

=

𝑞2𝑔𝑝,𝑝(𝜌,𝑁)
𝑓2
𝑝 (𝜌)

+
𝑝2𝑔𝑞,𝑞(𝜌,𝑁)

𝑓2
𝑞 (𝜌)

− 2𝑝𝑞𝑔𝑝,𝑞(𝜌,𝑁)
𝑓𝑝(𝜌)𝑓𝑞(𝜌)(

𝑞
𝑓 ′
𝑝(𝜌)

𝑓𝑝(𝜌)
− 𝑝

𝑓 ′
𝑞(𝜌)

𝑓𝑞(𝜌)

)2 ,

(37)

and

𝜈𝜎(𝜌,𝑁) = 𝐸

⎧⎨
⎩

(
𝑓 ′
𝑞(𝜌)

𝜎𝑝 𝜖𝑝 − 𝑓 ′
𝑝(𝜌)

𝜎𝑞 𝜖𝑞

)2
(
𝑞𝑓𝑞(𝜌)𝑓 ′

𝑝(𝜌)− 𝑝𝑓𝑝(𝜌)𝑓 ′
𝑞(𝜌)
)2
⎫⎬
⎭

=
𝑓 ′2
𝑞 (𝜌)𝑔𝑝,𝑝(𝜌,𝑁)+𝑓 ′2

𝑝 (𝜌)𝑔𝑞,𝑞(𝜌,𝑁)−2𝑓 ′
𝑝(𝜌)𝑓

′
𝑞(𝜌)𝑔𝑝,𝑞(𝜌,𝑁)(

𝑞𝑓𝑞(𝜌)𝑓 ′
𝑝(𝜌)− 𝑝𝑓𝑝(𝜌)𝑓 ′

𝑞(𝜌)
)2 .

(38)

The MMSE estimator then takes the form

𝜌 = 𝛼𝐹−1

(
(�̂�𝑝)

𝑞

(�̂�𝑞)
𝑝

)
, �̂� = 𝛽 𝑝

√
�̂�𝑝

𝑓𝑝(𝜌)
, (39)

where 𝛼 and 𝛽 are two scalers to be determined. To find 𝛼,
we minimize the MSE between 𝜌 and 𝜌, i.e., 𝐸{∣𝜌 − 𝜌∣2},
which gives

𝛼(𝜌,𝑁) =
𝜌2

𝜌2 + 𝜈𝜌(𝜌,𝑁)
, (40)

where 𝜈𝜌(𝜌,𝑁) is defined in (37). By substituting (40) into
(39), 𝜌 can be found from the root of

𝜌 = 𝛼(𝜌,𝑁)𝐹−1

(
(�̂�𝑝)

𝑞

(�̂�𝑞)
𝑝

)
. (41)

From the expression of �̂� in (36) and the definition 𝜖𝜌 = 𝜌−𝜌,
if 𝛼 = 1, we can write �̂� in (39) as

�̂� ≈𝛽𝜎 + 𝛽
𝜎

𝑞𝑓𝑞(𝜌)𝑓 ′
𝑝(𝜌)− 𝑝𝑓𝑞(𝜌)𝑓 ′

𝑞(𝜌)

(
𝑓 ′
𝑞(𝜌)

𝜎𝑝
𝜖𝑝 +

𝑓 ′
𝑝(𝜌)

𝜎𝑞
𝜖𝑞

)
.

(42)

By minimizing the MSE 𝐸{(�̂� − 𝜎)2}, we obtain

𝛽(𝜌,𝑁) =
1

1 + 𝜈𝜎(𝜌,𝑁)
. (43)
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Finally, substituting (43) into (39), we get

�̂� = 𝛽(𝜌,𝑁) 𝑝

√
�̂�𝑝

𝑓𝑝(𝜌)
≈ 𝛽(𝜌,𝑁) 𝑝

√
�̂�𝑝

𝑓𝑝(𝜌)
, (44)

where 𝜌 is from (41). Interestingly, the LMMSE estimator can
be seen as an approximation of the ML estimator (38) when
𝜈𝜎(𝜌,𝑁) is small. As the true LMMSE estimator requires
substituting the true 𝜌 into (40) and (43), the derived MMSE
estimators are named as pseudo LMMSE estimators.

Remarks:
∙ The SNV estimator in [9] or (14) is a special case of

(25) if we choose 𝑃 = 2, 𝑘1 = 𝑘2 = 1, and 𝑄 =
1, 𝜅1 = 2. The second- and the fourth-order moments
𝑀2𝑀4 estimator in [9] is obtained by choosing 𝑃 = 2,
𝑘1 = 𝑘2 = 2, and 𝑄 = 1, 𝜅1 = 4 in (25). However,
unlike the SNV in [9] which utilizes (14) to estimate the
SNR directly, our method uses inverse function 𝐹−1 to
compute the SNR. Moreover, unlike the 𝑀2𝑀4 estimator
in [9] which estimates ℎ, 𝜎 first and then computes 𝜌, our
method estimates 𝜌 directly from (25).

∙ Even though the proposed estimators seem to involve
complicated function evaluation, they can be imple-
mented in practice by building a look-up table.

C. Modulation Mismatch and Uniform Approximation

The proposed estimators require knowledge of the modula-
tion format used by the primary user. If the secondary user is
used at a specific primary application with known modulation,
the proposed estimators can be directly used. However, if the
secondary user is operated at an arbitrary primary application,
the proposed estimators may incur a modulation mismatch
problem. One possible solution is to apply the proposed
estimators with the largest possible size of the modulation
constellation used by the primary user. In the extreme case, we
consider that the constellation 𝒞 contains an infinite number of
signal points, where each point is uniformly distributed over
[−√

3,
√
3] and

√
3 is chosen to keep the average power unit.

Then 𝐸{∣𝑦𝑖∣𝑘} can be computed by replacing the summation
over 𝑥𝑖 in (19) with an integral over [−√

3,
√
3], i.e., (45) at

the top of the next page.
Specifically, when 𝑘 is even, we can simplify (45) as

𝐸{∣𝑦𝑖∣𝑘} =

1

6

∫ √
3
2

−
√

3
2

∫ √
3
2

−
√

3
2

𝑘
2∑

𝑗=0

(𝑘
2

𝑗

)
𝐺(ℎ𝑢, 2𝑗, 𝜎)𝐺(ℎ𝑣, 𝑘 − 2𝑗, 𝜎)𝑑𝑢𝑑𝑣,

(46)

where 𝐺(ℎ𝑧, 2𝑗, 𝜎) is defined in (21), and

𝐸{∣𝑦𝑖∣𝑘} =

𝑘
2∑

𝑗=0

(𝑘
2

𝑗

)
𝐹 (ℎ, 2𝑗, 𝜎)𝐹 (ℎ, 𝑘 − 2𝑗, 𝜎), (47)

where

𝐹 (ℎ, 𝑘, 𝜎) =
1√
6

∫ √
3
2

−
√

3
2

𝐺(ℎ𝑧, 𝑘, 𝜎)𝑑𝑧

=

𝑘/2∑
𝑗=0

1

𝑘 − 2𝑗 + 1

(
𝑘

2𝑗

)(
3ℎ2

2

) 𝑘
2−𝑗 (2𝑗)!

22𝑗𝑗!
𝜎2𝑗 .

(48)

The estimators in Section III-A and Section III-B can be used
with (45) and (47).

When 𝑘 is odd, however, closed-form 𝐸{∣𝑦𝑖∣𝑘} is not
available, we need to evaluate (45) numerically.

We can even obtain closed form ML estimator under the
uniform assumption, e.g., (8) can be rewritten as

𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) = 1

(12𝜋)𝑁𝜎2𝑁

×
𝑁∏
𝑖=1

∫ √
3
2

−
√

3
2

∫ √
3
2

−
√

3
2

exp

(
−∣𝑦𝑖 − ℎ(𝑢𝑖 + 𝚥𝑣𝑖)∣2

𝜎2

)
𝑑𝑢𝑖𝑑𝑣𝑖.

(49)

The approximate ML estimates can be obtained by maxi-
mizing (48) over ℎ and 𝜎, which possibly could be solved
by performing a local search near the point obtained by the
estimators in Section III-A and Section III-B. However, this
estimator depends on 𝑦1, . . . , 𝑦𝑁 in a complicated way, and is
hard to implement in practice.

Intuitively, the performance of the estimators that use the
uniform approximation is a worst-case bound. The proposed
estimators can also be extended to the higher-order PSK
(phase shift keying) case, where we can approximate the PSK
constellation by using a uniform distribution on the unit circle,
i.e., 𝑒𝚥𝜃 and 𝜃 is uniformly distributed over [0, 2𝜋).

D. Blind Spectrum Sensing

There are two methods of blind energy detection. In the
first method, the estimated ℎ and 𝜎 are used without taking
into account the history of the noise variance estimation. In
the second method, the noise variance is estimated by using
the previous estimates, assuming that the noise variances is
constant over time. The energy detector is then applied as in
Section II.

For the first method, the estimated SNR 𝜌 is compared with
a threshold 𝜆. If 𝜌 > 𝜆, the secondary user decides that 𝜃 = 1;
otherwise, 𝜃 = 0. The estimate 𝜌 can be obtained from the
direct estimator (25). We need the distribution of 𝜌 to compute
the false alarm probability. For this, we can approximate 𝜌 by
using (36) as a Gaussian random variable. The false alarm
probability can then be approximated as

𝑃𝑓 = Pr(𝜃 = 1∣𝜃 = 0) = 𝑄

(
𝜆√

𝜈𝜌(0, 𝑁)

)
, (50)

where 𝜈𝜌(0, 𝑁) is defined in (37). Similarly, the detection
probability is

𝑃𝑑 = Pr(𝜃 = 1∣𝜃 = 1) = 𝑄

(
𝜆− 𝜌√
𝜈𝜌(𝜌,𝑁)

)
. (51)

The second method consists of two parts: estimating the
noise variance and tracking the noise variance estimate. Let
�̂�2
𝑛 denote the 𝑛-th noise variance estimate. To smooth the

estimation of the noise variance, we can use the time average
as

�̄�2 =
1

𝐾

𝐾∑
𝑛=1

�̂�2
𝑛. (52)
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𝐸{∣𝑦𝑖∣𝑘} =
ℎ𝑘

6 ⋅ 2 𝑘
2

𝜌−
𝑘
2 Γ

(
𝑘

2
+ 1

)∫ √
3
2

−
√

3
2

∫ √
3
2

−
√

3
2

exp
(−𝜌(𝑢2 + 𝑣2)

)
1𝐹1

(
𝑘

2
+ 1; 1; 𝜌(𝑢2 + 𝑣2)

)
𝑑𝑢𝑑𝑣. (45)

Alternatively, we can smooth the noise variance estimate by
using a first-order infinite impulse response (IIR) filter

�̄�2 = (1− 𝛾)�̄�2 + 𝛾�̂�2
𝑛, (53)

where 1 > 𝛾 > 0 is a smoothing parameter.
Aided by the energy detector in Section II, we compare∑𝑁
𝑖=1 ∣𝑦𝑖∣2 with a threshold 𝜆�̄�2. If ∣𝑦∣2 > 𝜆, the secondary

user decides 𝜃 = 1; otherwise, 𝜃 = 0. The parameter 𝜆 is
chosen such that the false alarm probability is 𝜁, i.e., 𝑃𝑓 (𝜆) =
𝜁.

Then, we can either use (5) directly or take into account
the estimation error in �̄�2. Assuming that the variance of the
estimate �̂�2

𝑛 is 𝜎4𝜈𝜎,𝑛 and the variance of �̄�2 is 𝜎4𝜈�̄�, from
(53) we obtain

𝜈�̄� = (1− 𝛾)2𝜈�̄� + 𝛾2𝜈𝜎,𝑛, (54)

where 𝜈𝜎,𝑛 can be found from Section III-B. Let �̄�2 = 𝜎2+𝜖𝜎,
where 𝜖𝜎 is a Gaussian random variable with zero mean and
variance 𝜎4𝜈�̄� . We then substitute �̄�2 into (5) and obtain

𝑃𝑓 (𝜆) =
1√

2𝜋𝜎2𝜈�̄�

∫ ∞

−∞

∫ +∞

𝜆(𝜎2+𝜖𝜎)

𝑡𝑁−1

𝜎2𝑁Γ(𝑁)
𝑒
− 𝑡

𝜎2 − 𝜖2𝜎
2𝜎4𝜈�̄� 𝑑𝑡

=
1√

2𝜋𝜈�̄�Γ (𝑁)

∫ ∞

−∞
Γ (𝑁, 𝜆(1 + 𝑥)) 𝑒−

𝑥2

2𝜈�̄� 𝑑𝑥.

(55)

IV. PERFORMANCE ANALYSIS AND OPTIMIZATION

A. Cramér-Rao Bound

In the literature, the results for the CRB are derived for 𝜌
only, see, e.g., [9]. In this paper, we are interested in the CRB
for both ℎ and 𝜎. This CRB can be obtained by computing

𝑑1 =
∂ log 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎)

∂ℎ

=

𝑁∑
𝑖=1

∑
𝑥𝑖∈𝒞 Pr(𝑥𝑖)

(𝑦𝑖−ℎ𝑥𝑖)𝑥𝑖

𝜎2 exp
(
− (𝑦𝑖−ℎ𝑥𝑖)

2

2𝜎2

)
∑

𝑥𝑖∈𝒞 Pr(𝑥𝑖) exp
(
− (𝑦𝑖−ℎ𝑥𝑖)2

2𝜎2

) ,
(56)

and

𝑑2 =
∂ log 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎)

∂𝜎

=

𝑁∑
𝑖=1

∑
𝑥𝑖∈𝒞 Pr(𝑥𝑖)

(𝑦𝑖−ℎ𝑥𝑖)
2

𝜎3 exp
(
− (𝑦𝑖−ℎ𝑥𝑖)

2

2𝜎2

)
∑

𝑥𝑖∈𝒞 Pr(𝑥𝑖) exp
(
− (𝑦𝑖−ℎ𝑥𝑖)2

2𝜎2

) − 𝑁

𝜎
,

(57)

where 𝑝 (𝑦1, . . . , 𝑦𝑁 ∣ℎ, 𝜎) is defined in (8). The true CRB is
thus [13]

var(ℎ) ≥ CRBℎ =
𝐸𝑦𝑖{𝑑22}

𝐸𝑦𝑖{𝑑21}𝐸𝑦𝑖{𝑑22} − 𝐸2
𝑦𝑖{𝑑1𝑑2}

,

var(𝜎) ≥ CRB𝜎 =
𝐸𝑦𝑖{𝑑21}

𝐸𝑦𝑖{𝑑21}𝐸𝑦𝑖{𝑑22} − 𝐸2
𝑦𝑖{𝑑1𝑑2}

.

(58)

Since deriving the true CRB in closed-form appears in-
tractable, we resort to the modified CRB (MCRB) in [14],
which can be computed as

𝑑1(x) =
∂ log 𝑝 (y∣x, ℎ, 𝜎)

∂ℎ
=

𝑁∑
𝑖=1

(𝑦𝑖 − ℎ𝑥𝑖)𝑥𝑖
𝜎2

, (59)

and

𝑑2(x) =
∂ log 𝑝 (y∣x, ℎ, 𝜎)

∂𝜎
=

𝑁∑
𝑖=1

(𝑦𝑖 − ℎ𝑥𝑖)
2

𝜎3
− 𝑁

𝜎
, (60)

where y = [𝑦1, . . . , 𝑦𝑁 ]𝑇 and x = [𝑥1, . . . , 𝑥𝑁 ]𝑇 . The
modified CRB is thus [14]

var(ℎ) ≥ MCRBℎ

=
𝐸𝑥𝑖,𝑦𝑖{𝑑22(x)}

𝐸𝑥𝑖,𝑦𝑖{𝑑21(x)}𝐸𝑥𝑖,𝑦𝑖{𝑑22(x)} − 𝐸2
𝑥𝑖,𝑦𝑖{𝑑1(x)𝑑2(x)}

=
𝜎2

𝑁
,

var(𝜎) ≥ MCRB𝜎

=
𝐸𝑥𝑖,𝑦𝑖{𝑑21(x)}

𝐸𝑥𝑖,𝑦𝑖{𝑑21(x)}𝐸𝑥𝑖,𝑦𝑖{𝑑22(x)} − 𝐸2
𝑥𝑖,𝑦𝑖{𝑑1(x)𝑑2(x)}

=
𝜎2

2𝑁
.

(61)

From [14], the modified CRB is also a lower bound of the
CRB. Hence, the relationship

var(ℎ) ≥ CRBℎ ≥ MCRBℎ =
𝜎2

𝑁
,

var(𝜎) ≥ CRB𝜎 ≥ MCRB𝜎 =
𝜎2

2𝑁
.

(62)

The modified CRB for SNR or 𝜌 is given by [9, (64)] as

MCRB𝜌 =
2𝜌

𝑁
+

𝜌2

𝑁
. (63)

B. Optimization of Moment Pair

The moment based estimators in Section III-B are close to
the optimum only for BPSK. For a general constellation, we
may choose a different moment pair �̂�𝑝 and �̂�𝑞 to optimize
the performance. We consider minimizing the estimation vari-
ance given in Section III-B. Our experiments indicate that the
performance of estimating 𝜎 depends heavily on the accuracy
of 𝜌. This finding suggests minimizing the variance of 𝜌 in
(37). The optimal moment pair can be found by minimizing
(37) over different moment values.

Fig. 1 compares the variance of 𝜌 with different moment
pairs for 64QAM with 𝑁 = 1344. The figure shows that
the optimal moment pair depends on SNR 𝜌. Unlike BPSK
where 𝑝 = 1 and 𝑞 = 2 converge to the optimal solution, the
moment-based estimators diverge from the optimal solution
for each fixed moment pair in high SNR. In low SNR, a
small pair 𝑝 = 2 and 𝑞 = 4 achieves the minimum variance,
while a large pair 𝑝 = 𝑘 and 𝑞 = 𝑘 + 1 generally achieves
the minimum variance in high SNR, where 𝑘 increases as 𝜌
increases. Interestingly, the envelope of the moment pairs is
flat in high SNR, indicating that the average MSE of 𝜌 has
the form 𝐵(𝑁, 𝒞)/𝜌2 where 𝐵(𝑁, 𝒞) is a constant depending
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Fig. 1. Comparison of variance of 𝜌 for different moment pairs for 64QAM
with 𝑁 = 1344.
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Fig. 2. Comparison of normalized MSE for ℎ between different estimators
with BPSK and 𝑁 = 192.

on the number of samples and the modulation constellation.
Comparing with the modified CRB in (62) and noting that
the modified CRB is a lower bound on the performance of
the ML estimator, we observe that the performance of the
ML estimator can be achieved within a constant factor by
using a high moment pair as 𝜌 increases. One possible way
to implement this is to use a low-order moment pair to get a
crude estimate of 𝜌 and then choose another moment pair to
minimize the variance according to this estimate.

V. SIMULATION RESULTS

In this section, we present our simulation results to comple-
ment our theoretical analysis. We estimate ℎ and 𝜎 by using
𝑁 = 192 and 𝑁 = 1344 samples. These numbers are chosen
in compliance with WCDMA standard [12], where ℎ and 𝜎 are
estimated every 192 symbols or 0.4 ms. The constellations of
BPSK, 16QAM and 64QAM are simulated. The ML estimator
for BPSK by using (9) is denoted as the “ML BPSK"; the
estimator using (14) is denoted as the SNV; the uniform
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Fig. 3. Comparison of normalized MSE for 𝜎 between different estimators
with BPSK and 𝑁 = 192.
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Fig. 4. Comparison of normalized MSE for 𝜌 between different estimators
with BPSK and 𝑁 = 192.

approximation by maximizing (48) is denoted as the “ML
Uniform"; the moment ML estimator by maximizing (29) is
denoted as the “ML Moment"; the estimator by using (26) is
denoted as “Direct Moment"; the estimator using (33) and (35)
is denoted as the “Approximate ML Moment". The simulation
is carried out for SNR between -10 dB and 20 dB. We restrict
the maximum 𝜌 to be 103 in the moment estimators.

We first show the simulation results for the estimation of
ℎ, 𝜎 and 𝜌. The normalized MSE (NMSE) is adopted as the
performance metric, which is defined as 𝐸{∣ℎ̂−ℎ∣2}/ℎ2 for ℎ,
𝐸{∣�̂�−𝜎∣2}/𝜎2 for 𝜎, and 𝐸{∣𝜌−𝜌∣2}/𝜌2 for 𝜌. The NMSEs
are obtained after 2000 simulation runs for each SNR.

Fig. 2–F.g 4 show the NMSEs of ℎ, 𝜎 and 𝜌 with BPSK and
𝑁 = 192, respectively. We find that except the ML Uniform
estimator, all the other estimators can achieve the CRBs of ℎ,
𝜎 and 𝜌 in high SNR. As the uniform approximation is weak
for BPSK, the performance of the ML Uniform is not good.
Figs. 2–Fig. 4 reveal that the moment estimators with 𝑝 = 1
and 𝑞 = 2 perform better than higher moments. The reason is
that the 𝑝 = 1 and 𝑞 = 2 estimator is approximately ML as
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Fig. 5. Comparison of normalized MSE for ℎ between different estimators
with 64QAM and 𝑁 = 192.
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Fig. 6. Comparison of normalized MSE for 𝜎 between different estimators
with 64QAM and 𝑁 = 192.

shown in Section III-A. Although the SNV estimator performs
similar to the ML BPSK in high SNR, it performs worse than
the later in low SNR.

Fig. 5- Fig. 7 demonstrate the NMSEs of ℎ, 𝜎 and 𝜌 with
64QAM and 𝑁 = 192, respectively. For both ℎ and 𝜎, all the
estimators’ NMSEs diverge, but the MSEs converge to zero
as SNR goes to infinity because it is clear that the proposed
estimators’ estimates converge to their true values as SNR
goes to infinity, which can also be seen from Fig. 1. For 𝜌, the
moment based estimators converge because in the estimator of
𝜌 we add an additional constraint that the estimated 𝜌 must
be smaller than 30 dB. Interestingly, the NMSEs of 𝜌 and 𝜎
obtained by using ML BPSK are still good though the NMSE
of ℎ is not good. This can be explained as follows. The BPSK
approximation of the amplitude of 64QAM is not accurate.
As in Fig. 1, we find that the high moment estimator with
𝑝 = 5 and 𝑞 = 6 achieve better performance than those with
smaller moments in high SNR. These findings confirm that to
achieve better performance in high SNR, a high moment pair
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Fig. 7. Comparison of normalized MSE for 𝜌 between different estimators
with 64QAM and 𝑁 = 192.

is required. The peaks of the ML moment estimator are due
to the use of the NMSE metric and the upperbound 30 dB on
𝜌. When comparing Fig. 1 with Fig. 5- Fig. 7, we can see that
as the moment pair order increases, the proposed algorithms
perform better with increasing moment order. If there is no
constraint on 𝜌, we expect to see that the normalized variances
of the moment based estimators will diverge for high order
QAM. In practice, choosing the upper bound on 𝜌 (here 30 dB)
depends on the application environment.

When comparing the performance of ML Uniform in Fig. 3
with Fig. 6, we observe that ML Uniform achieves better
performance for 64QAM than BPSK. The reason is that
64QAM has more constellation points in each dimension than
BPSK, which is implied by the fact that the former is more
similar to the uniform distribution than to the latter.

Fig. 8 shows the NMSE of 𝜎 for ML Moment with different
constellations. As SNR increases, the performance of higher
order constellation degrades faster for both moment pairs. By
increasing the moment order, the performance of both 16QAM
and 64QAM becomes better. In high SNR, the higher order
constellation achieves a worse performance.

Next, we apply the noise variance estimator to spectrum
sensing. To evaluate the effect of estimation error on the
performance of spectrum sensing, we model the estimated
noise variance �̂�2 as a Gaussian random variable with mean
𝜎2 and variance 𝜎4𝜈�̄�, where 𝜈�̄� is equal to the normalized
MSE. The energy detector is used along with the estimated
noise variance. We compare the traditional spectrum sensing
that computes the detection threshold 𝜆 by substituting �̂�2

into (5) with the proposed algorithm that compute 𝜆 by
using (55). In addition, we include the result from the ML
BPSK estimator, where the estimated noise variance and the
signal power are averaged from 1000 runs. Simulations are
performed at SNR= −5 dB with 16QAM and 𝑁 = 48.
Fig. 9 shows the achieved false alarm probability 𝑃𝑓 given
a target 𝑃𝑓 . As the proposed algorithms achieve almost the
same 𝑃𝑓 , we only show 𝑃𝑓 with the ML BPSK estimator.
We find that the traditional method of using the estimated
noise variance directly increases the false alarm probability
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Fig. 8. Comparison of normalized MSE for 𝜎 using the moment estimator
for different constellations (𝑁 = 192).
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Fig. 9. Comparison of achieved false alarm probability 𝑃𝑓 with 16QAM
and 𝑁 = 48 at SNR= −5 dB.

𝑃𝑓 especially when 𝜈�̄� is large, while the proposed algorithm
can achieve the desired 𝑃𝑓 . This result shows that computing
𝑃𝑓 in the conventional energy detector depends crucially on
the accuracy of the noise variance estimate. In Fig. 10, we
compare the achievable correct detection probability 𝑃𝑑 of
different algorithms given a target 𝑃𝑓 . We can see that the
good behavior of 𝑃𝑓 using (55) is at the expense of a smaller
𝑃𝑑. The traditional algorithm using (5) achieves a greater 𝑃𝑑
when 𝜈�̄� is small but it cannot meet the regulation of 𝑃𝑓 . As
the proposed noise variance and signal power estimators can
achieve a very high accuracy, the impact of the estimation
error on the performance of the proposed spectrum sensing
algorithm is negligible from Figs. 9 and Fig. 10.

VI. CONCLUSION

In this paper, we considered blind energy detection based
spectrum sensing without knowing a priori the signal power
of the primary user and the noise variance. We proposed
three estimators, i.e., the direct estimator, the approximate ML
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Fig. 10. Comparison of achieved correct detection probability 𝑃𝑑 with
16QAM and 𝑁 = 192 at SNR= −5 dB.

estimator, and the pseudo linear MMSE estimator by using
the moments of the received signals at the secondary user.
The proposed estimators exploit the finite signal constellation
of the primary user. When this constellation is unknown to
the secondary user, we proposed to use a continuous uniform
distribution to approximate and developed a robust estimator.
The CRB was also derived. We also discussed the way to find
the optimal moment pair and to choose the spectrum sensing
detection threshold under the estimation error. The proposed
estimators may also be profitably employed in conventional
applications such as SNR estimation and turbo decoding.
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