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Abstract

Moment-closure approximations are an important tool in the analysis of the dynamics on both static and adaptive networks. Here,

we provide a broad survey over different approximation schemes by applying each of them to the adaptive voter model. While

already the simplest schemes provide reasonable qualitative results, even very complex and sophisticated approximations fail to

capture the dynamics quantitatively. We then perform a detailed analysis that identifies the emergence of specific correlations as the

reason for the failure of established approaches, before presenting a simple approximation scheme that works best in the parameter

range where all other approaches fail. By combining a focused review of published results with new analysis and illustrations, we

seek to build up an intuition regarding the situations when existing approaches work, when they fail, and how new approaches can

be tailored to specific problems.
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1. INTRODUCTION

Complex networks have been ubiquitously used to model

problems from various disciplines [1–6]. Treating a complex

system as a network, a set of discrete nodes and links, leads to

a conceptual simplification that often allows subsequent analyt-

ical insight that provides a deep understanding.

For many questions the networks of interest are not static

entities but change in time due to the dynamics of and on the

network. In the dynamics of networks, the network itself is

regarded as a dynamical system. Prominent examples are net-

work growth models leading to specific topologies such as scale-

free [7] and small-world networks [8]. The dynamics on net-

works concerns dynamical processes such as epidemic spread-

ing [9] that occur on a given fixed network, where each node

carries a state which evolves through interactions with its neigh-

bors.

If the dynamics on and of networks occur simultaneously

and interdependently then the network topology coevolves with

the states of the nodes and an adaptive network is formed [10,

11]. Adaptive networks have been used to model problems of

opinion formation [12–18], epidemic spreading [19–27], evo-

lution of cooperation [28–40], synchronization [41–45], neu-

ronal activity [46–54], collective motion [55, 56], cartelisation

of markets [57], and particle diffusion [58] among others.

Network models in general and adaptive networks in partic-

ular provide a powerful framework to model, analyze, and even-

tually understand a wide range of self-organization phenomena.
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For instance Tomita et al. [59] showed that a very simple adap-

tive network model can be used to produce a huge variety of

different self-organizing structures including a self-replicating

Turing machine.

While specific models can be studied by agent-based sim-

ulation, the numerical performance scales badly with the com-

plexity of update rules in the model, which makes exploration

of a wider range of models difficult. In particular those models

where the update of the state or neighborhood of nodes depends

on the states of multiple other neighboring nodes pose strong

numerical demands. Additionally the general bad data local-

ity of network simulations precludes efficient parallelization.

This defines a strong need for analytical approaches, and, based

on recent successes, highlights the exploration of dynamic net-

works with complex update rules as an area where analytical

work could outpace and guide numerical exploration.

A direct microscopic description of dynamical networks gen-

erally constitutes a very high-dimensional dynamical system.

While in some cases exact analytical results were nevertheless

obtained (e.g. [35, 60, 61]), there are presently no approaches

that are generally applicable. Much of the theoretical progress

therefore relies on the derivation of reasonably low-dimensional

coarse-grained approximations to the full microscopic model.

For networks in which the node can only assume states from

a (small) discrete set of possibilities, approximation schemes

are well established. These schemes are deeply rooted in physics

and can be traced back to early work on the Ising model [62,

63]. In the networks literature there is presently a veritable zoo

of different approximation schemes that build on similar princi-

ples but take different information into account. In the follow-

ing we refer to these approaches as moment-closure approxima-

tions. The common idea in all of these approaches is to derive

evolution equations for the abundance of certain subgraphs in
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the network. One starts with writing an evolution equation for

small subgraphs, such as single nodes, before writing equations

for larger motifs – a process that is reminiscent of classical mo-

ment expansions. The system of equations that is thus obtained

generally depends on the abundance of other, typically larger,

subgraphs that are not captured, and thus needs to be closed

by estimating the abundance of these subgraphs – the actual

moment-closure approximation.

Despite their underlying similarity moment-closure approx-

imations proposed in the recent literature differ widely by the

type and number of the subgraphs they capture. Generally speak-

ing, capturing the dynamics of more subgraphs, leads to better

approximations at the cost of having to deal with a larger sys-

tem of equations (see [15, 23, 64–67]). In practice some re-

cently proposed schemes are successfully applied which only

capture one or two subgraphs, while others capture thousands

or millions of subgraphs.

For the analysis of adaptive networks, but also certain types

of dynamics on static networks, moment-closure approxima-

tions are presently the most commonly applied theoretical tool.

In adaptive networks they were used for instance to study epi-

demics [19–24, 26, 27, 68–72], collective motion [55, 56], evo-

lution of cooperation [36, 73, 74], and social opinion formation

[13, 15, 75, 76].

Despite the abundance of examples there is so far little in-

tuition on when particular approximation schemes work and

when they fail. This is most notable when considering the adap-

tive SIS model [19] and the adaptive voter model [13–15]. Both

of these models are adaptive network models of similar com-

plexity, and, depending on personal taste, either can be con-

sidered as the most simple non-trivial adaptive network. How-

ever, for the adaptive SIS model, the dynamics can be faithfully

captured already by simple approximation schemes [19], with

more sophisticated approaches leading expectedly to a further

improvement[23, 70, 71]. By contrast, for the adaptive voter

model, simple approximation schemes only provide unsatisfac-

tory results [13, 15] and, as we show here, more sophisticated

approaches can actually perform worse.

In the present paper, we aim to offer an in-depth analy-

sis of the performance and the failure of different approxima-

tion schemes. For the purpose of illustration we focus on the

adaptive voter model as it provides a mathematically simple,

yet challenging example system. To this system we apply the

major approximation schemes proposed in the recent literature.

Thereby, we build up an intuition of the advantages and disad-

vantages of the respective schemes.

A second goal of the present paper is to provide researchers

entering the field with “worked examples” for the major ap-

proximation schemes. We present these examples in strongly

abbreviated form in the main text, while providing all calcula-

tions in full detail in the appendices.

The paper is structured as follows: We start in Sec. 2 by

introducing the adaptive voter model. In Sec. 3 we study the

so-called homogeneous approximations, which result in rela-

tively low dimensional equation systems. For these we explore

in particular the effect of the order of approximation. Then,

in Sec. 4 we discuss different heterogeneous approximations,

which yield high-dimensional equation systems, but surpris-

ingly do not significantly improve the performance of the ap-

proximation. Finally, in Sec. 5 we introduce a slightly differ-

ent expansion that captures very similar information but works

exactly in those parameter ranges where other approximations

fail. A summary and discussion in Sec. 6 concludes the paper.

2. ADAPTIVE VOTER MODEL

The voter model considers the competition of equally at-

tractive and mutually exclusive opinions (say A and B) in a

population of interacting agents. The agents are represented

by nodes that have an internal binary state variable, indicating

the opinion held by the corresponding agents. The state is up-

dated dynamically in time due to social interactions, occurring

between linked agents.

In the original non-adaptive voter model [77] the underlying

interaction topology is static. At each time step, a pair of nodes

connected by a link is selected. If they share the same state,

nothing happens. Otherwise, one of the two adopts the other’s

state. This model has been explored in many subsequent works

and in particular the dependence of the time needed to reach

consensus on the underlying topology and details of the update

rule is well understood [78–86].
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Figure 1: (Color online) Parabola of active states. Shown are five representative

trajectories for each of three parameter values and three different update rules.

The long-term behavior depends on the value of the rewiring rate p. If this

rate exceeds a threshold p∗ then the system quickly approaches a fragmented

state in which the number of active links [AB] vanishes, while the density of a

given opinion (say, [A]) remains almost constant. If p is below the threshold

rewiring rate then the model approaches a parabola of meta-stable active states

on which it remains for a long time while undergoing a random walk in the

opinion density that eventually leads to consensus. Parameters: N = 105 and

〈k〉 = 4.

The adaptive variants of the model [12–15] additionally in-

corporates a phenomenon known as social segregation, the ten-

dency of humans to link preferentially to others holding similar

opinions and distance themselves from those holding opposite

opinions. Starting from a suitable initial condition, a pair of

nodes connected by a link is selected at each time step. If the

link is inert, connecting nodes in the same state, then nothing
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happens. Otherwise, the link is active and either (with proba-

bility p) one of the nodes rewires the link by detaching it from

the other node and attaching to a random node that shares its

opinion, or one of the nodes copies the other node’s state.

In the spirit of discrete event simulations, using the Gille-

spie algorithm, the probability p can be thought of as an effec-

tive parameter capturing the rate of rewiring events, normalized

by the total rate of update events happening in the network. We

therefore call p the rewiring rate.

Previous investigations [12–15, 87] have shown that there is

a critical rewiring rate, p∗, at which the behavior of the model

changes qualitatively. If p > p∗ then the system quickly ap-

proaches a fragmented state in which the network splits into

two disconnected components that hold opinion A and B, re-

spectively. Since no active links survive the dynamics freezes

in this fragmented state. By contrast, if p < p∗ then the sys-

tem remains active for a long time before eventually reaching a

complete consensus on one of the opinions, which is likewise

an absorbing state (see Fig. 1).

We note many variants of the adaptive voter model using

different update rules have been investigated in the literature

[12–16, 75, 88–93]. Apart from models with more than two

states[12, 18, 94] and models with directed links[16], the most

prominent difference is the precise procedure for selecting the

link that is updated and the direction of the update (e.g. which

node adopts the others opinion) on this link. One distinguishes

between direct node update, reverse node update, and link up-

date rules. In the two node update rules, one selects a random

node (node X) then a random neighbor (node Y). Selecting the

nodes in this way creates a slight bias in the selected nodes re-

garding the degree, i.e. the number of neighbors of the respec-

tive nodes. Essentially, a node of higher degree has a propor-

tionally higher probability of being found by following a link,

and conversely the nodes found in this way have a higher de-

gree. Therefore, the average degree of node Y is higher than

the average degree of node X [2]. In models using direct node

update, X retains the link in rewiring events and adopts Y’s state

in update events, whereas in models using reverse node update

Y retains the link in rewiring events and copies X’s opinion

in update events. By contrast, in the link update rule one ran-

domly selects a link, such that both selected nodes have identi-

cal statistical properties. While the precise update rule can have

a significant impact on convergence times [14], the qualitative

features of the models, described above remain unchanged (see

Fig. 1).

In the remainder of this paper we apply different moment-

closure approximations for capturing the dynamics of the voter

model. Specifically, we compare the ability of the different ap-

proaches to predict the density of active links in the state when

both opinions are equally abundant.

The specific model that we consider throughout most of

the paper is as follows: We start with an Erdős-Renyi ran-

dom graph with N nodes and L links, such that the mean de-

gree is 〈k〉 = 2L/N. Initial opinions are assigned randomly

with equal probability. Therefore, the initial abundances obey

NA = NB = N/2. The network is then evolved by a link up-

date rule: At each time step an active link is selected at random.

With probability p one of the nodes rewires the link and con-

nects to a random node of same state. Otherwise, that is with the

complementary probability 1 − p, one of the nodes adopts the

other’s state. The respective node that retains the link or adopts

the other’s opinion is selected randomly with equal probabil-

ity. The model is simulated according to these rules until either

fragmentation occurs or an active state is reached where the

density of active links remains approximately constant over an

intermediate time scale.

3. HOMOGENEOUS APPROXIMATIONS

For classifying the different approximation schemes that have

been proposed, it is useful to distinguish between homogeneous

and heterogeneous approximations. While all approximations

attempt to capture the dynamics of certain subgraphs, they dif-

fer in the way in which subgraphs are identified: Homogeneous

approximations [13–15, 19, 20, 36, 68, 76, 80, 95] classify sub-

graphs according to states of the nodes and the internal topology

in the subgraph, whereas heterogeneous approximations addi-

tionally take the degree of the nodes in the subgraph into ac-

count [9, 17, 23, 72, 78, 79, 96–100].

Homogeneous moment-closure approximations have been

used in the past two decades to explain dynamics on static net-

works [64, 65, 95, 101, 102] and have more recently been ap-

plied to adaptive models of epidemic spreading [19–22, 27, 74,

103], opinion formation [13–15, 75, 76], cooperation games

[36, 73, 74], and collective motion [55, 56].

The central idea of homogeneous approximations is to cap-

ture the dynamics of the network by writing balance equations

for the density or abundance of a certain set of labeled sub-

graphs (motifs), which are called network moments. The sys-

tem of differential equations of network moments constitutes

the moment expansion which is then closed by the so-called

moment-closure approximation.

3.1. Moment Expansion

Writing the rate equation for a network moment necessitates

calculating the rates of all possible processes that result in ei-

ther the formation or destruction of the respective subgraph. For

the adaptive voter model, the moment expansion for small sub-

graphs (nodes and links) has already been developed in Vazquez

et al. [13] and independently for an identical model by Kimura

and Hayakawa [15]:

d

dt
[A] = 0,

d

dt
[AA] =

1

2
[AB] +

(1 − p)

2

(

2[ABA]− [AAB]
)

,

d

dt
[BB] =

1

2
[AB] +

(1 − p)

2

(

2[BAB]− [ABB]
)

, (1)

where [X] denotes the density of nodes with state X, [XY] de-

notes the density of links between nodes of state X and Y, and

[XYZ] denotes the density of triplets constituted by a node of

state Y in the center and its two neighbors of state X and Z, with

X, Y, Z ∈ {A,B}. The densities are normalized with respect to
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the number of nodes N, i.e. [Ω] = NΩ/N where we used Ω

as a placeholder for an arbitrary subgraph (e.g. A-node, AB-

link, AAB-triplet), such that NΩ is the total abundance of that

subgraph in the network.

The first equation in Eq. (1) states that the density of nodes

of state A (and equivalently B) is conserved in the thermody-

namic limit. This is peculiar to the voter model and is a di-

rect consequence of symmetry in state adoption. In an update

step, the A-node adopts state B with probability (1 − p)/2 and

equivalently the B-node adopts state A with the same probabil-

ity (1− p)/2 leading to a vanishing net drift in the deterministic

limit.

The second equation captures the change in the density of

AA-links [AA]. If a B-node adopts state A on an AB-link (at

rate (1− p)[AB]/2) or an A-node rewires an AB-link and forms

a link to another A-node (at rate p[AB]/2), an AA-link is di-

rectly created in the update. The total rate of this direct creation

of AA-Links is thus [AB]/2. Additionally, AA-links can be cre-

ated indirectly. Consider a B-node that is connected to two A-

neighbors such that the three nodes form an ABA-triplet. When

this B-node adopts state A, instead of one, two AA-links are

formed. While the rate of adoption events creating A-nodes is

(1− p)[AB]/2 the expected additional links created indirectly in

such adoption events are 2[ABA]/[AB]. Thus the total rate for

the indirect creation of AA-links is (1 − p)[ABA]. Finally, AA-

links can be destroyed indirectly if one of the A-nodes forming

an AA-link adopts state B due to an interaction with another B-

node, which happens at rate (1− p)[AAB]/2. The rate equation

for [BB] is obtained by interchanging A and B in the second

equation.

The system of equations (1) is not closed as it contains the

(unknown) densities of larger subgraphs. This is a general prop-

erty of moment expansions. For a system where the update

rules directly affect subgraphs of diameter d (here, 1) the evo-

lution equation for a subgraph of diameter l generally contains

subgraphs of diameter up to d + l due to indirect effects.

For a more precise discussion it is useful to define the order

of a network moment as the number of links contained in the

corresponding subgraph. For instance, the moments [X], [XY]

and [XYZ] have order zero, one and two respectively. Accord-

ingly, one can define the order of a network model as the largest

order of subgraphs used in definition of the network update pro-

cess, e.g. the voter model has order one since it involves a link

at most in the definition.

Let us denote the model order as oM, the set of node states

as S (S = {A, B} in the voter model), and the set of network

moments of order o as [Ωo], e.g. [Ω0] = {[X] : X ∈ S }, [Ω1] =

{[XY] : X, Y ∈ S }, and [Ω2] = {[XYZ] : X, Y, Z ∈ S }. Then,

d

dt
[ωo] = fωo

(

[Ω0], [Ω1], ..., [Ωo+oM
]
)

, (2)

where [ωo] ∈ [Ωo] and fωo
is a R-valued function that is mo-

ment specific.

We note that there are variants of moment expansions that

differ in the definition of the set Ωo. One intuitive approach

is to include all possible subgraphs that contain o links. How-

ever, more appropriate basis of subgraphs can be constructed by

considering the specific properties of the model. For instance,

sparse random graphs tend to be locally tree-like. If a model

does not have any particular update rules that actively create

small cycles, cyclic motifs are exceedingly rare and can thus in

general be safely ignored.
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Figure 2: (Color online) Validity of the moment expansion. The quasi-

stationary density [AB] at [A] = [B] = 1/2 from agent-based simulations

is compared with [AB] computed analytically from the moment expansion

(Eq. (3) for link and reverse node update (Appendix D), and see Appendix E

for direct node update). In this plot, the moment-closure approximation is

avoided and the analytical results use the triplet densities [AAB] and [ABA]

measured in the numerical simulation. Parameters: N = 105 , 〈k〉 = 4.

In order to test the validity of the moment expansion Eq. (1)

for the adaptive voter model, we solve for the density [AB] in

the same equation at the steady state, which yields

[AB] = (1 − p) ([AAB] − 2[ABA]) . (3)

To assess the validity of the expansion independently of the sub-

sequent closure approximation we compute the expected num-

ber of active links for the respective triplet densities [AAB] and

[ABA] observed in an agent-based simulation. The resulting

diagram, Fig. 2, shows an almost perfect match for the active

link density [AB] with the numerical results for the model with

link update. The match for node update rules is less good, in

particular for low rewiring rates, but becomes better as we ap-

proach the transition point where the active links vanish and the

network fragments.

Let us discuss the bad performance of the expansion for the

node update rules in a little more detail. The moment expansion

can only be exactly valid in the thermodynamic limit. However,

the link update model shows that for the network sizes consid-

ered here finite size effects can be neglected. The only other
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explanation is that the simulated system contains some corre-

lations that are not picked up by the moment expansion. Be-

cause the effect of long-ranged correlations should have been

captured. However, in the expansion we are implicitly assum-

ing that the triplets are statistically distributed within the net-

work, which is approximately true for the link update rule at

low rewiring rates. By contrast in the node update rules the bias

can induce additional correlations. This effect is counteracted

by the rewiring as this mixes the network and thus improves the

prediction.

As a side-note, let us remark that the beneficial effect of

rewiring is a general property. In a given static network model

a specific topological feature, such as a node of particular high

degree or a densely clustered region, might exist that biases the

system constantly in a specific direction. In an adaptive network

such topological features may emerge for a limited time before

being destroyed by topological dynamics. In the long run the

effect of unlikely local configurations often averages out. In

this sense adaptive networks are ensembles of themselves and

can thus often be very well approximated unless correlations

arise systematically that are not captured by the approximation

scheme used.

3.2. Moment-Closure Approximation

In the previous section we have seen that moment expan-

sions lead to an infinite hierarchy of equations. So far we trun-

cated this expansion after the first order and used numerical val-

ues for the densities of larger subgraphs. Because we generally

develop the expansion to obtain an analytical solution, we can-

not rely on numerics, but must estimate the density of large

subgraphs using a suitable approximation, known as moment-

closure approximations.

For illustration let us approximate the second order moment

[ABA] in terms of the zeroth order moment [B] and the first

order moment [AB] by the so-called pair approximation. An

ABA-triplet comprises two adjacent AB-links sharing a com-

mon B-node. Therefore we first note that the density of single

AB-links is [AB]. Next, we compute the probability that an

additional A-node is connected to the B-node in this link.

Since we reached the B-node by following a link, we can

expect it to have a higher-than-average degree. Specifically, the

degree of the B-node in a randomly selected AB-link follows

the distribution QB
k
= kPB

k
/([B]〈kB〉), where PB

k
denotes the

probability that a randomly selected B-node has degree k and

〈kB〉 is the mean degree of a randomly selected B-node. The

expected number of additional links of a B-node in an AB-link

is thus 〈qB〉 =
∑

k (k − 1)QB
k
, which is also known as the mean

excess degree [2] (of B-nodes).

A key assumption that we have to make at this point is that

the AB-links are uncorrelated, except for the effect of the node

degree described above. Using this assumption, each of the

additional links of the B-node is an AB-link with probability

[AB]/([AB]+ 2[BB]). Using [AB] + 2[BB] = 〈kB〉[B], we find

2[ABA] ≃ κB
[AB]2

[B]
, (4)

where κB = 〈qB〉/〈kB〉.

Similarly,

[ABB] ≃ κB
2[BB][AB]

[B]
and [BBB] ≃ κB

2[BB]2

[B]
. (5)
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Figure 3: (Color online) Performance of the first and second-order homoge-

neous moment-closure approximations. As a function of the rewiring rate p,

the density of active links [AB] from agent-based simulations is compared

with results of the pair approximation, and two different triplet approximations

[(A) − BAA] = 0.5[AAA][AAB]/[AA] and [(A) − BAA] = 0.5[AAB]2/[AB]

(dashed, dash-dotted, respectively). Parameters: N = 105, 〈k〉 = 4.

The parameter κB that appears in these equations is gen-

erally not known because the degree distribution is reshaped

by the rewiring process (although see [16] for an exception).

Governing κB are two counteracting effects, on the one hand

we know that the degree of a node that is reached via a link

is on average greater than the mean degree and on the other

hand we have to subtract 1 from this increased degree, because

we are only interested in the number of additional links. On

Erdös-Renyi random graphs, these effects cancel exactly such

that κB = 1. Although the value of κB can be significantly higher

in networks with broad degree distributions, assuming κB = 1

has yielded good results for models with a fairly wide degree

distribution [19].

Substituting Eqs. (4, 5) into Eq. (1) and using the random-

graph approximation κB = 1 yields

d

dt
[A] = 0,

d

dt
[AA] =

1

2
[AB] +

(1 − p)

2

(

[AB]2

[B]
−

2[AA][AB]

[A]

)

,

d

dt
[BB] =

1

2
[AB] +

(1 − p)

2

(

[AB]2

[A]
−

2[BB][AB]

[B]

)

.

(6)

In order to test the performance of approximation we solve

Eq. (6) for the stationary density of active links

[AB] =

(

〈k〉(1 − p) − 1

(1 − p)

)

[A] (1 − [A]) , (7)
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which nicely captures the parabola shape of the states, shown in

Fig. 1. Furthermore, considering the tip of the parabola [A] =

1/2, we find

[AB] =

(

〈k〉(1 − p) − 1

4(1 − p)

)

, (8)

A comparison of the Eq. (8) with numerical results is shown

in Fig. 3. The comparison shows that the approximation cap-

tures qualitative features of the model. The highest density of

active links is found for p = 0, then as p is increased the den-

sity of active links declines and finally reaches zero at a finite

rewiring rate p∗. However, the quantitative correspondence be-

tween the analytical and numerical results is very bad. In par-

ticular the pair approximation significantly overestimates the

rewiring rate at which fragmentation occurs.

0 10
0

0.3

k

P
kB

 

 

 

 agent−based sim.

poissonian dist.

p=0.43

p=0

Figure 4: (Color online) Validity of the random-graph approximation. Com-

parison of the degree distribution of B-nodes, PB
k

, in agent-based simulations

with a Poisson distribution Pk = e−〈k〉〈k〉k/k!. The comparison shows that the

degree distribution of the adaptive network remains almost exactly Poissonian,

and hence the random-graph approximation is valid to very good approxima-

tion. Parameters: N = 105 , 〈k〉 = 4.

Let us investigate the reason of the bad performance of the

approximation in more detail. We have already argued above

that the random-graph approximation κB = 1 is probably harm-

less. This can be confirmed by comparing the degree distribu-

tion observed in simulations to the Poissonian distribution of

a random graph (Fig. 4). The comparison shows that the de-

gree distribution stays very close to the Poissonian distribution.

For such a close match the random-graph approximation is al-

most exact and cannot be the source of the major discrepancy

observed in the results.

Accepting the validity of the moment expansion and rul-

ing out the random-graph approximation as a source of errors

leaves us with only two further sources of errors: We have as-

sumed that a) the actual density of large motifs can be replaced

with its expectation value and b) that correlations between ac-

tive links can be neglected when computing this expectation

value.

Let us first consider assumption a), which we call truncation

assumption. Approximating any system by a lower-dimensional

system is only possible if there is a time scale separation be-

tween slow low-order moments and fast higher-order moments

[68]. The system then quickly converges to the slow mani-

fold, characterized by the slow variables only [104]. There-

fore, dynamics of moments higher than some order are enslaved

to the dynamics of lower ones and they can be expressed as

algebraic functions of low order slow moments. In our mo-

ment expansion the higher-order moments are disproportion-

ately more likely to be affected by updates. For instance a sin-

gle rewiring event effects one link, but approximately 2(κB〈k〉)
2

triplets. While a more detailed investigation of this point would

probably be fruitful, we conclude that assumption a) is proba-

bly not the main source of error in the present approximation

scheme.

Figure 5: (Color online) Test of the pair approximation. Shown is the ratio

between the observed number of triplets in agent-based simulations and the ex-

pected number based on the observed number of nodes and links. The pair

approximation is approximately valid for ABB triplets, whereas the error in the

approximation of ABA triplets diverges as the system approaches the fragmen-

tation point p∗. The sketch in the inset explains this failure. Close to fragmen-

tation many active links are created by very few nodes that are in the wrong

cluster. This induces a very high correlation between active links which is not

capture by the pair approximation. Parameters: N = 105, 〈k〉 = 4.

Accepting that the actual dynamical densities of higher-order

moments can be replaced by their static expectation values,

leaves us with the task of capturing the corresponding slow

manifolds in a suitable functional form. Above, we derived

such a functional form based on the assumption b), the absence

of longer-ranged correlations. We can test this assumption by

comparing the numbers of triplets observed in simulations to

the expected values for uncorrelated active links. This compar-

ison, shown in Fig. 5, indicates that the expectation for ABB-

triplets is almost correct, while the error in the estimation of

ABA-triplets diverges as the system approaches the fragmenta-

tion point.

An intuitive explanation of the failure of the pair-approximation

is shown in the inset of Fig. 5. The sketch shows a represen-

tation of a typical configuration close to fragmentation. The

6



0 10
1.0E−11

1

T
A

B
A

m

 

 

m(A−neighbors)

agent−based simulation

pair approximation

 

 
p=0.43

p=0

Figure 6: (Color online) Emergence of ABA-correlations close to fragmen-

tation. Shown is T m
ABA

, the fraction of B-nodes with m A-neighbors. Av-

erages from agent-based simulations are compared with the expectation of

an Erdős-Renyi random graph without any second neighbor correlations (see

Appendix F). Close to the fragmentation transition, the A-neighbor distribu-

tion of ABA-triplets deviate from the pair approximation. Parameters: N = 105,

〈k〉 = 4.

nodes have sorted into two large clusters, connected by a few

remaining links. On those links occasionally opinion adoption

events take place which introduce some “wrong” nodes into the

clusters and thus create many active links. The majority of ac-

tive links is thus located on few nodes. This creates both a dis-

proportionately large number of ABA-triplets and constitutes

a strong three-node correlation that is not captured by the pair

approximation.

The intuitive explanation above can be quantified by a nu-

merical test shown in Fig. 6. The results confirm that close

to fragmentation most ABA-triplets occur on B-nodes having

many A-neighbors.

3.3. Better homogeneous approximations

The reasoning presented above identifies the actual closure

approximation, essentially assuming the absence of longer-ranged

correlations as the reason for the failure of the pair approxi-

mation close to the fragmentation transition. Let us therefore

discuss ways in which the approximation can be improved.

In principle every moment expansion should converge to

the correct result if the order of the approximation is increased.

Clearly despite its shortcoming the pair approximation is much

better than the zeroth-order node approximation that ignores

all, even link level, correlations and assumes that the network

is well-mixed in terms of node states [14]. This is analogous

to the molecular field approximation of the Ising model [105].

The first-order approximation we used above is called the pair

approximation [13, 15, 19, 20, 36, 76, 80], which accounts for

nearest-neighbor correlations but neglects higher order ones.

This is analogous to the Bethe-Peierls approximation [62, 63,

105–107] in statistical physics. When the density of cycles is

non-negligible, i.e. when the network has high clustering, the

pair approximation is extended in order to account for the cyclic

motifs, corresponding to Bethe-Kirkwood type approximations

[67, 108]. Approximations that make the closure at higher or-

ders are analogous to high order Kikuchi approximations [109].

Increasing the order of the approximation is expected to

yield better results [15, 64, 65], but convergence to the cor-

rect solution is not guaranteed to be fast or uniform. More-

over, increasing the order of the expansion creates a number of

technical problems. First, the number of subgraphs increases

very quickly with the order of the expansion. For instance, a

third-order approximation to the adaptive voter model already

consists of 29 rate equations and 48 estimated fourth-order mo-

ments. Second, uniquely enumerating the subgraphs and com-

puting the correct prefactors that arise from symmetries in not

completely trivial. Third, and perhaps most interestingly there

are different mutually inconsistent possibilities for closing ex-

pansions beyond the pair level (see Appendix C). A criterion

on which closure should be used is an important open mathe-

matical problem.

In the context of the adaptive voter model a higher order

closure has been used by Kimura and Hayakawa [15], and for

the specific model studied here two different higher order clo-

sures are derived in Appendix B and Appendix C.

The performance of higher level-closures is shown in Fig. 3.

Although the triplet-level closures perform better than the pair-

level closure, the prediction is still very bad close to the bifur-

cation point. We can explain this result by considering Fig. 6

again. In the triplet-level closure we have to estimate the den-

sity of four-node subgraphs. In this estimation we use the as-

sumption that the four node subgraphs are uncorrelated. How-

ever, from the numerical results we know that many active links

connect to nodes that have ten or more such links, which im-

plies also a high correlation at the four-node-level.

The reasoning above suggests that the order of the approx-

imation will have to raised beyond the mean degree of the sys-

tem to achieve a faithful result. Because of the technical diffi-

culties described above this is clearly infeasible. However, note

that by raising the expansion to this point we would be captur-

ing much information that is clearly not important. Considering

that the number of subgraphs rises combinatorially with the or-

der of the expansion, say tenth-order expansion would include

an enormous number of subgraphs including exceedingly rare

ones, which clearly cannot be of importance. Consider further-

more that the tenth-order closure would also comprise 11-node

chains, and thus captures correlations that are longer than the

diameter of networks in reasonable simulations. This suggests,

that much a better performance is achieved more cheaply if a

tailored motif-basis is used that does not cover whole orders

but selectively contains only those subgraphs that are otherwise

hard to estimate - an idea to which we return in Sec. 5.

A promising alternative approach is to use a relatively low

order moment expansion, but use a more intelligent closure. For

instance, Gross and Kevrekidis [68] implements the approach

of equation-free modeling [110] to extract a proper closure term

for an epidemic model automatically from very short bursts of
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simulation runs. This enabled a semi-analytical investigation

where continuation software was used to explore the dynamics

of the system.

Another approach proposed in a recent paper [111] is to

generate closures from a maximum entropy principle. This ap-

proach thus solves at least the problem of non-uniqueness of

higher-order closures. However, in many cases the approach

provides only implicit equations for the closure that do not seem

to have a closed-form solution. This can be seen as an indi-

cation that explicit fully-consistent closure approximations for

moment-expansions beyond the pair level might not exist at all.

4. HETEROGENEOUS APPROXIMATIONS

Presently it is widely believed that quite universally better

results can be obtained by heterogeneous approximations that

capture information on the degree of the nodes. Indeed, such

approaches have yielded an improvement in several example

systems [17, 23, 98, 100].

In this section, we investigate two prominent heterogeneous

moment-closure approximations. In the heterogeneous pair ap-

proximation [98], links are grouped according to the state and

the degree of the nodes at their ends. In the active neighborhood

approximation [23, 99, 100, 112], nodes are placed in compart-

ments according to their state, degree and number of neighbors

in a given state.

Although the heterogeneous approaches can capture effects

resulting from the heterogeneity of the degree distribution, they

do not specifically address the complications identified above.

Here, we test the performance of these approaches for the voter

model, which reveals that they do not perform better than the

homogeneous approximations, in this context.

4.1. Heterogeneous Pair Approximation

The heterogeneous pair approximation is based on writing

a set of coupled rate equations for the density of active links

[AB]k,k′ between a node of degree k and a node of degree k′.

In networks with narrow degree distribution we expect these

densities to be independent of k and k′, whereas the same is not

true for networks with broad degree distribution [98]. Here we

follow an approach which is an extension of the one developed

in [80, 98] for the case of adaptive networks. We consider the

direct node update rule, since the derivation is easier in this

case.

We start by writing the active link density as [AB]k,k′ =

[AkBk′] + [BkAk′], where, for instance, [AkBk′] denotes the den-

sity of links connecting a node of state A and degree k with a

node of state B and degree k′. Assuming a node with state A

(node i) is chosen in an update event, then
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Figure 7: (Color online) Illustration of three update events in the direct voter

dynamics that lead to a change in the density of active links [A9B3] connecting

nodes of degree k = 9 and k′ = 3, when a node i of degree k = 9 and state A

is chosen. Initially (left), the number of neighbors of degree k′ = 3 is N3 = 4,

from which n3 = 3 are in the opposite state B, and the total number of active

links is n = 6. After the update (right), some links change its type. At the

bottom of each panel are indicated the transitions in link type that involve an

A9B3-link, and the associated changes in the density [A9B3]. (a) With proba-

bility n(1 − p)/k node i copies the state of a randomly chosen B-neighbor, thus

links attached to i change from active to inert and vice-versa. (b) With proba-

bility n4 p/k an active link connected to one of the neighbors of degree 4 (node

j is this example) is chosen and rewired to a node a of class (A, 8). (c) With

probability n3 p/k an active link of type A9B3 is chosen at random and rewired

to a node a of class (A, 9). We note that this figure is an illustration of only

some of the terms in Eq.(9).

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

=

k
∑

l=1

[A]l

1/N

l
∑

N1=0

...

l
∑

N
k
=0

N1
∑

n1=0

...

N
k

∑

n
k
=0

× M(N1, ..,Nk
; l)

k
∏

m=1

B(nm;Nm)

×

{

n

l
(1 − p)

[

(Nk − nk)δl,k′ − nk′δl,k

]

−
nk′

l
p δl,k

+
p

l
[nk′+1 N(Ak |Bk′+1Al) − nk′ N(Ak|Bk′Al)]

+
n

l
p

[

[A]k−1N(Bk′ |Ak−1)

[A]
−

[A]kN(Bk′ |Ak)

[A]

] }

1

N
,

(9)
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With probability [Al], node i belongs to class (A, l). The

product M(N1, ...,Nk
; l)

∏k
m=1 B(nm;Nm) expresses the proba-

bility that the configuration around node i consists of Nm links

to neighbors of the degree class m (m = 1, .., k, with k the maxi-

mum degree) and nm of these neighbors have the opposite state

B (nm = 0, ..,Nm). Here B(nm;Nm) stands for the probability

that nm of theNm links to neighbors of class m are active.

We distinguish again between direct and indirect changes

in [AkBk′]. A direct change takes place when node i is in either

class Ak′ or Ak, giving the first two terms inside the brackets

of Eq. (9), respectively. Node i adopts state B when it copies

the state of a randomly chosen B-neighbor, which happens with

probability (1 − p)n/k, where n =
∑k

m=1 nm is the number of

active links. In these events, the corresponding changes in the

density [AkBk′] are ∆[AkBk′] = (Nk − nk)/N and ∆[AkBk′] =

−nk′/N respectively (see Fig. 7-a).

An indirect change occurs due to an update on a neighbor-

ing node. The third term inside the brackets of Eq. (9) corre-

sponds to the rewiring of an active link connected to a neighbor

j of class (B, k′) (with probability pnk′/k), that results in the loss

of an AkBk′ link.

Other indirect changes take place when node i is in a generic

class Al, and one of its links to a neighbor j is rewired, affecting

the class of the links to the node j, and the class of a–b links,

where a is the node that receives the rewired link and node b is a

neighbor of node a (see Figs. 7-b and c). In Fig. 7-b we describe

the situation in which node j is in class (B, k′ + 1) (with prob-

ability nk′+1/k). Given that node j loses one link, it changes to

class (B, k′), thus there is a gain of N(Ak |Bk′+1Ak) links, repre-

sented in the fourth term of Eq. (9). The fifth term (see Fig. 7-c)

corresponds to a loss in a similar update, when node j is in class

(B, k′).

Finally, the last gain and loss terms belong to the case where

any of the active links of node i is rewired (with probability

pn/k) to a node a in class (A, k − 1) (see Fig. 7-b), or in class

(A, k) (see Fig. 7-c) respectively. Given that the link is rewired

to an A-node chosen at random, the probabilities for these events

are [Ak−1]/[A] and [Ak]/[A], respectively. In the former event,

the N(Bk′ |Ak−1) links of type Ak−1Bk′ attached to node a change

to type AkBk′ , while in the latter event the N(Bk′ |Ak) links of

type AkBk′ attached to node a change to type Ak+1Bk′ .

Given that [AkBk′] may also change when a B-node is cho-

sen, the evolution of [AkBk′] is given by

d[AkBk′]

dt
=

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

+
d[AkBk′]

dt

∣

∣

∣

∣

∣

B

.

The second term on the right hand side can be obtained from

Eq. 9, by interchanging A and k by B and k′, respectively. By

carrying out the summations, we arrive at the rate equation for

the evolution of [AB]k,k′ (see Appendix G for the derivation)

d[AB]k,k′

dt
= (1 − p)

(

Qk′
k − 1

k
[AB]k + Qk

k′ − 1

k′
[AB]k′

)

−

{

(1 − p)

2〈k〉[A][B]

(

k − 1

k

[AB]k

Qk

+
k′ − 1

k′
[AB]k′

Qk′

)

+
1

k
+

1

k′

}

[AB]k,k′

+
p

4〈k〉[A][B]

{

k′[AB]k,k′+1{AB}k′+1

Qk′+1

+
k[AB]k+1,k′{AB}k+1

Qk+1

−

[

(k′ − 1){AB}k′

Qk′
+

(k − 1){AB}k

Qk

]

[AB]k,k′

+2〈k〉
(

[AB]k−1,k′ + [AB]k,k′−1 − 2[AB]k,k′
)

{AB}

}

,

(10)

where Qk = kPk/〈k〉 is the excess degree distribution, {AkB} ≡
∑k

l=1[AkBl]/l, {AB}k ≡ {AkB} + {ABk}, [AB]k =
∑k

l=1([AkBl] +

[BkAl]), and {AB} ≡
∑k

k=1{AkB}.
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Figure 8: (Color online) Performance of heterogeneous pair approximation in

comparison to homogeneous pair approximation and agent-based simulations

for the direct node update rule. Parameters: N = 105, 〈k〉 = 4.

Equation (10) together with the consistency conditions [AB]k =
∑k

l=1[AB]k,l and {AB}k =
∑k

l=1[AB]k,l/l form a closed system of

coupled ordinary differential equations. Since the system is too

complex to solve directly, we obtain the stationary solution by

numerical integration starting from equiprobable [A]0 = [B]0 =

1/2 initial states in a random graph with Pk = e−〈k〉〈k〉k/k!.

In Fig. 8 we plot the global stationary density of active links

[AB] = 1
2

∑k
k=1[AB]k as a function of rewiring rate p, and com-

pare it with results from agent-based simulations. The hetero-

geneous pair approximation is in good agreement with simula-
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tions for low p, but discrepancies become very large as p in-

creases. The overall performance is surprisingly even worse

than the homogeneous pair approximation. This might be due

to the accruing of discrepancies in individual terms [AkBk′].

While the heterogeneous approximation certainly provides a

more accurate description of networks with wide degree dis-

tribution, it does not suitably capture the correlations arising in

the fragmentation transition.

4.2. Active Neighborhood Approach

Recently, an alternative heterogeneous moment-closure ap-

proximation, the active neighborhood approach [23, 99], was

proposed to study the dynamics of the SIS model on adaptive

networks [19]. Here, nodes are grouped by their compartment,

defined according to their state, total degree and the number

of active links. Therefore, not only the heterogeneity of the

network is taken into account, but also the state correlations be-

tween nearest neighbors and associated heterogeneities. In this

formalism, there is no need of estimating the neighborhood of a

node, because this information is already contained in its class.

The active neighborhood approach has been applied to other

epidemics systems [100, 112, 113], Glauber dynamics [100],

and a voter-like model where the rewiring is state independent

[17]. The approximation was found to reproduce the time evo-

lution of both the states and the structure of the network with

remarkable accuracy. A moment-generating function approach

has been applied to mitigate the computational cost of the nu-

merical integration [70, 71].

We now follow the active neighborhood approach for the

adaptive voter model. We place nodes with state A (B), degree

k, and n (n = 0, .., k) neighbors in the opposite state B (A),

into the compartment labeled as [A, k, n] ([B, k, n]). For reasons

of simplicity, we assume that the time is continuous, thus that

opinion adoption and rewiring processes take place in parallel.

Every node in the network transmits its state to its neighbors at

rate β, and rewires the connection from each neighbor in the op-

posite state to a random node with the same state at rate γ. That

is, in a small time interval dt all links are updated with the same

probability (β + γ)dt. This “link homogeneous” dynamics is

equivalent to the link update dynamics, in which links are cho-

sen and updated with probability 1/L, where L is the number of

links in the network. Therefore, stationary states obtained from

numerical simulations of both dynamics are similar, as shown

in Fig.10.

The evolution of Ak,n is governed by the rate equation,

dAk,n

dt
= β

[

(k − n)Bk,k−n − nAk,n

]

+ β
AAB

AA

[

(k − n + 1)Ak,n−1 − (k − n)Ak,n

]

+ β
BAA

BA

[

(n + 1)Ak,n+1 − nAk,n

]

+ γ
[

(n + 1)Ak,n+1 − nAk,n

]

+ γ
AB

A

[

Ak−1,n − Ak,n

]

+ γ
[

(n + 1)Ak+1,n+1 − nAk,n

]

, (11)

with the zeroth-order moments

A ≡
∑

k,n

Ak,n and B ≡
∑

k,n

Bk,n, (12)

first-order moments

AA ≡
∑

k,n

(k − n)Ak,n, AB ≡
∑

k,n

nAk,n,

BB ≡
∑

k,n

(k − n)Ak,n and BA ≡
∑

k,n

nBk,n, (13)

and second-order moments

AAB ≡
∑

k,n

n(k − n)Ak,n and BAA ≡
∑

k,n

n2Bk,n

BBA ≡
∑

k,n

n(k − n)Bk,n and ABB ≡
∑

k,n

n2Ak,n. (14)

These moments are related to the moments we defined in Sec. 3

by A = [A], AA = 2[AA], AB = [AB], AAB = [AAB] and ABB =

[AB] + 2[BAB].

Figure 9: Schematic representation of the possible update events in node states

(a), (b) and (c) and links (d), (e) and (f), for the active neighborhood approach

to the voter dynamics. Open and filled circles represent nodes in state A and B,

respectively.

In Fig. 9, we illustrate the six possible transitions of nodes

from compartment [A, k, n] to other compartments (we denote

the reference node in compartment [A, k, n] as node i), which

correspond to the six loss terms in brackets of Eq. (11). The first

of these describes the transition of node i from compartment

[A, k, n] to compartment [B, k, k − n] at rate βn, when it adopts

state B from an active neighbor (see Fig. 9-a). The second loss

term describes the change of one of the k − n A-neighbors of

node i to B that happens at rate βAAB/AA, where AAB/AA is the

estimated number of the B-neighbors (see Fig. 9-b). This yields

the transition of i to [A, k, n+ 1]. The third term is analogous to

the second term, but with the change B → A of one of the n B-

neighbors of node i at rate βBAA/BA (see Fig. 9-c), that brings

i to compartment [A, k, n − 1]. The fourth term represents the
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replacement of a B-neighbor of node i by an A-node at rewiring

rate γn (see Fig. 9-d), thus node i moves to [A, k, n − 1]. Node

i gains a link coming from an A-node due to a rewiring event

which occurs at rate γAB/A (see Fig. 9-e). Node i switches ac-

cordingly to [A, k + 1, n], represented by the fifth term. Finally,

node i switches to the compartment [A, k−1, n−1] when it loses

a link due to the disconnection of one of its B-neighbors at rate

γn (see Fig. 9-f). The gain terms can be explained analogously.
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Figure 10: (Color online) Performance of active neighborhood and agent-based

simulations with the link update and parallel update rules. To make agent-

based simulations compatible with the parallel update mentioned earlier, we

used the following algorithm: In a time interval dt = 0.01, every node and link

of the network is selected. Each node i with state A (B) changes to B (A) with

probability βndt, where n is the number of neighbors of i in state B (A). Also,

each link i–j is removed with probability 2γdt and replaced either by a link

i–k with probability 1/2 or by a link j–k with the complementary probability

1/2, where node k is randomly chosen within those nodes with state A (B).

Parameters: β = 0.01, γ = βp/q, N = 105 , 〈k〉 = 4.

We obtain the equation for the density [B, k, n] by exchang-

ing A and B in Eq. (11) using the symmetry of the model. This

closes the system of equations. Numerical integration of the

closed system of equations by standard numerical integration

algorithms gives the values of the fractions Ak,n for a given

time, and therefore, it allows one to obtain the time evolution of

macroscopic variables, such as the densities of active links. We

numerically solve Eq. (11) with initial conditions

Ak,n(0) = A0Pk

(

k

n

)

(1 − A0)nAk−n
0

Bk,n(0) = B0Pk

(

k

n

)

An
0(1 − A0)k−n, (15)

where A0 = B0 = 1/2 and Pk = e−〈k〉〈k〉k/k!, and determine the

asymptotic values of the density of AB-pairs AB =
∑

k,n nAk,n

for different values of the ratio between the rewiring and state

adoption dynamics γ/β = p/(1 − p), where p is the rewiring

probability.

Results from the active neighborhood approximation are

compared with agent-based simulations in Fig. 10. The agree-

ment between the analytical approach and simulations is good

for small values of p, but discrepancy increases with increas-

ing p, such that also the active neighborhood approach fails to

capture the fragmentation transition faithfully.

5. ACTIVE MOTIF APPROACH

In conventional moment expansions of previous sections,

moments are taken as densities of regular subgraphs, where

subgraphs were characterized by a given number of links and

prescribed node states, and degrees in case of heterogeneous

moments. While such basis provide reasonable general pur-

pose approaches, they do not take into account the specific dy-

namics of the system. The considerations presented in Sec. 3

and the failure of the heterogeneous approximations in Sec. 4

convey a clear message: To capture the fragmentation transi-

tion faithfully it is essential to capture the very heterogeneous

distribution of active links that appears close to the fragmen-

tation transition. Even the very complex and sophisticated ac-

tive neighborhood approximation is in essence only a first order

approximation and thus fails to pick up the correlations in the

active links.

We can conclude that capturing the fragmentation transition

faithfully requires tracking subgraphs of an order roughly up to

the mean degree of the network. While the task of tracking all

such subgraphs would be of enormous difficulty, it is greatly

simplified, by tailoring the subgraph basis to the problem by

using only those subgraphs that capture much information on

the specific system. Our analysis above has shown that prop-

erties such as the density of ABB-triplets and even the degree

distribution conforms very well to statistical expectations. By

contrast the number of ABA-triplets and larger subgraphs com-

prising a number of active links attached to the same node defies

statistical expectations close to the fragmentation point.

The reasoning above suggests that we should use a basis

consisting of subgraphs that contain different numbers of ac-

tive links attached to the same node. Two such active motif

bases were proposed in Böhme and Gross [87]. In application

to the adaptive voter model, it was shown that both basis al-

lowed a precise prediction of the transition point [87]. The ap-

proach was subsequently extended to multi-state voter models

[18], where it likewise yielded good results. In the following,

we briefly explain the approach and illustrate it by application

to the adaptive voter model. Going beyond the previous works

we extend this approach to the estimation of active link den-

sities, which allows a direct comparison with the approaches

discussed above.

For computing the fragmentation point p∗ we consider the

situation where two communities holding opposite opinions have

formed that are only connected by few active links. In analogy

to the approaches discussed so far, considering the possible up-

dates affecting subgraphs in the basis we derive a system of

differential equations, governing the evolution of the subgraphs

in time. However, because we are only concerned with sub-

graphs containing active links and such links are rare close to

the fragmentation point, we arrive at a linear system of equa-

tions. The time evolution is thus fully captured by the eigenval-
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Figure 11: (Illustration of the evolution of active links in a degree regular net-

work with degree k = 3 and link update rule. Shown is the network in the

neighborhood of an active link connecting components of different opinions.

Arrows correspond to dynamical updates and are labeled with the correspond-

ing transition rate. Depending on the parameters the updates lead to prolifera-

tion or decline of active motifs containing one active link (encircled dotted) or

two active links (encircled dashed).

ues of the corresponding Jacobian matrix. If all eigenvalues of

the Jacobian are negative the fragmented state is stable and the

remaining active motifs will disappear over time. By contrast,

if the Jacobian has an eigenvalue with positive real part, then

the fragmented state is unstable and the network will remain

connected. The transition point is thus marked by λ(p, 〈k〉) = 0,

where λ(p, 〈k〉) is the leading eigenvalue.

To illustrate the approach in more detail let us assume that

the network is degree-regular, such that every node has the

same degree. This assumption can be justified by our earlier

observation that the degree distribution stays narrow for all val-

ues of p. For illustration let us further consider the specific case

of k = 3. Here, the dynamics of active motifs is illustrated in

Fig. 11. We start by considering a single active link (which we

call a 1-fan). In the next update, the link will be rewired with

probability p deactivating the motif. With probability 1− p one

of the nodes connected by this link adopts the other’s state. In

the adoption event, the original active link becomes inert, but

the k − 1 other connections of the adopting agent become ac-

tive. This leads to a k − 1-fan, a motif of k − 1 active links,

connected by a base node. If the next update, which affects the

k − 1-fan, is a rewiring event (probability p) the motif is turned

into a k−2-fan. If the update is an adoption event, then either the

base node changes its opinion or one of the fringe nodes adopts

the base node’s opinion, giving rise to a 1-fan or to two fans,

one containing k − 2 and the other one k − 1 active links. In the

case of link update both processes occur with equal probability

(1 − p)/2.

For k = 3, we obtain a closed system of two differential

equations for the densities {q} of q-fans:

d{1}

dt
= −{1} + 2{2},

d{2}

dt
= −2{2} + (1 − p){1} + (1 − p){2}. (16)

The corresponding Jacobian is

J =

(

−1 2

1 − p −1 − p

)

, (17)

(1− p)(1− σ)

p

1

2
(1− p)

1

2
(1− p)(1− σ)

1

2 (1
−

p)σ

+

Figure 12: Illustration of the evolution of active links in a degree regular net-

work with degree k = 3 and link update rule. Updates which lead to transitions

between different motifs are depicted as in Fig. 11. Now the transition rates

depend on the probability σ that a newly created fan is active.

and the condition λ(p, 3) = 0 yields p∗ = 1/3 for the transition

point. The described procedure can be generalized to arbitrary

k. For k = 4 (the degree considered here), the predicted tran-

sition point is in good agreement with the value (p∗ ≈= 0.445)

from agent-based simulations which violates the assumption of

degree regularity.

In order to account for a degree heterogeneous network, a

basis set of {m, l}-spiders is used: a spider motif consists of

one central base node which is connected to m nodes of its own

opinion and l nodes of opposing opinion. The dynamical evolu-

tion equation for spider motifs is provided in Appendix I, and

leads to a very close approximation of the true transition point.

In the estimation above for the calculation of the transition

point, we assumed that in a q-fan motif, all neighbors of the

fringe nodes (except for the base node) hold the same opinion

as the fringe nodes. This assumption is valid for vanishing ac-

tive link density at the symmetric state σ = [AB]/(〈k〉[A])→ 0.

Now we consider the case p < p∗, where there is a finite density

of active links. In our equations we therefore have to include

the possibility that a fringe node already holds outer active links

(apart from the one connecting to the base node), which become

inert when the fringe node adopts the state of the base node. By

utilizing the observation that active links tend to gather, rather

than distribute homogeneously over the whole system, we as-

sume that whenever a new k − 1-fan is created, this fan is either

active, with probability (1 − σ), or inactive with probability σ.

In Fig. 12 an example for the degree regular case (k = 3)

is illustrated, where we include the active link density in the

transition probabilities. As before, this can be summarized in a

system of evolution equations for the motif densities

d{1}

dt
= −{1} + 2{2}

d{2}

dt
= −2{2} + (1 − p)(1 − σ) ({1} + {2}) . (18)

Note that for σ = 0 we recover Eq. 16.

The corresponding Jacobian now depends on p andσ. Solv-

ing λ(p, σ) = 0 yields

σ(p) =
4(1 − 2p) − (1 − p)2

8(1 − p) − (1 − p)2
. (19)
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Figure 13: (Color online) Performance of active motif approach, compared to

agent-based simulations for the link update rule. Parameters: N = 105 , 〈k〉 = 4.

In Fig. 13 the resulting curve [AB] = σ〈k〉/2 from the de-

gree regular approach is shown for 〈k〉 = 4. Comparison to sim-

ulation results shows that, as expected, the approximation of the

active link density works well in the vicinity of the fragmenta-

tion threshold, whereas for small rewiring rates it becomes very

bad as active links are increasingly well mixed.

6. SUMMARY AND DISCUSSION

In this paper we investigated the performance of moment-

closure approximations for discrete adaptive networks. In par-

ticular we used the adaptive voter model as a benchmark model

to assess different approaches. The comparison with agent-

based simulations revealed that both homogeneous and hetero-

geneous moment-closure approximations capture qualitative prop-

erties of the fragmentation transition, but fail to provide good

quantitative estimates close to the fragmentation point. Re-

markably, even very sophisticated heterogeneous approaches

can produce results that are worse than those from simple ho-

mogeneous schemes. Finally, we identified the active motif ap-

proximations as a class of approximations that were able to cap-

ture the behavior close to fragmentation point quantitatively.

The present results are likely to hold in a much larger class

of models. In the adaptive voter model conventional approaches

fail close to the fragmentation point because some specific cor-

relations appear. These correlations can be generally expected

to arise in fragmentation transitions regardless of the specific

model under consideration and should thus occur in a large

variety of models [12, 15, 17, 18, 75, 88, 114–118]. We fur-

ther expect that similar correlations could arise in networks that

self-organize into specific topologies such as leader-follower

networks, approximately bipartite nets, or complex topologies

with other long-ranged state correlations [30, 119, 120].

Perhaps the main message from the current work is that

even the evolution of problematic models can be captured if

an expansion is used that is tailored specifically to the system at

hand. In this paper we have used extensive numerical and an-

alytical investigations to identify the problematic correlations.

However, in retrospect just considering a sketch of the situation

close to fragmentation, such as the inset in Fig. 5, could have

pointed us to these correlations and hence to a suitable approx-

imation scheme.

Anticipating the structures that are likely to emerge promi-

nently in a given model should generally allow to identify a

suitable approximation scheme. Using the spider or fan motifs

of the active motif approximation will improve predictions in

models close to fragmentation or related de-mixing transitions.

By contrast, including such motifs in the subgraph basis of an

approximation scheme could be cumbersome and even have an

adverse effect in models that remain well-mixed. Models that

are prone to evolve degree-state correlations or strong cluster-

ing will require specific approaches such as [64, 65, 101, 121–

124] (see [102] for a review). By contrast, in models with

strong random rewiring and sufficiently low degree, small cy-

cles should be rare and thus subgraphs containing cycles can

(and should) be ignored when selecting the approximation scheme.

Clearly, for all models that tend to evolve very heterogeneous

degree distributions, heterogeneous approximations such as the

heterogeneous pair approximation or the active neighborhood

approach are required. However, even in the case when degree

distributions become broad but not exceedingly broad, such as

in Gross et al. [19], it may be worth to consider homogeneous

approximations as they may still provide relatively good results,

at a significantly lower cost than the heterogeneous approxima-

tions.

Finally, we note even for the deceptively simple adaptive

voter model, we have not yet identified an approximation that

works well over the whole parameter range. While the active

motif approximation yields faithful results in the ordered states

close to fragmentation it fails in well-mixed systems. Con-

versely, all other approaches studied here work reasonably well

when far from fragmentation, but fail at the fragmentation point.

In the future a scheme that works over the whole range of rewiring

rates may be found, either as a reasonable interpolation between

the existing approaches, or by the informed design of a suitable

approximation. We hope that the information gathered in the

present survey will contribute to reaching this goal.
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Appendix A. The origin of second-order terms in the first-

order moment expansion

Here, we derive the triplet density terms in the moment ex-

pansion Eq. 1 from local selection events and combinatorics.

We illustrate it on Q(A|BA) which denotes the number of ad-

ditional A-neighbors of the B-end of a randomly selected AB-

link.
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The quantity Q(A|BA) can be written as Q(A|BA) = P(A|BA)

〈qB〉, where P(A|BA) denotes the probability that a random neigh-

bor of the B-end of a randomly selected AB-link has state A and

〈qB〉 denotes the mean excess degree, as derived in the main

text. The probability P(A|BA) is expressed as a ratio of the cor-

responding triplet densities, i.e. P(A|BA) = 2[ABA]/(2[ABA]+

[ABB]), where [ABA] = NABA/N (NABA is the number of ABA-

triplets) and analogously [ABB] = NABB/N.

Let ki and ni be the number of all (A and B) neighbors

and A-neighbors of a B-node selected at random (node i) re-

spectively. The number of triplets is obtained from a summa-

tion over all B-nodes: NABA =
∑

i∈{B} ni(ni − 1)/2 and NABB =
∑

i∈{B} niki, where {B} is the set of B-nodes. We thus obtain

2NABA + NABB =
∑

i∈{B} ni(ki − 1). Now, we proceed with the

summation
∑

i∈{B}

ni(ki − 1) =

∑

i∈{B}

niki −
∑

i∈{B}

ni

=

∑

i ∈ B

j ∈ A

(i, j) ∈ Edges

ki − N[AB]

= N[AB]















∑

k

k
kPB

k

[B]〈kB〉
− 1















= N[AB]
∑

k













k
kPB

k

[B]〈kB〉
−

kPB
k

[B]〈kB〉













= N[AB]
∑

k

(k − 1)kPB
k /([B]〈kB〉)

= N[AB]〈qB〉

and obtain 2[ABA] + [ABB] = (2NABA + NABB)/N = [AB]〈qB〉.

By this, we reach

Q(A|BA) =
2[ABA]

[AB]
.

Appendix B. Second order moment expansion for the link

update rule

Since the right-hand side of Eq. 1 involves second-order

moments, the first-order expansion is not closed. We now treat

the second-order moments as dynamical variables and derive

the corresponding rate equations. In Fig. B.14, we illustrate the

complete set of possibilities and the corresponding rates where

ABA-triplets are created or destroyed. The second-order ex-

pansion reads

d

dt
[A] = 0,

d

dt
[AA] =

(1 − p)

2

(

[AB] + 2[ABA] − [AAB]
)

+
p

2
[AB],

d

dt
[BB] =

(1 − p)

2

(

[AB] + 2[BAB]− [ABB]
)

+
p

2
[AB],

d

dt
[AAA] =

1 − p

2

(

2[ABA] + [AAB] + [ABAA]

+3[(B)AAA]− [AAAB]− [(A)BAA]

)

+
p

2

(

[AAB] + 2
[AA][AB]

[A]

)

,

d

dt
[AAB] =

1 − p

2

(

[ABB]+ 2[BAB]− 2[AAB]

+[BAAA]+ [ABAB]+ 2[(B)AAB]

−[ABAA]− 2[BAAB]− 2[(A)BBA]

)

+
p

2

(

2[BAB]− 2[AAB]+
[AB]2

[A]

)

,

d

dt
[ABA] =

1 − p

2

(

− 4[ABA] + 2[ABBA]+ [(A)BAA]

−[ABAB]− 3[(B)AAA]

)

− 4p[ABA],

(B.1)

where [XYZW] denotes the density of chain-quadruplets con-

stituted by a node of state X (node 1), a Y-neighbor of node 1

(node 2), a Z-neighbor of node 2 (node 3), and a W-neighbor

of node 3 (node 4), and [(X)YZW] denotes the density of star-

quadruplets constituted by a node of state X at the center and its

three neighbors of state Y, Z, and W with X, Y, Z, W ∈ {A,B}.

For illustration, we derive the corresponding contributions

to d[ABA]/dt for processes (e) and (h) in Fig. B.14.

In the process (e), an ABA-triplet is created per each AB-

link connected through its B-node to the B-end of an AB-link

on which B-node adopts state A. We denote the A (B) end of a

randomly selected AB-link as node X (Y) and a random excess

neighbor of node Y as node Z. The expected number of AB-

links connected through its B-node to node Y is Q(AB|BA) =

P(AB|BA)KBA, where P(AB|BA) is the probability that node Z

has state B and a random neighbor of node Z has state A and

KBA is the expected number of excess triplets attached to node

Y.

Node Y has degree k with probability kPB
k
/([B]〈kB〉). As-

suming neutral mixing by degree, node Z has degree k′ with

probability k′Pk′/〈k〉. Thus, KBA =

(

∑

k (k − 1)kPB
k
/([B]〈kB〉)

)

×
(∑

k′ (k
′ − 1)k′Pk′/〈k〉

)

= 〈qB〉〈q〉. In the symmetric state, KBA =

〈q〉2.

Analogous to the expression of P(A|BA) in Appendix A,

we write the conditional probability P(AB|BA) as a fraction

of appropriate network moments, i.e. P(AB|BA) = 2[ABBA]/

(2[ABBA]+ [ABBB]+ [ABAB]+ [ABAA]). In order to approx-

imate the denominator, we use the second-order approximation

for chain-quadruplets, which is derived in Appendix C . Fol-
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Figure B.14: Second order moment expansion for d[ABA]/dt in the link update

rule.

lowing this approximation,

2[ABBA]+ [ABBB]+ [ABAB]+ [ABAA]

≃
[ABB]([ABB]+ 2[BBB])

2[BB]
+

2[ABA]([AAB]+ 2[BAB])

[AB]

= 〈q〉([ABB]+ 2[ABA])

= 〈q〉2[AB].

Thus, P(AB|BA) = 2[ABBA]/(〈q〉2[AB]). Since KAB = 〈q〉
2, we

reach

Q(AB|BA) = 2[ABBA]/[AB]. (B.2)

Similarly,

Q(AA|AB) =
[AAAB]

[AB]
,

Q(AB|AB) =
[ABAB]

[AB]
,

Q(BA|AB) = 2
[BAAB]

[AB]
,

Q(BB|AB) =
[BBAB]

[AB]
. (B.3)

Furthermore, in the process (h), an ABA-triplet becomes an

AAA-triplet per every two A-neighbors of the B-end of a ran-

domly selected AB-link. We call such subgraphs constituted

by a node and its three neighbors as stars. We again denote

the A (B) end of a randomly selected AB-link as node X (Y).

We denote the expected number of the configurations where

node Y is connected to two additional A-nodes as Q(A, A|BA) =

P(A, A|BA)S B, where P(A, A|BA) is the probability that two ran-

dom neighbors of node Y both have state A, and S B is the av-

erage number of two-combinations of excess neighbors of node

Y.

Node Y has degree k with probability kPB
k
/([B]〈kB〉). The

term S B is obtained from S B =
∑

k (k − 2)(k − 1)kPB
k
/(2[B]〈kB〉).

In terms of statistical moments of the degree distribution,

S B =
〈k3

B
〉 − 3〈k2

B
〉 + 2〈kB〉

2[B]〈kB〉
.

We write the conditional probability P(A, A|BA) as a frac-

tion of appropriate moments as before such that P(A, A|BA) =

3[(B)AAA]/(3[(B)AAA]+2[(B)AAB]+ [(B)ABB]). The density

[(B)AAA] is defined as [(B)AAA] = N(B)AAA/N, where N(B)AAA

is the total number of (B)AAA-stars (central B-node, three A-

neighbors). The densities [(B)AAB] = N(B)AAB/N and [(B)ABB] =

N(B)ABB/N are defined analogously. The number of stars are

obtained from a summation over B-nodes such that N(B)AAA =
∑

i∈{B} ni(ni − 1)(ni − 2)/6, N(B)AAB =
∑

i∈{B} ni(ni − 1)(ki − ni)/2,

and N(B)ABB =
∑

i∈{B} ni(ki−ni)(ki−ni−1)/2, where ki and ni are

the number of all neighbors and A-neighbors of node i respec-

tively. We reach the expression 3N(B)AAA+2N(B)AAB+N(B)ABB =
∑

i∈{B} ni(k
2
i
− 3ki + 2)/2 and proceed with the summation

∑

i∈{B}

ni(k
2
i − 3ki + 2) =

∑

i ∈ B

j ∈ A

(i, j) ∈ Edges

(k2
i − 3ki + 2)

= N[AB]
∑

k

(k − 2)(k − 1)kPB
k

2[B]〈kB〉

= N[AB]
〈k3

B
〉 − 3 ∗ 〈k2

B
〉 + 2〈kB〉

[B]〈kB〉

= 2N[AB]S B

and obtain 3[(B)AAA]+ 2[(B)AAB]+ [(B)ABB] = [AB]S B. We

reach

Q(A, A|BA) = 3[(B)AAA]/[AB]. (B.4)

Similarly,

Q(A, A|AB) =
[(A)BAA]

[AB]
,

Q(A, B|AB) = 2
[(A)BBA]

[AB]
,

Q(B, B|AB) = 3
[(A)BBB]

[AB]
. (B.5)

Appendix C. Second-order moment closure approximation

In order to close the expansion Eq. B.1, we need to express

third-order moments in terms of lower order ones.

We first derive the second-order approximation for the chain

quadruplet density [ABBA]. We start with the BB-link at the
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center, which has density [BB], and estimate the number of the

A-nodes connected to the two ends, between which no correla-

tion exists according to the second-order approximation. Each

B-end has [ABB]/2[BB] A-neighbors on average, as obtained

in Appendix A. We reach the following second-order approx-

imation: 2[ABBA] ≃ 0.5[ABB]2/[BB]. We note that 2 appears

on both sides, because we can’t distinguish between the two

B-nodes in the BB-link and the two ABB-triplets,

We derive the remaining terms for chain quadruplets analo-

gously and obtain

[AAAB] ≃
[AAA][AAB]

[AA]
,

[ABAA] ≃ 2
[ABA][AAB]

[AB]
,

[ABAB] ≃ 4
[ABA][BAB]

[AB]
,

[ABBA] ≃
[ABB]2

4[BB]
. (C.1)

We now illustrate the second-order approximation for the

star motif density [(A)BBA], which is the density of subgraphs

formed by an A-node in the center and its three (two B and

one A) neighbors. We consider the star motif as an assembly

of two triplets originating from the same end of a shared link.

We start with locating an AB-link that appears at density [AB].

Each excess neighbor of the A-node has state A with probability

[AAB]/〈q〉[AB] and state B with probability 2[BAB]/〈q〉[AB].

The expected number of star-quadruplets originating from one

end of a random link is 1/2(〈k3〉 − 3〈k2〉 + 2〈k〉)/〈k〉, where

〈kn〉 is the nth moment of the degree distribution. By using

it, we obtain 2[(A)BBA] = 〈k〉((〈k3〉 − 3〈k2〉 + 2〈k〉)/(〈k2〉 −

〈k〉)2)(2[BAB][AAB])/[AB]. If we assume a Poissonian distri-

bution, the second moment 〈k2〉 = 〈k〉2 + 〈k〉 and third moment

〈k3〉 = 〈k〉3 + 3〈k〉2 + 〈k〉. Thence, we reach the approximation

[(A)BBA] ≃
[AAB][BAB]

[AB]
.

However, approximations for star-quadruplet densities are

not unique. It depends on which pair is considered to be shared

by the two constituting triplets. Above we took the shared link

to be an AB-link. We could also select the AA-link instead as

the shared link which leads to a different approximation. By

considering such alternative ways of motif construction, star

quadruplets can be approximated as

[(A)BAA] ≃
[AAB]2

2[AB]
or

[AAB][AAA]

2[AA]
,

[(A)BBA] ≃
[AAB]2

4[AA]
or

[AAB][BAB]

[AB]
,

[(A)BBB] ≃
2[BAB]2

3[AB]
. (C.2)

Appendix D. Reverse node update rule

Moment expansion equations for the reverse node update

rule are very similar to those of the link update rule with the

following changes in rates.

An A-node adopts state B at rate (1 − p)[A][AB]/〈kA〉 and

an AB-link is replaced by an BB-link through rewiring at rate

p[A][AB]/〈kA〉. Analogously, a B-node adopts state A at rate

(1 − p)[B][AB]/〈kB〉 and an AB-link is replaced by an AA-link

through rewiring at rate p[B][AB]/〈kB〉.

The degree distributions of the nodes selected at an update

event depend on the update rule. In the link update rule, both

of the nodes at the two ends of a selected link have degree k

with the same probability kPk/〈k〉. In the reverse node update

rule, the first selected node (node X) has degree k′ with proba-

bility Pk′ and its random neighbor (node Y) has degree k with

probability kPk/〈k〉. The degree distribution of node X does not

show up in the first-order equation and the degree distribution

of node Y is the same as in the link update rule. Therefore, the

first-order equation for the reverse node update rule differs from

that of the link update rule due to the changes of rates of events

only

d

dt
[A] = (1 − p)

(

[AB]

〈kA〉
−

[AB]

〈kB〉

)

,

d

dt
[AA] = (1 − p)

(

[AB]

〈kA〉
+

[AB]2

〈kA〉[A]
−

2[AB][BB]

〈kB〉[B]

)

+p

(

[AB]

〈kB〉

)

,

d

dt
[BB] = (1 − p)

(

[AB]

〈kB〉
+

[AB]2

〈kA〉[B]
−

2[AB][AA]

〈kA〉[A]

)

+p

(

[AB]

〈kA〉

)

. (D.1)

At the symmetric state [A] = [B] = 1/2, Eq. D.1 is equiva-

lent to Eq. 6 with the rescaled time t′ = 〈k〉t.

Appendix E. Direct node update rule

An A-node adopts state A at rate (1 − p)[AB]/〈kA〉 and an

AB-link is replaced by an AA-link through rewiring at rate

p[AB]/〈kA〉. Similarly, a B-node adopts state A at rate (1 −

p)[AB]/〈kB〉 and an AB-link is replaced by a BB-link at rate

p[AB]/〈kB〉.

To estimate the indirect contribution term, we use the quan-

tity Q(A|A1B2) that represents the average number of A-neighbors

of an A-node given that it already has a B-neighbor. Indices 1

and 2 indicate that the A-node was chosen first and the B-node

was chosen after that. Given that node X is chosen at random

in the direct node update rule, it has degree k with probability

Pk. We also know that X has a B-neighbor, thus the probability

that each of the k−1 remaining neighbors has state A can be es-

timated as [AAB]/〈qA〉[AB]. Averaging over the entire network

we obtain

Q(A|A1B2) =
∑

k

(k − 1)Pk

[AAB]

〈qA〉[AB]
=
〈kA〉 − 1

〈qA〉

[AAB]

[AB]
.

Then, the following set of equations is reached for the direct

node update rule:
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d

dt
[A] = (1 − p)

(

[AB]

〈kB〉
−

[AB]

〈kA〉

)

,

d

dt
[AA] = (1 − p)

{

[AB]

〈kB〉
+

2 (〈kB〉 − 1) [ABA]

〈qB〉〈kB〉

−
(〈kA〉 − 1) [AAB]

〈qA〉〈kA〉

}

+ p
[AB]

〈kA〉
,

d

dt
[BB] = (1 − p)

{

[AB]

〈kA〉
+

2 (〈kA〉 − 1) [BAB]

〈qA〉〈kA〉

−
(〈kB〉 − 1) [BBA]

〈qB〉〈kB〉

}

+ p
[AB]

〈kB〉
. (E.1)

At the steady-state, the link density [AB] can be expressed

in terms of triplet density in Eq. E.1

[AB] =
(1 − p)(〈k〉 − 1)

κ〈k〉
([AAB] − 2[ABA]) . (E.2)

However, this requires numerical values of the triplet den-

sities that should be measured from the agent-based simula-

tions, which is undesirable as explained in the main text. In-

stead, we develop a first-order moment closure approximation.

Since node X is selected without resorting to the information of

node Y, node Y should be treated as a sample from the neigh-

bors of node X. An alternative solution to this problem is to

ignore the information from node Y and use a pair approxima-

tion. Then, any neighbor of node X has state A with proba-

bility 2[AA]/[A]〈k〉A. The pair approximation formulation for

Q(A|A1B2) is

Q(A|A1B2) ≃ Q(A|A1) =

∑

k

Pk(k − 1)
2[AA]

[A]〈kA〉

=
2 (〈kA〉 − 1)

〈kA〉

[AA]

[A]
.

This is equivalent to using the pair approximation for the

density of triplets, such as

[AAB] ≃ 2κA
[AA][AB]

[A]
.

Replacing this expression for [AAB] and the analogous ex-

pressions for the other densities of triplets in Eq. E.1, we arrive

at

d

dt
[A] = (1 − p)

(

[AB]

〈kB〉
−

[AB]

〈kA〉

)

,

d

dt
[AA] = (1 − p)

{

[AB]

〈kB〉
+

(〈kB〉 − 1) [AB]2

[B]〈kB〉
2

−
2 (〈kA〉 − 1) [AA][AB]

[A]〈kA〉
2

}

+ p
[AB]

〈kA〉
,

d

dt
[BB] = (1 − p)

{

[AB]

〈kA〉
+

(〈kA〉 − 1) [AB]2

[A]〈kA〉
2

−
2 (〈kB〉 − 1) [BB][AB]

[B]〈kB〉
2

}

+ p
[AB]

〈kB〉
. (E.3)

Appendix F. Derivation of pair approximation for the frac-

tion of active triplets

Let’s denote Bm
k

as the fraction of B-nodes with k total (A

and B) and m A neighbors with the normalization
∑

k

∑k
m=0 Bm

k
=

1. The fraction Bm
k

is expressed as Bm
k
= PB

k
P(m, k)/[B], where

PB
k
/[B] is the fraction of B-nodes with degree k and P(m, k) is

the probability that m links out of k are active. For an infi-

nite Erdős-Renyi random graph, PB
k
/[B] is Poisson distributed,

i.e. PB
k
/[B] = 〈k〉ke−〈k〉/k!. If we neglect state correlations to

second nearest-neighbors, then every link connected to a B-

node is active with probability σp,〈k〉 = [AB]s
p,〈k〉
/([B]〈k〉) =

2[AB]s
p,〈k〉
/〈k〉, at [B] = 1/2, where we measure the average ac-

tive link density [AB]s
p,〈k〉

at a specific p and 〈k〉. When second

nearest-neighbor correlations are ignored, P(m, k) is a binomial

distribution, i.e. P(m, k) = (m!(k − m)!/k!)σm
p,〈k〉

(1 − σp,〈k〉)
k−m.

Therefore, in the uncorrelated infinite-size Erdős-Renyi case

Bm
k

obeys

Bm
k =

m!(k − m)!e−〈k〉〈k〉k

(k!)2
σm

p,〈k〉(1 − σp,〈k〉)
k−m. (F.1)

The quantity T m
ABA

is the fraction of ABA-triplets that have

a B-node with m A-neighbors. By definition,

T m
ABA =

∑

k≥m

1/2m(m − 1)Bm
k . (F.2)

Appendix G. Derivation of the heterogeneous pair approx-

imation

Here, we first derive the rate equation for the average change

in the density of active links [AkBk′] when a node with state A

is chosen. We rewrite Eq. (9) as

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

=

k
∑

l=1

[A]l

l

l
∑

N1=0

...

l
∑

N
k
=0

M(N1, ..,Nk
; l)S(N1, ..,Nk

),

(G.1)

where

S(N1, ..,Nk
) ≡

N1
∑

n1=0

...

N
k

∑

n
k
=0

k
∏

m=1

B(nm;Nm)

{

(1 − p)

[

Nknk − n2
k + (Nk − nk)

k
∑

m,k

nm

]

δl,k′

− (1 − p)

[

n2
k′ + nk′

∑

m,k′

nm

]

δl,k − pnk′δl,k

+ pnk′+1N(Ak |Bk′+1Al) − p nk′N(Ak |Bk′Al)

+ p

[

[A]k−1N(Bk′ |Ak−1)

[A]
−

[A]kN(Bk′ |Ak)

[A]

]

×

k
∑

m=1

nm

}

. (G.2)

We have also replaced the number of active links n around

the chosen node by
∑k

m=1 nm. To carry out the summations in
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Eqs. (G.1) and (G.2), we assume that the network has no degree

correlations, thus the probability that a given node has a neigh-

bor of degree m is Qm = m Pm/〈k〉. Then, the probabilities M

and B become the multinomial and binomial distributions, re-

spectively,

M
(

N1, ...,Nk
; l; Q1, ...,Qk

)

=















l!
N1!...N

k!

Q
N1

1
..Q

N
k

k
when

∑k
m=1Nm = l;

0 otherwise,

(G.3)

and

B(nm;Nm) =
Nm! q

nm

m|l
(1 − qm|l)

Nm−nm

nm!(Nm − nm)!
. (G.4)

Here, qm|l = P(B|m; A, l) ≃ [AlBm]/lQm[A]l is the condi-

tional probability that a neighbor of a node in class (A, l) that

has degree m is in state B. This probability is estimated as

the ratio N(A, l → B,m)/N(A, l → m) between the number of

links N(A, l → B,m) = [AlBm]N from nodes of class (A, l) to

nodes of class (B,m), and the number of links N(A, l → m) =

[A]lNlQm from nodes of class (A, l) to nodes of degree m and

state A or B. The multiple summation in Eq. (G.2), weighted by

the product of the binomials, leads to the first and second mo-

ments, 〈nm〉 =
∑

m B(nm;Nm)nm and 〈n2
m〉 =

∑

m B(nm;Nm)n2
m,

respectively, obtaining

S(N1, ..,Nk
) = (1 − p)

[

Nk〈nk〉 − 〈n
2
k〉 + (Nk − 〈nk〉)

k
∑

m,k

〈nm〉

]

δl,k′

− (1 − p)

[

〈n2
k′〉 + 〈nk′〉

∑

m,k′

〈nm〉

]

δl,k

− p〈nk′〉δl,k + p〈nk′+1〉N(Ak |Bk′+1Al)

− p〈nk′〉N(Ak |Bk′Al)

+ p

[

[A]k−1N(Bk′ |Ak−1)

[A]
−

[A]kN(Bk′ |Ak)

[A]

]

×

k
∑

m=1

〈nm〉

= (1 − p)

[

qk|l(qk|l − 1)Nk + (1 − qk|l)Nk

k
∑

m

qm|lNm

]

× δl,k′

− (1 − p)

[

(1 − qk′ |l)qk′ |lNk′ + qk′ |lNk′

∑

m

qm|lNm

]

δl,k

− pqk′|lNk′δl,k + pN(Ak |Bk′+1Al)qk′+1|lNk′+1

− pN(Ak|Bk′Al)qk′ |lNk′

+ p

[

[A]k−1N(Bk′ |Ak−1)

[A]
−

[A]kN(Bk′ |Ak)

[A]

] k
∑

m=1

qm|lNm,

(G.5)

where we have used the expression for the moments 〈nm〉 =

qm|lNm and 〈n2
m〉 = qm|lNm + q2

m|l
Nm(Nm − 1) of the binomials

defined in Eq. (G.4). Now, inserting expression (G.5) for S in

Eq. (G.1) we obtain

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

=

k
∑

l=1

[A]l

l

{

(1 − p)

[

(qk|l − 1)qk,l〈Nk〉

+(1 − qk|l)

k
∑

m=1

qm|l〈NkNm〉

]

δl,k′

− (1 − p)

[

(1 − qk′ |l)qk′|l〈Nk′〉 + qk′ |l

∑

m

qm|l〈Nk′Nm〉

]

× δl,k

− pqk′ |l〈Nk′〉δl,k + pN(Ak |Bk′+1Al)qk′+1|l〈Nk′+1〉

− pN(Ak |Bk′Al)qk′ |l〈Nk′〉

+ p

[

[A]k−1N(Bk′ |Ak−1)

[A]
−

[A]kN(Bk′ |Ak)

[A]

]

×

k
∑

m=1

qm|l〈Nm〉

}

. (G.6)

Then, using the pair approximation to estimate the num-

ber of nodes in class (B, k′) connected to a node in class (A, k)

as N(Bk′ |Ak) ≃ kQk′qk′ |k and the additional number of nodes in

class (A, k) attached to the B-node of an AlBk′-link as N(Ak |Bk′Al) ≃

N(Ak |Bk′) ≃ (k′ − 1)Qkrk|k′ , with rk|k′ = P(A|k; B, k′) ≃ [AkBk′]/

(k′Qk[B]k′), we arrive to

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

=

k
∑

l=1

[A]l

{

(1 − p)(l − 1)

k
∑

m=1

qm|lQm

×

[

(1 − qk|l)Qkδl,k′ − qk′ |lQk′δl,k

]

− qk′ |lQk′δl,k + pk′rk|k′+1qk′+1|lQkQk′+1|l

− p(k′ − 1)rk|k′qk′ |lQkQk′

+ p

[

(k − 1)qk′|k−1Qk′ [A]k−1

[A]
−

kqk′ |kQk′ [A]k

[A]

]

×

k
∑

m=1

qm|lQm

}

, (G.7)

where we have used the following expressions for the mo-

ments of the multinomial distribution M, defined in Eq. (G.3):

〈Nk′〉 ≡

l
∑

N1=0

...

l
∑

N
k
=0

M(N1, ..,Nk
; l)Nk′ = Qk′ l

〈Nk′Nm〉 ≡

l
∑

N1=0

...

l
∑

N
k
=0

M(N1, ..,Nk
; l)Nk′Nm

=















Qk′Qml(l − 1) for k′ , m;

Qk′ l + Q2
k′

l(l − 1) for k′ = m.

(G.8)

Using in Eq. (G.7) the expression for the probabilities qk′ |l

and rk|k′ , and expressing the sum
∑

m qm|lQm as [AlB]/l[A]l, with

18



[AlB] ≡
∑k

m=1[AlBm], we arrive at the expression Eq. (G.9).

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

= (1 − p)
k′ − 1

k′
Qk

(

1 −
[Ak′Bk]

k′Qk[A]k′

)

[Ak′B]

− (1 − p)
k − 1

k2

[AkBk′][AkB]

[A]k

−
[AkBk′]

k

+ p

{

k′

k′ + 1

[AkBk′+1]{ABk′+1}

[B]k′+1

−
k′ − 1

k′
[AkBk′]{ABk′}

[B]k′

+
[Ak−1Bk′] − [AkBk′]

[A]
{AB}

}

, (G.9)

where Qk ≡ kPk/〈k〉, [AkB] ≡
∑k

m=1[AkBm], {ABk′} ≡
∑k

l=1[AlBk′]/l, and {AB} ≡
∑k

l=1[AlB]/l.

Given that [AkBk′] may also change when a B-node is cho-

sen, the evolution of [AkBk′] is given by

d[AkBk′]

dt
=

d[AkBk′]

dt

∣

∣

∣

∣

∣

A

+
d[AkBk′]

dt

∣

∣

∣

∣

∣

B

.

The second term on the right hand side can be obtained from

Eq. (G.9), by interchanging A and k by B and k′, respectively.

Adding the two contributions leads to

d[AkBk′]

dt
= (1 − p)

{

Qk′
k − 1

k
[ABk] + Qk

k′ − 1

k′
[Ak′B]

−

(

[ABk]

[B]k

k − 1

k2
+

[Ak′B]

[A]k′

k′ − 1

k′2

)

[Ak′Bk]

−

(

[AkB]

[A]k

k − 1

k2
+

[ABk′]

[B]k′

k′ − 1

k′2

)

[AkBk′]

}

+

(

1

k
+

1

k′

)

[AkBk′]

+ p

{

k′

k′ + 1

[AkBk′+1]{ABk′+1}

[B]k′+1

+
k

k + 1

[Ak+1Bk′]{Ak+1B}

[A]k+1

−

(

k′ − 1

k′
{ABk′}

[B]k′
+

k − 1

k

{AkB}

[A]k

)

[AkBk′]

+

(

[Ak−1Bk′]

[A]
+

[AkBk′−1]

[B]

)

{AB}

−
[AkBk′]{AB}

[A][B]

}

. (G.10)

Finally, given that [AB]k,k′ = [AkBk′]+[BkAk′], and using the

symmetry between A and B states and the fact that in a time of

order unity, a quasi-stationary state is established, in which the

fraction of nodes in different degree classes [A]k/Pk ([B]k/Pk)

reach the value corresponding to the global density [A] ([B]),

we reach the final equation Eq. (10).

Appendix H. Derivation of the homogeneous moment ex-

pansion from active neighborhood approach

Summing over k and n and using the constraint AB = BA,

Eq. (11) leads to
dA

dt
= 0, and (H.1)

dAB

dt
= β [AAB + BBA − ABB − BAA] − 2γAB. (H.2)

Equation (H.1) expresses the conservation of the global density

of nodes in a given state, that is a well-known property of the

voter model under link update dynamics. Equation (H.2) can

be associated to the evolution of the density of AB-pairs, by

writing the first and second moments in terms of densities of

pairs and triplets as we already defined after Eq. (14).

d[AB]

dt
= β

{

[AAB] + [BBA]− 2[AB]− 2[ABA]

− 2[BAB]
}

− 2γ[AB] (H.3)

Eq. (H.3) is the same as the equation derived for link update

Eq. (1), showing the equivalence between parallel and link up-

date dynamics.

Appendix I. Active motif approach: equations for spider

motifs

The rate equations for spider densities {m, l} for link update

are given by

d

dt
{m, l} = − l{m, l} + 1

2
(l + 1){m − 1, l + 1}

+
1
2
(1 − p)m{l,m} +

p

2
(l + 1){m, l + 1},

where m , 1, and

d

dt
{1, l} = − l{1, l} + 1

2
(1 − p){l, 1} +

p

2
(l + 1){1, l + 1}

+
1
2
(1 − p)

e−〈k〉〈k〉l+1

(l + 1)!

∑

{x,y}

y{x, y}

for m = 1. Here we use a Poissonian degree distribution P(k) =

e−〈k〉〈k〉k/k! with mean degree 〈k〉. In order to obtain a Jacobian

of finite size we consider only motifs with m + l ≤ kmax.

The transition probabilities for node update rules differ from

those for link update, depending on the degree of the chosen

nodes. The corresponding equations for direct node update are

given by

d

dt
{m, l} = − l{m, l}

+(1 − p)(l + 1){m − 1, l + 1}
∑

g

P〈k〉(g + 1)αm,l(g)

+p(l + 1){m − 1, l + 1}
∑

g

P〈k〉(g + 1)βm,l(g)
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+(1 − p)m{l,m}
∑

g

P〈k〉(g + 1)βm,l(g)

+p(l + 1){m, l + 1}
∑

g

P〈k〉(g + 1)αm,l(g),

d

dt
{1, l} = − l{1, l}

+(1 − p){l, 1}
∑

g

P〈k〉(g + 1)β1,l(g)

+p(l + 1){1, l + 1}
∑

g

P〈k〉(g + 1)α1,l(g)

+(1 − p)P〈k〉(l + 1)α1,l(l)
∑

{x,y}

y{x, y},

where αm,l(g) = (l+m)/(l+m+g+1) and βm,l(g) = (g+1)/(l+

m + g + 1).

The equations look similar for reverse node update.
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[23] V. Marceau, P.-A. Nöel, L. Hebert-Dufresne, A. Allard, L. Dube, Adap-

tive networks: coevolution of disease and topology, Phys. Rev. E 82

(2010) 036116.
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