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Abstract This paper is concerned with approximations of the Boltzmann equation based on
the method of moments. We propose a generalization of the setting of the moment-closure
problem from relative entropy to ϕ-divergences and a corresponding closure procedure
based on minimization of ϕ-divergences. The proposed description encapsulates as special
cases Grad’s classical closure based on expansion in Hermite polynomials and Levermore’s
entropy-based closure. We establish that the generalization to divergence-based closures
enables the construction of extended thermodynamic theories that avoid essential limitations
of the standard moment-closure formulations such as inadmissibility of the approximate
phase-space distribution, potential loss of hyperbolicity and singularity of flux functions at
local equilibrium. The divergence-based closure leads to a hierarchy of tractable symmet-
ric hyperbolic systems that retain the fundamental structural properties of the Boltzmann
equation.

Keywords Boltzmann equation · Kinetic theory · Moment closure · Hyperbolic systems ·
Entropy · Divergence

1 Introduction

The Boltzmann equation describes the molecular dynamics of fluid flows based on their
one-particle phase-space distribution. The equation encapsulates all conventional macro-
scopic flow models, as its limit solutions correspond to solutions of the compressible
Euler and Navier–Stokes equations [4,17], the incompressible Euler and Navier–Stokes
equations [19,37], the incompressible Stokes equations [38] and the incompressible Navier–

B M. R. A. Abdelmalik
m.abdel.malik@tue.nl

1 Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
Netherlands

2 Department of Mechanical Engineering & Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-016-1529-5&domain=pdf


78 M. R. A. Abdelmalik, E. H. van Brummelen

Stokes–Fourier system [36]; see [50] for an overview. The Boltzmann equation is uniquely
suited to describe transitional molecular/continuum flows and the corresponding rarefaction
effects, by virtue of its inherent characterization of deviations of the velocity distribution from
local equilibrium. Rarefaction effects are essential in multitudinous applications, e.g. prob-
lems involving large mean free paths in high-altitude flows and hypobaric applications such
as chemical vapor deposition; see [13,56] and references therein for further examples. More-
over, the perpetual trend toward miniaturization in science and technology renders accurate
descriptions of fluid flows in the transitional regime of fundamental technological relevance,
e.g. in nanoscale applications, micro-channel flows or porous-media flows [54]. The Boltz-
mann equation moreover provides a prototype for other models for collective behavior of
large ensembles of particles, for instance, in semi-conductors [26], plasmas, fusion and fission
devices [43], and dispersed-particle flows [47–49].

Numerical approximation of the Boltzmann equation poses a formidable challenge, on
account of its high dimensional setting: in D spatial dimensions, the one-particle phase-space
is 2D dimensional. The corresponding computational complexity of conventional discretiza-
tion methods, such as finite-element methods with uniform meshes, is prohibitive. Numerical
approximations of the Boltzmann equation have been predominantly based on particle meth-
ods, such as DSMC [6,7]. Convergence proofs for these methods [63] however convey that
their computational cost is prohibitive in the fluid-dynamical limit. Moreover, DSMC can be
inefficient, because it is inherent to the underlying Monte-Carlo process that the approxima-

tion error decays only as n− 1
2 as the number of simulation molecules, n, increases; see, for

instance, [32, Thm. 5.14]. Efficient computational modeling of fluid flows in the transitional
molecular/continuum regime therefore remains an outstanding challenge.

The method of moments [20,35,56,61] provides an alternative approximation technique
for the Boltzmann equation. The method of moments is a general statistical approxima-
tion technique which identifies parameters of an approximate distribution based on its
moments [41]. Application of the method of moments to the Boltzmann equation yields an
evolution equation for the moments of the phase-space distribution. Moment-based approx-
imations are generally consistent with a restricted interest in functionals of the distribution
associated with macroscopic properties of the fluid. The method of moments is closely related
to extended thermodynamics; see, for instance, [16,44]. A recent extension to the method of
moments are the regularized moment methods, in which the moment method is combined
with a perturbative approximation in the Knudsen number [31,55,57].

Intrinsic to the method of moments is an approximation of the moment-closure relation
that completes the evolution equation for the moments. Moment-closure approximations for
the Boltzmann equation were originally conceived by Grad [20]. Grad’s closure relies on
an expansion of the one-particle distribution in Hermite polynomials. For a linear Boltz-
mann equation extended with exogenous forcing, it has been shown that the distribution
in Grad’s moment equations converges to the distribution of the underlying kinetic model
as the order of the moment approximation tends to infinity, and to the solution of a corre-
sponding drift-diffusion model in the macroscopic limit, i.e. as the Knudsen number tends to
zero [51]. Grad’s moment systems are impaired by two essential deficiencies, however, viz.
the potential occurrence of inadmissible locally negative distributions and potential loss of
hyperbolicity [11,59]. Levermore [35] has developed a moment-closure procedure based on
constrained entropy minimization, similar to Dreyer’s maximum-entropy closure in extended
thermodynamics [16]. The entropy minimization procedure formally leads to an exponen-
tial closure. Levermore’s moment systems retain the fundamental structural properties of
the Boltzmann equation, viz., conservation of mass, momentum and energy, Galilean invari-
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ance and entropy dissipation. Moreover, the moment systems form a hierarchy of symmetric
hyperbolic systems and the corresponding distributions are non-negative. It was later shown
by Junk [27], however, that Levermore’s moment-closure procedure is impaired by a real-
izability problem, in that there exist moments for which the minimum-entropy distribution
is non-existent. Moreover, the fluxes in Levermore’s moment systems may become arbitrar-
ily large in the vicinity of (local) equilibrium. Recent results by Junk [28], Schneider [52]
and Pavan [46] convey that potential non-existence of solutions to the entropy-minimization
problem can be avoided by relaxing the constraints to allow inequalities in the highest-order
moments. Moreover, the solution to the relaxed entropy minimization problem coincides with
the solution to the original constrained entropy minimization problem if the latter admits a
solution. The relaxation of the entropy-minimization problem however generally engen-
ders the loss of a one-to-one correspondence between the moments and the distribution.
Moreover, relaxation of the entropy minimization problem does not resolve the potential
singularities in the flux function, as these singularities are intrinsic to the exponential form
of the closure relation. Another fundamental complication, pertaining to the implementation
of moment systems based on exponential closure, is that the resulting formulation requires
the evaluation of moments of exponentials of polynomials of, in principle, arbitrary order.
It is generally accepted that the derivation of closed-form expressions for such moments is
intractable, and accurate approximation of the moments is a notoriously difficult problem;
see, for instance, [34].

In this paper we consider alternative moment-closure relations for the Boltzmann equation,
based on approximations of the exponential function derived from truncations of its standard
limit definition, exp(·) = limn→∞(1 + ·/n)n . It is to be noted that closure relations derived
from a series-expansion definition of the exponential have received scant attention before,
e.g. by Brini and Ruggeri [12]. Our motivation for considering the limit definition instead of
the series-expansion definition for constructing the moment closures is based on the direct
availability of a corresponding inverse relation for higher order approximations. We pro-
pose a generalization of the setting of the moment-closure problem from Kullback–Leibler
divergence [33] (i.e relative entropy) to the class of ϕ-divergences [14]. The considered ϕ-
divergences constitute an approximation to the Kullback–Leibler divergence in the vicinity
of (local) equilibrium. It will be shown that the approximate-exponential closure relation
can be derived via constrained minimization of a corresponding ϕ-divergence. The proposed
description encapsulates as special cases Grad’s closure relation and Levermore’s entropy-
based closure relation. For even order approximations of the exponential, the closure relation
engenders non-negative phase-space distributions. Moreover, the corresponding moment sys-
tems are symmetric hyperbolic and tractable, in the sense that the formulation only requires
the evaluation of higher-order moments of Gaussian distributions. The moment systems fur-
thermore dissipate a ϕ-divergence relative to a suitable reference distribution, analogous to
the dissipation of relative entropy of the Boltzmann equation, provided that the collision
operator dissipates the corresponding ϕ-divergence. We will show that the class of colli-
sion operators that dissipate appropriate ϕ-divergences includes the standard BGK [5] and
generalized BGK [35] operators.

The remainder of this paper is organized as follows. Section 2 surveys, for completeness,
well known structural features of the Boltzmann equation to be retained in the developed
moment system approximation. Section 3 introduces concepts relevant to moment systems.
We will establish that moment systems can alternatively be construed as Galerkin subspace
approximations of the Boltzmann equation in renormalized form, and review the conventional
moment closures of Grad [20] and Levermore [35] and their shortcomings in this setting. Sec-
tion 4 presents a novel tractable moment closure relation based on ϕ-divergence minimization.
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It will be shown that the corresponding closed system of moment equations are well-posed
and retain the structural features of the Boltzmann equation. To investigate the approximation
properties of the new moment-system approximation and the most important implementa-
tion aspects, viz. solution of the minimization problem and integration of moments of the
resulting approximate distribution, Sect. 5 considers elementary one-dimensional numerical
experiments. Finally, Sect. 6 presents a concluding discussion.

2 Structural Properties of the Boltzmann Equation

2.1 The Boltzmann Equation

Consider a monatomic gas, i.e. a gas composed of a single species of identical classical
particles, contained in a fixed spatial domain � ⊂ RD . Kinetic theory describes the state of
such a gas by a non-negative (phase-space) density f = f (t, x, v) over the single-particle
phase space � × RD . The evolution of f is considered to be governed by the Boltzmann
equation,

∂t f + vi∂xi
f = C( f ) (1)

where the collision operator f �→ C( f ) acts only on the v = (v1, . . . , vD) dependence of f

locally at each (t, x) and the summation convention applies to repeated indices. The collision
operator is assumed to possess certain conservation, symmetry and dissipation properties,
viz., conservation of mass, momentum and energy, invariance under Galilean transforma-
tions and dissipation of appropriate entropy functionals. These fundamental properties of
the collision operator are treated in further detail below. Our treatment of the conservation
and symmetry properties is standard (see, for instance, [35]) and is presented merely for
coherence and completeness. For the entropy-dissipation property, we consider a general-
ization of the usual (relative) entropy to ϕ-divergences [14], to enable an exploration of the
moment-closure problem in an extended setting; see Sect. 4.

2.2 Conservation and Invariance Properties

To elaborate the conservation properties of the collision operator, let 〈·〉 denote integration
in the velocity dependence of any scalar, vector or matrix valued measurable function over
D-dimensional Lebesgue measure. A function ψ : RD → R is called a collision invariant

of C if

〈ψ C( f )〉 = 0 ∀ f ∈ D(C), (2)

where D(C) ⊂ L1(RD, R≥0) denotes the domain of C, which we consider to be a subset
of the almost everywhere nonnegative Lebesgue integrable functions on RD . Equation (1)
associates a scalar conservation law with each collision invariant:

∂t 〈ψ f 〉 + ∂xi
〈viψ f 〉 = 0 (3)

We insist that {1, v1, . . . , vD, |v|2} are collision invariants of C and that the span of this set
contains all collision invariants, i.e.

〈ψ C( f )〉 = 0 ∀ f ∈ D(C) ⇔ ψ ∈ span{1, v1, . . . , vD, |v|2} =: E.
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The moments 〈 f 〉, 〈vi f 〉 and 〈|v|2 f 〉, correspond to mass-density, the (components of)
momentum-density and energy-density, respectively. Accordingly, the conservation law (3)
implies that (1) conserves mass, momentum and energy.

The assumed symmetry properties of the collision operator pertain to commutation with
translational and rotational transformations. In particular, for all vectors u ∈ RD and all
orthogonal tensors O : RD → RD , we define the translation transformation Tu : D(C) →
D(C) and the rotation transformation TO : D(C) → D(C) by:

(Tu f )(v) = f (u − v) ∀ f ∈ D(C)

(TO f )(v) = f (O∗v) ∀ f ∈ D(C)

with O∗ the Euclidean adjoint of O. Note that the above transformations act on the v-
dependence only. It is assumed that C possesses the following symmetries:

C(Tu f ) = TuC( f ), C(TO f ) = TOC( f ) (4)

The symmetries (4) imply that (1) complies with Galilean invariance, i.e. if f (t, x, v) satisfies
the Boltzmann equation (1), then for arbitrary u ∈ RD and arbitrary orthogonal O : RD →
RD , so do f (t, x − ut, v − u) and f (t, O∗x, O∗v).

2.3 Dissipation Properties

The entropy dissipation property of C is considered in the extended setting of [35, Sect. 7],
from which we derive the following definition: a convex function η : R�0 → R is called an
entropy density for C if

〈η′( f ) C( f )〉 ≤ 0, ∀ f ∈ D(C) (5)

with η′( f ) the derivative of η( f ), and if for every f ∈ D(C) the following equivalences
hold:

C( f ) = 0 ⇔ 〈η′( f ) C( f )〉 = 0 ⇔ η′( f ) ∈ E (6)

Relation (5) implies that C dissipates the local entropy 〈η(·)〉, which leads to an abstraction
of Boltzmann’s H-theorem for (1), asserting that solutions of the Boltzmann equation (1)
satisfy the local entropy-dissipation law:

∂t 〈η( f )〉 + ∂xi
〈viη( f )〉 = 〈C( f ) η′( f )〉 ≤ 0 . (7)

The functions 〈η( f )〉, 〈viη( f )〉 and 〈η′( f ) C( f )〉 are referred to as entropy density, entropy
flux and entropy-dissipation rate, respectively. The first equivalence in (6) characterizes local
equilibria of C by vanishing entropy dissipation, while the second equivalence indicates the
form of such local equilibria. For spatially homogeneous initial data, f0, Eqs. (5) and (6)
suggest that equilibrium solutions, feq, of (1) are determined by:

feq = arg min
{
〈η( f )〉 : f ∈ D(C), 〈 f ψ〉 = 〈 f0ψ〉}, (8)

Equation (8) identifies equilibria as minimizers1 of the entropy, subject to the constraint that
the invariant moments are identical to the invariant moments of the initial distribution.

We will admit distributions that vanish on sets with nonzero measure. To accommodate
such distributions, we introduce an auxiliary non-negativity condition on the collision oper-
ator, in addition to (5) and (6). The non-negativity condition insists that C( f ) cannot be
negative on zero sets of f :

1 We adopt the sign convention of diminishing entropy.
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82 M. R. A. Abdelmalik, E. H. van Brummelen

C( f )
∣∣
RD\supp( f )

≥ 0 (9)

Condition (9) encodes that the collision operator cannot create locally negative distributions.
It can be verified that (9) holds for a wide range of collision operators, including the BGK
operator [5], the multi-scale generalization of the BGK operator introduced in [35], and all
collision operators that are characterized by a (non-negative) collision kernel.

2.4 Divergence-Based Entropies

The standard definition of entropy corresponds to a density f �→ f log f , possibly augmented
with f ψ where ψ ∈ E is any collision invariant. It is to be noted that for Maxwellians M,
i.e. distributions of the form

M(v) := M(̺,u,T )(v) :=
̺

(2π RT )
D
2

exp

(
−

|v − u|2

2RT

)
(10)

for some (̺, u, T ) ∈ R>0 × RD × R>0 and a certain gas constant R ∈ R>0, it holds
that log M ∈ E. Therefore, the relative entropy 〈 f log ( f/M)〉 of f with respect to some
suitable M is equivalent to 〈 f log f 〉 in the sense of dissipation characteristics. The physical
interpretation of the entropy 〈 f log f 〉, due to Boltzmann [8–10], is that of a measure of
degeneracy of macroscopic states, i.e. of the number of microscopic states that are consistent
with the macroscopic state as described by the one-particle marginal, f . In the context
of information theory, Shannon [53] showed that for discrete probability distributions, the
density f �→ f log f is uniquely defined by the postulates of continuity, strong additivity
and the property that mη(1/m) < nη(1/n) whenever n < m. These postulates ensure
that for discrete probability distributions the entropy yields a meaningful characterization of
information content and, accordingly, rationalize an interpretation of entropy as a measure
of the uncertainty or, conversely, information gain pertaining to an observation represented
by the corresponding probability distribution [25].

Kullback and Leibler [33] generalized Shannon’s definition of information to the abstract
case and identified the divergence2

DKL(μ1|μ2) =
∫

f1 log( f1/ f2) dν (11)

as a distance between mutually absolutely continuous measures μ1 and μ2, both absolutely
continuous with respect to the measure ν with Radon–Nikodym derivatives f1 = dμ1/dν

and f2 = dμ2/dν. The Kullback–Leibler divergence characterizes the mean information
for discrimination between μ1 and μ2 per observation from μ1. Noting that the Kullback–
Leibler divergence (11) coincides with the relative entropy of f1 with respect to f2, the relative
entropy 〈 f log( f/M)〉 can thus be understood as a particular measure of the divergence of
the one-particle marginal relative to the reference (or background) distribution M. Kullback–
Leibler divergence was further generalized by Csiszár [14] and Ali et al. [2], who introduced
a general class of distances between probability measures, referred to as ϕ-divergences, of
the form:

Dϕ(μ1|μ2) =
∫

f2 ϕ( f1/ f2) dν (12)

where ϕ is some convex function subject to ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0. Note that the
Kullback–Leibler divergence corresponds to the specific case ϕKL(·) = (·) log(·).

2 The conventional definition of Kullback–Leibler divergence according to (11) is historically incorrect, as
Kullback and Leibler in fact referred to the symmetrization of (11) as the “divergence”.
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In this work, we depart from the standard (relative) entropy for (1) and instead consider
entropies based on particular ϕ-divergences. These ϕ-divergences generally preclude the
usual physical and information-theoretical interpretations, but still provide a meaningful
entropy density in accordance with (5) and (6). The considered ϕ-divergences yield a setting
in which entropy-minimization based moment-closure approximations to (1) are not impaired
by non-realizability, exhibit bounded fluxes in the vicinity of equilibrium, and are numerically
tractable.

Remark 1 Implicit to our adoption of ϕ-divergence-based entropies is the assumption that
such entropies comply with (5) and (6) for a meaningful class of collision operators. It can
be shown that the class of admissible collision operators includes the BGK operator [5]:

CBGK( f ) = −τ−1( f − E f ) (13)

where τ ∈ R>0 is a relaxation time and E(·) corresponds to the map f0 �→ feq defined
by (8). The Kuhn–Tucker optimality conditions associated with (8) convey that η′(E f ) ∈ E

and, therefore, 〈η′(E f )( f − E f )〉 = 0. The dissipation inequality (5) then follows from the
convexity of η(·):

〈η′( f ) CBGK( f )〉 = −τ−1〈(η′( f ) − η′(E f )
)
( f − E f )

〉
≤ 0 (14)

Moreover, because equality in (14) holds if and only if f = E f , the condition
〈η′( f ) CBGK( f )〉 = 0 implies that f = E f , which in turn yields CBGK( f ) = 0 and η′( f ) ∈ E.
The equivalences in (6) are therefore also verified. A similar result holds for the multi-scale
generalization of the BGK operator introduced in [35]; see Appendix.

3 Moment Systems

Moment systems are approximations of the Boltzmann equation based on a finite number
of velocity-moments of the one-particle marginal. An inherent aspect of moment equations
derived from (1) is that low-order moments are generally coupled with higher-order ones,
and consequently a closed set of equations for the moments cannot be readily formulated.
Therefore, a closure relation is required.

3.1 General Derivation and the Moment-Closure Problem

To derive the moment equations from (1) and elaborate on the corresponding moment-
closure problem, let M denote a finite-dimensional subspace of D-variate polynomials and
let {mi (v)}M

i=1 represent a corresponding basis. Denoting the column M-vector of these basis

elements by m, it holds that the moments {〈mi f 〉}M
i=1 of the one-particle marginal satisfy:

∂t 〈m f 〉 + ∂xi
〈vi m f 〉 = 〈mC( f )〉 (15)

It is to be noted that we implicitly assume in (15) that f resides in

F :=
{

f ∈ D(C) : m f ∈ L1(
R

D
)
, vm f ∈ L1(

R
D, R

D
)
, mC( f ) ∈ L1(

R
D
)

for all m ∈ M

}
(16)

almost everywhere in the considered time interval (0, T ) and the spatial domain �. This
assumption has been confirmed in specific settings of (1) but not for the general case; see [35,
Sect. 4] and the references therein for further details.
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The moment-closure problem pertains to the fact that (15) provides only M relations
between (2 + D)M independent variables, viz., the densities 〈mi f 〉, the flux components
〈vi mi f 〉 and the production terms 〈mi C( f )〉. Therefore, (1 + D)M auxiliary relations must
be specified to close the system. Generally, moment systems are closed by expressing the
fluxes and production terms as a function of the densities. Moment systems are generally
closed by constructing an approximation to the distribution function from the densities and
then evaluating the fluxes and production terms for the approximate distribution. Denoting
by A ⊆ RM a suitable class of moments, a function F : A → F must be specified such
that F realizes the moments in A, i.e. 〈mF(ρ)〉 = ρ for all ρ ∈ A, and F(〈m f 〉) constitutes
a suitable (in a sense to be made more precise below) approximation to the solution f

of the Boltzmann equation (1). Approximating the moments in (15) by ρ ≈ 〈m f 〉 and
replacing f in (15) by the approximation F(ρ), one obtains the following closed system for
the approximate moments:

∂tρ + ∂xi
〈vi mF(ρ)〉 = 〈mC(F(ρ))〉. (17)

The closed moment system (17) is essentially defined by the polynomial subspace, M, and the
closure relation, F . A subspace/closure-relation pair (M, F) is suitable if the corresponding
moment system (17) is well posed and retains the fundamental structural properties of the
Boltzmann equation (1) as described in Sect. 2, viz., conservation of mass, momentum and
energy, Galilean invariance and dissipation of an entropy functional. Auxiliary conditions
may be taken into consideration, e.g. that the fluxes and production terms can be efficiently
evaluated by numerical quadrature.

3.2 Reinterpretation via Renormalization and Galerkin Approximation

Moment systems can alternatively be conceived of as Galerkin subspace-approximations of
the Boltzmann equation (1) in renormalized form. This Galerkin-approximation interpreta-
tion can for instance prove useful in constructing error estimates for (17) and in deriving
structural properties. In addition, the Galerkin-approximation interpretation conveys that
smooth functionals of approximate distributions obtained from moment systems, such as
velocity moments, generally display superconvergence under hierarchical-rank refinement,
in accordance with the Babuška–Miller theorem; see [3] and also Sect. 5.

We consider the subspace M and introduce a function β : M → F, referred to as a renor-

malization map. Denoting by V ((0, T )×�; M) a suitable class of functions from (0, T )×�

into M, the moment system (17) can be recast into the Galerkin form:

Find g ∈ V
(
(0, T ) × �; M)

)
:〈

m∂tβ(g)
〉
+

〈
mvi∂xi

β(g)
〉
=

〈
mC(β(g))

〉
∀m ∈ M, a.e. (t, x) ∈ (0, T ) × �.

(18)

To elucidate the relation between (17) and (18), we associate to the renormalization map β :
M → F a function Fβ : D(Fβ) → F such that Fβ(ρ) = β(gρ) with gρ according to
〈mβ(gρ)〉 = ρ. The domain D(Fβ) is implicitly restricted to moments ρ ∈ RM that can
be realized by some g ∈ M. The equivalence between the Galerkin formulation (18) and
the moment system (17) now follows immediately by noting that {mi }M

i=1 constitutes a basis
of M and inserting gρ for g in (18).

The Galerkin form (18) facilitates a unified treatment of moment-closure systems. In the
remainder of this section we review the celebrated moment closures of Levermore [35] and
Grad [20] in the context of the Galerkin form (18), to provide a basis for the subsequent
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divergence-based moment closures in Sect. 4. We note that other closure relations exist,
e.g. based on Pearson distributions [60]. However, these closures do not generally possess
a hierarchical structure, i.e. the renormalization map for these closures is non-generic and
specifically connected to a particular subspace M, and are outside the scope of this treatise.

3.3 Levermore’s Entropy-Based Moment Closure

The moment-closure relation of Levermore [35] is essentially characterized by the renormal-
ization map:

βL(·) = exp(·) (19)

For this closure relation, a subspace M is considered to be admissible if it satisfies:

(1) E ⊆ M;
(2) M is invariant under the actions of Tu and TO;
(3) Mc := {m ∈ M : 〈exp(m)〉 < ∞} has a nonempty interior in M.

The first condition insists that M contains the collision invariants, which ensures that the
moment system imposes conservation of mass, momentum and energy. These conservation
laws must be obeyed if any fluid-dynamical approximation is to be recovered. The second
condition dictates that for all m ∈ M, all u ∈ RD and all orthogonal tensors O it holds
that m(u − (·)) ∈ M and m(O∗(·)) ∈ M. This condition ensures that the moment system
exhibits Galilean invariance. As argued by Junk [29], rotation and translation invariant finite
dimensional spaces are necessarily composed of multivariate polynomials. The third condi-
tion requires that M contains functions m such that β(m(·)) is Lebesgue integrable on RD .
For β(·) = exp(·) and M composed of multivariate polynomials, this condition implies that
the highest-order terms in any variable in M must be of even order. The subset Mc then
corresponds to a convex cone, consisting of all polynomials in M for which the highest-order
terms in any variable are of even order and have a negative coefficient. One can infer that
exp(·) maps Mc to distributions with bounded moments and fluxes, i.e. g ∈ Mc implies
|〈mβ(g)〉| < ∞ and |vmβ(g)〉| < ∞ for all m ∈ M.

In [35] the moment-closure relation associated with (19) is derived by minimization of the
entropy with density ηL( f ) := f log f − f , subject to the moment constraint. Specifically,
considering any admissible subspace M, Levermore formally defines the closure relation
ρ �→ FL(ρ) according to:

FL(ρ) := arg min f ∈F

{
〈 f log f − f 〉 : 〈m f 〉 = ρ

}
(20)

To elucidate the fundamental properties of the closure relation (20), we consider an admissible
subspace M and we denote by D the collection of all f ∈ F that yield moments ρ = 〈m f 〉
for which the minimizer in (20) exists. The operator FL(〈m(·)〉) : D → I is idempotent and
its image I ⊂ D admits a finite-dimensional characterization. In particular, it holds that log I

coincides with the convex cone Mc. The idempotence of the operator FL(〈m(·)〉) and its
injectivity in D imply that (20) corresponds to a projection. This projection is generally
referred to as the entropic projection [23]. A second characterization of (20) follows from
the following sequence of identities, which holds for any f ∈ F such that 〈m f 〉 = ρ and all
Maxwellian distributions, M = exp(ψ) with ψ ∈ E:

〈 f log( f/M)〉 = 〈 f (log f − ψ)〉 = 〈 f log f − f 〉 + 〈 f (1 − ψ)〉
= 〈 f log f − f 〉 + α · ρ (21)
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for some α ∈ RM . Noting that α · ρ is independent of f , one can infer from (11) and (21)
that FL according to (20) is the distribution in F that is closest to equilibrium in the Kullback–
Leibler divergence, subject to the condition that its moments 〈m(·)〉 coincide withρ. Similarly,
it can be shown that FL according to (20) minimizes 〈 f log f 〉 subject to 〈m f 〉 = ρ. There-
fore, the information interpretation of the entropy 〈 f log f 〉 (see Sect. 2) enables a third
characterization of (20), viz. as the least-biased distribution given the information 〈m(·)〉 = ρ

on the moments.
The exponential form of the renormalization map (19) can be derived straightforwardly by

means of the Lagrange multiplier method. Provided it exists, the minimizer of the constrained
minimization problem (20) corresponds to a stationary point of the Lagrangian ( f,α) �→
〈 f log f − f 〉 + α · (ρ − 〈m f 〉). The stationarity condition implies that log f − α · m

vanishes, which conveys the exponential form f = exp(α · m). It is to be noted that the
Lagrange multipliers have to comply with an admissibility condition related to integrability.
In particular, α · m must belong to the convex cone Mc.

In [35] it is shown that moment systems with closure FL yield quasi-linear symmetric
hyperbolic systems for the Lagrange multipliers. Application of the chain rule to (17) with
FL(ρ) = exp(α · m) (with, implicitly, ρ = 〈m exp(α · m)〉) yields:

A0(α)
∂α

∂t
+

D∑

i=1

Ai (α)
∂α

∂xi

= s(α) (22)

with A0(α) = 〈m⊗m exp(α ·m)〉, Ai (α) = 〈vi m⊗m exp(α ·m)〉 and s(α) = 〈m C(exp(α ·
m))〉. The symmetry of Ai (i = 0, 1, . . . , D) and the positive definiteness of A0 are evident.
By virtue of its quasi-linear symmetric hyperbolicity, the system (22) is at least linearly well
posed [35]. Moreover, under auxiliary conditions on the initial data, local-in-time existence
of solutions can be established; see, for instance, [39].

Levermore’s moment systems retain the fundamental structural properties of the Boltz-
mann equation. The conservation properties and Galilean invariance are direct consequences
of conditions 1 and 2 on the admissible subspaces, respectively. Dissipation of the entropy
〈ηL(·)〉 can be inferred from the Galerkin formulation (18), noting that for (19) it holds
that log βL(·) : M → M. Hence, if g complies with (18) in conjunction with (19) then the
following identity holds on account of Galerkin orthogonality:

〈 log βL(g) ∂tβL(g)〉 + 〈 log βL(g) vi∂xi
βL(g)〉 = 〈log βL(g) C(βL(g))〉 (23)

The left-hand side of this identity coincides with ∂t 〈ηL(β(g))〉+∂xi
〈viηL(βL(g))〉, while the

right-hand side equals 〈C(βL(g)) η′
L(βL(g))〉. For g according to (18), the distribution βL(g)

thus obeys the entropy dissipation relation (7) with entropy density ηL.
Levermore’s consideration of entropy-based moment-closure systems in [35], as well as

the above exposition, implicitly rely on existence of a solution to the moment-constrained
entropy minimization problem (20). It was however shown by Junk in the series of papers [27–
29] that for super-quadratic M the closure relation (20) is impaired by non-realizability, i.e. a
minimizer of (20) may be non-existent. Moreover, the class of local equilibrium distributions
generally lies on the boundary of the set of degenerate densities. In [27], Junk also estab-
lishes that the flux 〈vi mβL(g)〉 can become unbounded in the vicinity of equilibrium, thus
compromising well-posedness of (22). The singularity of the fluxes moreover represents a
severe complication for numerical approximation methods; see also [42].

The realizability problem of Levermore’s entropy-based moment closure has been exten-
sively investigated; see, in particular, [24,27–29,46,52]. In [24,29,46] it has been shown that
the set of degenerate densities is empty if and only if the set {α ∈ RM : m exp(α · m) ∈
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L1(RD, RM )} of Lagrange multipliers associated with integrable distributions is open. This
result implies that degenerate densities are unavoidable for super-quadratic polynomial
spaces, because the Lagrange multipliers associated with equilibrium are then located on the
boundary of the above set; see also [24]. To bypass the realizability problem, Schneider [52]
and Pavan [46] considered the following relaxation of the constrained entropy-minimization
problem:

arg min f ∈F{〈 f log f − f 〉 : 〈m f 〉 ≤∗ ρ} (24)

where the binary relation ≤∗ connotes that the highest order moments of the left member
are bounded by the corresponding moments of the right member. The relaxation of the
highest-order-moment constraints serves to accommodate that minimizing sequences { fn} ⊂
F subject to the constraint 〈m fn〉 = ρ converge (in the topology of absolutely integrable
functions) to an exponential density with inferior highest-order moments; see [24,27,28,46,
52]. The analyses in [46,52] convey that the relaxed minimization problem indeed admits a
unique solution, corresponding to an exponential distribution. The exponential closure can
therefore be retained if the closure relation is defined by (24) instead of (20). It is to be noted
however that the closure relation (24) does not generally provide a bijection between the
Lagrange multipliers and the moments. Moreover, the aforementioned singularity of fluxes
near equilibrium is also inherent to (24).

Another formidable obstruction to the implementation of numerical approximations of
Levermore’s moment-closure systems are the exponential integrals that appear in (17). The
evaluation of moments of exponentials of super-quadratic polynomials is generally accepted
to be intractable, and accurate approximation of such moments is algorithmically complicated
and computationally intensive; see, in particular, [34, Sect. 12.2] and [27, Sect. 6].

3.4 Grad’s Hermite-Based Moment Closure

In his seminal paper [20], Grad proposed a moment-closure relation based on a factorization
of the one-particle marginal in a Maxwellian distribution and a term expanded in Hermite
polynomials; see also [21, Sect. V]. The expansion considered by Grad writes:

f (t, x, c) ≈ M(c)

n∑

k=0

∑

ik

1

k!
a

(k)
ik

(x, t)H
(k)

ik
(c), (25)

where c denotes peculiar velocity, ik = (i1, i2, . . . , ik) is a multi-index with sub-indices

i(·) ∈ {1, 2, . . . , D}, a
(k)
ik

are the polynomial expansion coefficients and H
(k)
ik

are D-variate
Hermite polynomials of degree k:

H
(k)
ik

(x) =
(−1)k

ω(|x|)
∂kω(|x|)

∂xi1∂xi2 · · · ∂xik

with ω(s) =
1

(2π)d/2
exp(−s2/2). (26)

The Maxwellian in (25) can either correspond to a prescribed local or global Maxwellian,
or it can form part of the approximation; see [20,21]. In the latter case, the coefficients

associated with invariant moments are fixed and it holds that a(0) = 1, a
(1)
i = 0 and a

(2)
i i = 1.

By virtue of the specific properties of Hermite polynomials, moments of Grad’s approximate
distribution (25) can be evaluated in closed-form.

The linear hull of the Hermite polynomials {H (k)
i

}0≤k≤n coincides with the class of D-
variate polynomials of degree at most n. The Hermite polynomials in (26) do not provide a
basis of the polynomials, however, on account of linear dependence; evidently, the Hermite
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polynomial in (26) is invariant under permutations of its indices. In [20], uniqueness of the
coefficients in (25) is restored by imposing auxiliary symmetry conditions on the coefficients.

Grad’s moment systems can be conveniently conceived of as Galerkin approximations
of the Boltzmann equation in renormalized form in accordance with (18). For a prescribed
Maxwellian, the renormalization map simply corresponds to

βG(g) = Mg (27)

Incorporation of the Maxwellian in (25) in the approximation can be represented by the
alternative renormalization map:

β⋆
G(g) = exp(�Eg) ×

(
1 + (Id − �E)g

)
(28)

where �E : M �→ E denotes the orthogonal projection onto the space of collision invariants
and Id represents the identity operator. The embedding E ⊆ M implies that �EM = E and
(Id − �E)M = M \ E. Hence, the projection in (28) provides a separation of M into E and
its orthogonal complement.

It is notable that the renormalization maps (27) and (28) can be conceived of as a lin-
earization of Levermore’s exponential closure relation in the vicinity of a Maxwellian. In
particular, setting ψ = log M ∈ E, the following identities hold pointwise:

exp(g) = exp(ψ) exp(g − ψ) = M exp(g − ψ) = M
(
1 + (g − ψ) + O(|g − ψ |2)

)

(29)

as (g − ψ) → 0. To derive the renormalization map (27) for a prescribed Maxwellian, it
suffices to note that 1+g−ψ ∈ M. To infer the renormalization map (28) if the Maxwellian is
retained in the approximation, we note that by setting ψ = �Eg and omitting the remainder
in (29), we obtain (28).

For a prescribed global Maxwellian M, Grad’s moment systems dissipate the entropy
ηχ2( f ) := 1

2 M( f/M−1)2, provided that ηχ2 represents an entropy density for the collision
operator under consideration. It can for example be shown that ηχ2 is generally a suitable
entropy density for collision operators linearized about M (see [22]) and for BGK collision
operators. Dissipation of the entropy 〈ηχ2〉 relative to the global Maxwellian M can be
directly inferred from the Galerkin formulation (18), by noting that for the renormalization
map βG in (27) it holds that:

η′
χ2(βG(g)) = βG(g)/M − 1 = g − 1 ∈ M (30)

Hence, η′
χ2 resides in the test space M in (18) and dissipation of 〈ηχ2〉 follows from Galerkin

orthogonality. The entropy 〈ηχ2( f )〉 is associated with the ϕχ2 -divergence of f relative to M

with ϕχ2(s) = 1
2 (s − 1)2; cf. (12). Grad’s moment-closure relation can in fact be obtained

by minimization of the ϕχ2 -divergence subject to the moment constraints:

FG(ρ) = arg min f ∈F

{〈
Mϕχ2( f/M)

〉
: 〈m f 〉 = ρ

}
(31)

The minimization problem (31) is not impaired by the realizability problem inherent to (20),
because the moment functionals 〈m(·)〉 are continuous in the topology corresponding to 〈ηχ2〉.

If the Maxwellian is retained in the approximation in accordance with the renormalization
map (28), then an entropy for the corresponding moment systems can be non-existent or
its derivation is intractable. However, for any entropy density η for the collision operator,
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the following identity holds by virtue of the Galerkin-orthogonality property of β := β(g)

in (18):

∂t 〈η(β)〉 + ∂xi
〈viη(β)〉 = 〈(η′(β) − m)∂tβ〉 + 〈(η′(β) − m)vi∂xi

β〉
− 〈(η′(β) − m)C(β)〉 + 〈η′(β)C(β)〉 (32)

for arbitrary m ∈ M. Equation (32) implies that solutions to Grad’s moment systems dissipate
any entropy 〈η〉 for the collision operator up to infm∈M ‖η′(β(g)) − m‖, in some suitable
norm ‖ · ‖. For example, introducing the condensed notation g0 = �Eg, g1 = (Id − �E)g

and the convex functional η : E × M \ E → R according to

η(g0, g1) = (g0 − 1)eg0(1 + g1) + eg0 g1(1 + g1) (33)

the renormalization map in (28) corresponds to β(g) = eg0(1 + g1) and it holds that

dη(g0, g1) = (g0 + g1)e
g0(1 + g1) dg0 + (g0 + 2g1)e

g0 dg1

= (g0 + g1)(∂g0β dg0 + ∂g1β dg1) + g1eg0 dg1

= (g0 + g1) dβ + g1eg0 dg1

(34)

Considering that g0+g1 ∈ M, it follows from (32) that if η in (33) is an entropy density for the
collision operator, then Grad’s moment systems with renormalization map (28) dissipate η

up to O(g1) as g1 vanishes (in some appropriate norm). Note that g1 vanishes at equilibrium.
Grad’s moment-closure relation exhibits several fundamental deficiencies that may cause

breakdown of the physical and mathematical structure of the corresponding moment sys-
tem for large deviations from equilibrium. First, the expansion (25) admits inadmissible,
locally negative distributions. Second, if the Maxwellian is retained in the approximation in
accordance with (28), the corresponding moment systems are generally non-symmetric and
hyperbolicity is not guaranteed. It has been observed in [11,59] that Grad’s moment-closure
systems can indeed exhibit complex characteristics and loss of hyperbolicity. Recently, reg-
ularization procedures have been introduced to restore the hyperbolicity of Grad’s moment
systems. However, these regularizations generally disrupt the conservation properties of the
moment system.

4 Divergence-Based Moment Closures

4.1 Renormalizations Based on Deformed Exponentials

In this section we present a novel moment-closure relation based on an approximation of
the exponential function. The considered approximation is derived from truncations of the
standard limit definition of the exponential exp(·) := limn→∞(1 + (·)/n)n ≈ (1 + (·)/N )N .
It is noteworthy that unlike the exponential function, in the limit as v → −∞ the truncated
exponential as well as its derivative do not vanish. The former condition is needed to pre-
serve the decay properties of the exponential function while the latter condition is needed
to preserve the same absolute maximum and minimum as the exponential. Moreover, as
opposed to the exponential function, the truncated exponential can be negative if N is odd.
Several approximations of the exponential function that preserve the aforementioned proper-
ties of the exponential have been proposed in the literature; see, for example, [30,45,62] and
references therein. These so-called deformed exponentials can generally serve to construct
moment-closure renormalization maps, with properties depending on the particular form of
the deformed exponential and the construction. In [62], Tsallis proposed the q-exponential:
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ẽxpq(x) :=
(
1 + (1 − q)x

)1/(1−q)

+ (35)

with q �= 1 and (·)+ = 1
2 (·) + 1

2 | · | the non-negative part of a function extended by 0. The
q-exponential in (35) is related to the non-negative part of the truncated limit definition of
the exponential by 1 − q = 1/N . We will consider renormalization maps of the form

βN (g) = M ẽxpq(g) = M

(
1 +

g

N

)N

+
(36)

with M a prescribed distribution, e.g. a local or global Maxwellian. The renormalization
map βN can then be construed as an approximation to the exponential renormalization
map about the Maxwellian distribution M. We will establish that the distribution (36) can
be derived as the minimizer of a modified entropy that approximates the Kullback–Leibler
divergence near M and that belongs to the class of ϕ-divergences. In addition, we will show
that the resulting moment system overcomes the aforementioned deficiencies of Grad’s and
Levermore’s moment systems, while retaining the fundamental properties of the Boltzmann
equation presented in Sect. 2.

The renormalization map (36) engenders the following moment-closure relation:

FN (ρ) := M ẽxpq(α · m) = M

(
1 +

α · m

N

)N

+
(37)

where the moment densities ρ and the coefficients α are related by ρ = 〈m M ẽxpq(α ·
m)〉. Given a polynomial subspace M ⊇ E with a Galilean-group property (admissibility
conditions 1 and 2 in Sect. 3.3), the moment system corresponding to (36) conforms to (17)
with, in particular, the moment-closure relation FN according to (37).

4.2 Connection to Closure Relations of Levermore and Grad

To elucidate some of the characteristics of the renormalization map (36), we regard it in com-
parison with the renormalization maps (19) and (27) associated with Levermore’s exponential
moment-closure relation and Grad’s moment-closure relation with a prescribed Maxwellian
prefactor, respectively.

To compare the renormalization map (36) to the renormalization map (19) associated with
Levermore’s closure relation, we note that by virtue of the vector-space structure of M ⊇ E,
for an arbitrary Maxwellian distribution M it holds that log M+M = M. Hence, for g ∈ M,
the renormalization map (19) can be equivalently expressed as g �→ exp(log M + g). In the
limit N → ∞, we obtain for (36):

lim
N→∞

βN (g) = M lim
N→∞

(
1 +

g

N

)N

+
= M exp(g) = exp(log M + g) (38)

Equation (38) implies that in the limit N → ∞, the renormalization map in (36) coincides
with the exponential renormalization map associated with Levermore’s moment-closure rela-
tion. For finite N , the moments 〈mβN (g)〉 and fluxes 〈mvβN (g)〉 with m, g ∈ M correspond
to piecewise-polynomial moments of the Gaussian distribution M. The evaluation of such
moments is tractable (see Remark 2 below), as opposed to the evaluation of moments and
fluxes for the exponential renormalization map. In addition, for super-quadratic approxima-
tions M ⊃ E, the exponential renormalization map associated with Levermore’s closure can
lead to singular moments and fluxes in the vicinity of equilibrium, i.e. as g approaches E. The
fundamental underlying problem is the realizability problem; see Sect. 3.3 and [27]. Accord-
ingly, one can form sequences {gn} such that exp(gn) → E (in the L1 topology) while there
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exist m ∈ M such that |〈m exp(gn)〉| → ∞ or |〈mv exp(gn)〉| → ∞. One can infer that due
to the exponential decay of the prefactor M and the polynomial form of the renormalization
map in (36), moments and fluxes corresponding to (36) are non-singular near equilibrium.

To compare (36) to the renormalization map (27) corresponding to Grad’s moment-closure
relation with a prescribed Maxwellian prefactor, we note that by virtue of the vector-space
structure of M ⊇ E, it holds that 1+M = M. Hence, for g ∈ M, the renormalization map (27)
can be equivalently expressed as βG : g �→ M(1 + g). Comparison of βN and βG then
imparts that β1 = (βG)+, i.e. for N = 1 the renormalization map βN in (36) coincides with
the non-negative part of the renormalization in Grad’s closure, extended by zero. Therefore,
the renormalization map (36) avoids the potential negativity of the approximate distribution
inherent to Grad’s closure and corresponding loss of hyperbolicity.

Remark 2 Computing moments of the closure relation (36) involves computing the roots of
the polynomial α ·m+N . In the multidimensional case, such roots may be difficult to compute
since the problem is under-determined and the roots may form curves (2D) and surfaces (3D)
of, in principle, arbitrary shape. However, when α · m + N is of even maximal degree and the
highest order coefficients are of the same sign, subdivision schemes (see for example [40]
and references therein) may be used to approximate the positive part of α · m + N since its
zero sets are either empty or correspond to isolated points or closed loops. For the following
choice of subspace hierarchies, α · m + N is of even maximal degree and the highest order
coefficients are of the same sign

M = span{1, v, |v|2} (39)

M = span{1, v, v ∨ v, v ∨ v ∨ v, |v|4} (40)

... (41)

M = span{1, v, v ∨ v, v ∨ v ∨ v, v ∨ v ∨ v ∨ v, v ∨ v ∨ v ∨ v ∨ v, . . . , |v|2k} (42)

4.3 Conservation, Invariance and Dissipation Properties

The moment system corresponding to (36) retains conservation of mass, momentum and
energy as well as Galilean invariance. The conservation properties can be directly deduced
from the Galerkin form (18) of the moment system, by noting that E is contained in the test
space M, in accordance with admissibility condition 1 in Sect. 3.3. Galilean invariance is an
immediate consequence of admissibility condition 2.

Contrary to Levermore’s moment system, the moment system with renormalization
map (36) does not generally dissipate the relative entropy 〈 f log ( f/M)〉, because the inverse
of βN (·) does not correspond to log(·) and, therefore, log βN (g) does not generally belong
to the test space M for g ∈ M; cf. Sect. 3.3. Under appropriate conditions on the collision
operator (see Sect. 2), the moment system closed by (36) does however dissipate a modi-
fied relative entropy. To determine a suitable entropy function for the moment system with
renormalization map (36) relative to some global Maxwellian distribution, M, we observe
that:

β−1
N (·) = N

(
(·)
M

)1/N

− N (43)

provides an inverse of βN according to (36) on the support of βN . In particular, it holds that:

β−1
N

(
βN (g)

)
=

{
g if g ≥ − N

−N otherwise
(44)
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The expression in (43) yields an approximation to the natural logarithm, corresponding to
the inverse of the approximation of the exponential function in (36) for g ≥ − N . This
approximate logarithm is eligible as the derivative of an entropy density associated with the
moment system with renormalization (36). Defining the entropy density as

ηN ( f ) = f

(
N 2

1 + N

(
f

M

)1/N

− N

)
+ M

N

1 + N
(45)

it holds that η′
N (·) = β−1

N (·). The constant in (45) has been selected such that ηN (M)

vanishes. The entropy corresponding to (45) can be cast in the form of a relative entropy
associated with a ϕ-divergence, in accordance with (12). To this end, we introduce

ϕN (·) = (·)
(

N 2

1 + N
(·)1/N − N

)
+

N

1 + N
(46)

and note that ηN ( f ) = MϕN ( f/M). Convexity of the function ϕN and of the corresponding
entropy density ηL follows by direct computation:

ϕ′′
N (·) = (·)(1−N )/N (47)

Therefore, ϕ′′
N is strictly positive on R>0. Moreover, it holds that ϕN (1) = 0. To establish

that solutions to the moment system with renormalization map (36) dissipate the entropy
corresponding to the density (45), we consider a solution βN (g) of the moment system and
note that the chain rule yields:

∂t

〈
ηN (βN (g))

〉
+ ∂xi

〈
viηN (βN (g))

〉
=

〈
η′

N (βN (g)) ∂tβN (g)
〉
+

〈
η′

N (βN (g)) vi∂xi
βN (g)

〉

(48)

The velocity integral in the right member of (48) can be separated into contribu-
tions from supp(βN (g)) and its complement, RD\supp(βN (g)). On supp(βN (g)) it holds
that η′

N (βN (g)) = g. On its complement, g is strictly less than −N and it follows from (36)
that ∂tβN (g) and ∂xi

(βN (g)) vanish. Equation (48) therefore implies:

∂t

〈
ηN (βN (g))

〉
+ ∂xi

〈
viηN (βN (g))

〉
=

〈
g ∂tβN (g)

〉
+

〈
g vi∂xi

βN (g)
〉

(49)

Noting that g ∈ M, we infer from the Galerkin form of the moment system in (18) and the
fact that g coincides with η′

N (βN (g)) on supp(βN (g)) that

∂t

〈
ηN (βN (g))

〉
+ ∂xi

〈
viηN (βN (g))

〉
=

〈
g C(βN (g))

〉

=
〈
η′

N (βN (g)) C(βN (g))
〉
+

∫

RD\supp(βN (g))

(
g(v) − η′

N (0)
)
C(0) dv (50)

If ηN (·) according to (45) is an entropy density for the collision operator C under considera-
tion, then the first term in the ultimate expression in (50) is non-positive on account of (5). The
derivative of the entropy density in (45) satisfies η′

N (0) = −N . Moreover, because g < −N

on RD \ supp(βN (g)) and by virtue of the non-negativity condition on the collision operator
according to (9), the second term in the ultimate expression in (50) is also non-positive.
Solutions of the moment system therefore comply with a local entropy-dissipation relation
analogous to (7):

∂t

〈
ηN (βN (g))

〉
+ ∂xi

〈
viηN (βN (g))

〉
≤ 0 (51)

The entropy dissipation relation (51) extends to renormalization maps of the form (36)
with suitable non-uniform background distributions. For a non-uniform distribution M, an
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additional contribution to the right hand side of (50) appears, conforming to
〈(

ϕN (β/M) − (1/M)ϕ′
N (β/M)

)(
∂tM + vi∂xi

M
)〉

(52)

with ϕN according to (46). The production term in (52) indeed vanishes if M corresponds
to a global Maxwellian background distribution. However, (52) does not generally disap-
pear for non-uniform background distributions, which could disrupt the entropy dissipation
relation (51). Equation (52) conveys that the entropy dissipation relation (51) is retained for
suitable choices of M, such as free streaming Maxwellian distributions and solutions to the
Vlasov equation; see also [1].

4.4 Derivation via ϕ-Divergence Minimization

The moment-closure relation (37) can be derived by minimization of the ϕN -divergence
subject to the moment constraint; cf. the definition of Levermore’s closure relation according
to (20). Consider the constrained minimization problem:

FN (ρ) := arg min f ∈F

{
〈ηN ( f )〉 : 〈m f 〉 = ρ

}

= arg min f ∈F

{〈
MϕN ( f/M)

〉
: 〈m f 〉 = ρ

}
(53)

Formally, the solution to (53) can be obtained by the method of Lagrange multipliers. The
minimizer in (53) corresponds to a stationary point of the Lagrangian ( f,α) �→ 〈ηN ( f )〉 +
α · (ρ − 〈m f 〉). The stationarity condition implies that η′

N ( f ) − α · m = 0 and, on account

of (43), that β−1
N ( f ) = α · m. It follows directly that the minimizer in (53) is of the form

FN (ρ) = βN (α · m) in conformity with (37).
As opposed to the entropy minimization problem (20) underlying Levermore’s closure

relation, the minimization problem (53) is well posed. Existence of a solution to the minimiza-
tion problem (53) can be deduced from results for generalized projections for non-negative
functions by Csiszár in [15]. In [15] it is shown that the minimization problem

inf

{ ∫
f2(v) ϕ

(
f1(v)/ f2(v)

)
ν(dv) : f1 ∈ X

}
(54)

over a constrained set of non-negative functions,

X =
{

f :
∫

a j (v) f (v) ν(dv) = ρ j , j ∈ J

}
(55)

for certain countable functions {a j } j∈J, possesses a minimizer belonging to X provided that
the following (sufficient) conditions hold:

(1) X is a convex set of non-negative functions and the infimum in (54) is finite;
(2) lims→∞ ϕ′(s) = ∞;
(3)

∫
ϕ∗(ξ |a j (v)|) f2(v) ν(dv) is finite for all ξ > 0 and j ∈ J.

The function ϕ∗ in condition 3 corresponds to the convex conjugate of ϕ. Comparison conveys
that (53) conforms to (54) and (55) with f2 = M, ν(·) Lebesgue measure and {a j } j∈J a
monomial basis of M. Convexity of the constrained distributions follows from the linearity
of the moment constraints. Finiteness of the infimum is ensured by the fact that the infimum
over the constrained set is bounded from below by the infimum over the unconstrained set,
and the latter attains its minimum of 0 for f = M. The minimization problem (53) thus
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complies with condition 1. Compliance with condition 2 follows from ϕ′
N (s) = Ns1/N − N

and lims→∞ s1/N = ∞. To verify condition 3, we note that the convex conjugate of ϕN is:

ϕ∗
N (t) = sup

s∈R≥0

(
st − ϕN (s)

)
=

N

1 + N

((
1 +

t

N

)N+1

+
− 1

)
(56)

Condition 2 therefore translates into the requirement that

〈
Mϕ∗

N

(
ξ |m j |

)〉
=

N

1 + N

〈
M

(
1 +

ξ |m j |
N

)N+1

+
− M

〉
(57)

is bounded. By virtue of the exponential decay of the prefactor M and the fact that |m j |N+1

increases only polynomially, the expressions in (57) are indeed finite for any ξ > 0. The
minimization problem (53) therefore also satisfies condition 3. It is notable that the mini-
mization problem (20) pertaining to Levermore’s moment closure satisfies conditions 1 and 2
but violates condition 3.

4.5 Symmetric Hyperbolicity

To establish that the closure relation (37) leads to a symmetric-hyperbolic system, we
insert (37) into the generic form of moment systems (17), and note that application of the
chain rule and product rule leads to a system of the form (22) with:

A0(α) =
〈
m ⊗ m M

(
1 +

α · m

N

)N−1

+

〉
(58a)

Ai (α) =
〈
vi m ⊗ m M

(
1 +

α · m

N

)N−1

+

〉
(58b)

s(α) =
〈
m C

(
M

(
1 +

α · m

N

)N

+

)〉
−

〈
m

(
1 +

α · m

N

)N

+

(
∂M

∂t
+

D∑

i=1

vi

∂M

∂xi

)〉

(58c)

The symmetry of A0, . . . , AD is evident. Positive-definiteness of A0 follows from:

γ ·
〈
m ⊗ m M

(
1 +

α · m

N

)N−1

+

〉
γ =

〈
(γ · m)2

M

(
1 +

α · m

N

)N−1

+

〉
≥ 0 (59)

The inequality in (59) reduces to an equality if and only if γ = 0 or α · m = −N . The latter
case is pathological, because α · m = −N implies that FN (ρ) = 0.

The second component of the production term s(α), i.e. the term representing the contri-
bution of ∂tM+vi∂xi

M to the production, may cause blow up of solutions to the hyperbolic
system (17) with (58) in the limit t → ∞. Hence, the hyperbolic character of (17) with (58)
ensures stability of solutions only in finite time. If M corresponds to a global Maxwellian,
then ∂tM + vi∂xi

M vanishes and the stability provided by hyperbolicity also holds in the
ad-infinitum limit.

It is noteworthy that, as opposed to Grad’s moment-closure relation according to (28),
the background distribution M in our moment-closure relation (36) is independent of the
moments. The Gaussian in Grad’s closure relation (28) corresponds to the local equilibrium
distribution, which bears an implicit local dependence on the moments. This dependence
leads to asymmetry of the flux Jacobian and loss of hyperbolicity of the corresponding Grad
moment system. The pre-factor M in (36) is independent of the moments, but can be (t, x)-
dependent. Such (t, x)-dependence of M generally leads to contributions to the production
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term in the corresponding moment system conforming to (58c), but does not compromise
the symmetry and hyperbolic character of the moment system. Let us note that in addition
to the moment-closure relation corresponding to (28), Grad also considered moment-closure
relations with a prescribed global or local Maxwellian in accordance with (27); see [21,
Sects. 28–30].

5 Numerical Results for the 1D Spatially Homogeneous Boltzmann-BGK
Equation

5.1 Test-Case Setup

To illustrate the elementary properties of the moment-system approximation (18) with the
divergence-based closure relation encoded by the renormalization map (36), this section
presents numerical computations for the spatially homogeneous Boltzmann-BGK equation
in 1D:

∂t f = −τ−1( f − E f ) (60a)

f (0, v) = f0(v) (60b)

for some given initial distribution f0. The corresponding moment system writes:

∂t 〈mFN 〉 = −τ−1〈
m(FN − EFN

)
〉

(61a)

FN (0, v) = (FN )0(v) (61b)

with FN according to (37) and (FN )0 defined by the minimization problem (53) subject to
the moments corresponding to the initial distribution:

(FN )0 := arg min f ∈F

{
〈ηN ( f )〉 : 〈m f 〉 = 〈m f0〉

}

=
{

f ∈ F : f = βN (g), g ∈ M, 〈m f 〉 = 〈m f0〉
}

(62)

The systems in (60) and (61) represent initial-value problems for the ordinary differential
equations (60a) and (61a). It can be verified by substitution that the solutions of the initial-
value problems in (60) and (61) are, respectively,

f (t, v) = e−t/τ f0 +
(
1 − e−t/τ

)
E f (63a)

FN (t, v) = e−t/τ (FN )0 +
(
1 − e−t/τ

)
EFN

(63b)

Indeed, noting that E f = E f0 is independent of t , for f (t, v) according to (63a) we obtain:

∂t f = −τ−1e−t/τ ( f0 − E f ) = −τ−1( f − E f ) (64)

in accordance with (60a). Moreover, one can infer that f (0, v) = f0(v) and, hence, (63a)
satisfies (60). Similarly, it can be shown that (63b) complies with (61). The constraints in
the minimization problem in (62) impose E f0 = E(FN )0 . Based on the expressions for the
solutions in (63), it then follows that:

∥∥ f (t, ·) − FN (t, ·)
∥∥ = e−t/τ

∥∥ f0 − (FN )0

∥∥ (65)

in any suitable norm. Equation (65) conveys that the accuracy of the approximation of f (t, ·)
by FN (t, ·) at any time t > 0 depends exclusively on the accuracy of the approximation
of the initial condition f0 by (FN )0 according to (62). In the remainder of this section we
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Fig. 1 Distributions f1 (left), f2 (center) and f3 (right) according to (66) and the corresponding approx-
imations with k = 3 (dotted), k = 6 (dash-dot) and k = 15 (dashed) moments obtained from the
moment-constrained ϕ-divergence minimization problem (62)

therefore restrict our considerations to numerical examples that illustrate the approximation
properties of ϕN -divergence minimizers and to properties of the projection problem (62).

We consider approximations of the distributions:

f1(v) =
e− 1

2 (v−2)2

√
2π

+
e− 1

2 (v+2)2

√
2π

, (66a)

f2(v) =
e− 1

2 (v−2)2

√
2π

+
e− 1

4 (v+2)2

√
4π

, (66b)

f3(v) =
e−2(v−2)2

√
π/2

+
e− 4

3 v2

√
3π/4

+
e−(v+2)2

√
π

(66c)

by means of moment-constrained ϕ2-divergence minimizers in polynomial spaces of increas-
ing order. The distributions in (66), plotted in Fig. 1, correspond to distributions of increasing
complexity, viz., a symmetric bi-modal distribution, a non-symmetric bi-modal distribution
and a non-symmetric tri-modal distribution, respectively.3

5.2 Numerical Aspects

For the pre-factor M in the renormalization map (36) and, accordingly, in the relative entropy
〈η2( f )〉 = 〈Mϕ2( f/M)〉 associated with the ϕ2-divergence in (46), we select the global
equilibrium distribution E f0 .

The approximation F2 := F
i
2 to f := fi is determined by the minimization problem (62).

Denoting by Mk = span{1, v, . . . , vk−1} the space of polynomials of degree k − 1, the
minimization problem in (62) with k ≥ 3 moment constraints engenders the nonlinear-
projection problem:

F2 = M

(
1 +

g

N

)N

+
, g ∈ Mk :

〈
mM

(
1 +

g

2

)2

+

〉
=

〈
m f

〉
∀m ∈ Mk (67)

Expanding g(v) = αiv
i−1 = α · m(v), Equation (67) corresponds to a nonlinear algebraic

system for the coefficients α. To evaluate the integrals in (61), we first determine the roots
of the polynomial (1 +α · m/2) and then establish the limits of the positive parts to compute
the corresponding contributions to the moments of M(1 + α · m/2)2

+. The integrals in (67)
are evaluated by applying a suitable transformation of the integration variable and invoking
the following rule:

3 The reported number of moments relates to the 1-dimensional case. For the same maximal degree of the
moments, the number of moments in multiple dimensions is generally significantly larger, bounded from above
by the dimension of D-variate polynomials of maximal degree k, viz., (D + k)!/(k!D!).
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∫ v1

v0

e−v2
vk dv =

1

2

(
Ŵ

(
1 + k

2

)
− Ŵ

(
1 + k

2
, v2

1

))
sign1+k(v1)

−
1

2

(
Ŵ

(
1 + k

2

)
− Ŵ

(
1 + k

2
, v2

0

))
sign1+k(v0) (68)

where −∞ ≤ v0 ≤ ∞ and −∞ ≤ v1 ≤ ∞ and Ŵ(·) and Ŵ(·, ·) are the complete and
incomplete gamma functions respectively.

The coefficients α are extracted from the system (67) by means of the Newton method. It
is to be noted that (1 + g/2)2

+ is Fréchet differentiable with respect to g by virtue of the fact
that, evidently, changes in the sign of 1 + g/2 occur only at roots. A consistent Jacobian for
the tangent problems in the Newton method is provided by:

d

dα

〈
m M

(
1 +

α · m

2

)2

+

〉
=

〈
m ⊗ m M

(
1 +

α · m

2

)
+

〉
=: J(α). (69)

The Jacobian matrix J(α) in the right member of (69) can be identified as a symmetric-
positive definite matrix and, hence, the tangent problems in the Newton method are
well posed. The Jacobian is however of Hankel-type and it becomes increasingly ill-
conditioned as the number of moments increases; see for example [18,58]. Consequently,
the convergence behavior of the Newton process deteriorates for higher-moment sys-
tems.

To illustrate the dependence of the convergence behavior of the Newton process on the
number of moments, Fig. 2 (left) plots the ratio of the 2-norm of the update in the Newton
process, ‖δα‖2, over the 2-norm of the solution vector, ‖α(n+1)‖2, versus the number of
iterations for polynomial orders k = 7, 9, 11, 13 for the three test distributions in (66).
The ratio ‖δα‖2/‖α(n+1)‖2 can be conceived of as the relative magnitude of the update
vector. Figure 2 (right) plots an approximation of the corresponding infinity-norm condition
numbers, ̹∞(α) = ‖J(α)‖∞‖J−1(α)‖∞, of the Jacobian matrices. The results in Fig. 2
convey that the condition number increases significantly as the number of moments increases.
For k = 7 the condition number is approximately 103, while for k = 13 the condition
number exceeds 105 and can even reach 1010. For high-order approximations, the convergence
behavior of the Newton process is generally slow and non-monotonous. However, in all cases
the relative update can be reduced to a tolerance of 10−4.

5.3 Approximation Properties

To illustrate the approximation properties of the moment method with closure relation (37),
Fig. 3 (left) plots the L1(R)-norm of the relative error in the approximation F

i
2 to the distri-

bution fi (i = 1, 2, 3) according to (66) and Fig. 3 (right) the corresponding relative error
in the cosine moment,

err1 =
‖ fi − F

i
2‖L1(R)

‖ fi‖L1(R)

, err2 =
|〈cos(·) fi 〉 − 〈cos(·)F i

2〉|
|〈cos(·) fi 〉|

, (70)

respectively. The cosine moment does not have any physical significance and only serves
to investigate the super-convergence properties of the approximation in accordance with the
Babuška–Miller theorem [3]; see Sect. 3. A non-polynomial moment has been selected to
examine the convergence behavior, because for any polynomial moment 〈σ fi 〉 with σ ∈ Ml

the approximation 〈σF
i
2〉 provided by the k-moment approximation F

i
2 is exact for all k ≥ l,

on account of the constraints in (62).
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Fig. 2 Convergence of the Newton process for the nonlinear projection problem (67) and conditioning of the
corresponding Jacobian matrices: (left) relative magnitude of the Newton update, ‖δα‖2/‖α(n+1)‖2, versus
the number of iterations for k = 7, 9, 11, 13 and for distributions (66a) (top), (66b) (center) and (66c) (bottom);
(right) corresponding ∞-norm condition numbers, ̹∞(α(n)), of the Jacobian matrices according to (69)

Figure 3 (left) indicates that ‖ fi − F
i
2‖L1(R) converges exponentially with increasing k,

i.e., there exist positive constants C and ζ such that ‖ fi − F
i
2‖L1(R) ≤ Cζ−k . In particular,

ζ ≈ 10−0.13 ≈ 0.74 for the bi-modal distributions f1 and f2 and ζ ≈ 10−0.085 ≈ 0.82 for
the tri-modal distribution f3. Comparison of the left and right panels in Fig. 3 conveys that the
approximation of the cosine moment indeed converges at a higher rate than the L1(R)-norm
of the approximation itself. Figure 3 (right) conveys that the cosine moment converges at
a rate of ζ ≈ 10−0.58 ≈ 0.26 for both the bi-modal distributions f1, f2 and the tri-modal
distribution f3.

In the moment-closure approximation (67) of the sample distributions (66), the pre-factor
has been selected as the global equilibrium (10) corresponding to each sample distribution.
These global equilibria can be determined explicitly, by virtue of the availability of the
underlying distributions. In general, however, the underlying distribution is not explicitly
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Fig. 3 Approximation properties of the moment method with closure relation (37): (left) convergence of
the relative error in the L1(R)-norm err1 according to (70) for f1, f2 and f3 in (66); (right) corresponding
convergence of the relative error in the cosine moment, err2

Fig. 4 Illustration of the effect of a misinformative pre-factor on the approximation properties of the moment
method with closure relation (35): relative error (70) in the approximation of sample distribution (66c) with a
pre-factor M = Mρ3,u+δu,T3 corresponding to a shifted global equilibrium distribution, for k = 3, 5, . . . , 13

available. The question that then imposes itself, is how the pre-factor should be selected
and how sensitive the approximation is with respect to the pre-factor. In this context, it is
important to note that the pre-factor, M, appears in the moment-constrained ϕ-divergence
minimization (53) as a background measure. This background measure can be conceived
of as prior information on the solution of (1), locally at (t, x), before the information
encoded in the moments is accounted for. The solution to (53) can be understood as the
corresponding posterior. In general, any prior carries subjective or objective4 information.
A subjective prior is more (mis-)informative about the posterior than an objective one. A
Maxwellian prior qualifies as subjective for posteriors of the form (37), in view of the fact
that the exponential decay or growth of Maxwellians exceeds that of polynomials. Hence,
the behavior of the posterior (37) as |v| → ∞ is completely determined by the prior M,
and not by the information encoded in the moments. To illustrate the consequences of a
misinformative subjective prior, we reconsider the approximation of the sample distribu-
tion (66c) by means of (67), in which the prior, M = Mρ3,u3+δu,T3 , corresponds to the
global equilibrium distribution in accordance with (66c), shifted by δu. Figure 4 plots the
relative error in the approximate distribution, err1 according to (70), versus the shift, δu.

4 The term objective is a misnomer since any prior will be subjective, but the term is often used to refer to
weakly informative priors
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The figure conveys that a shift in the pre-factor yields a detrimental effect on the accuracy
of the approximation. It is to be noted, however, that convergence under k-refinement is
retained.

If credible prior information is not available, it is more appropriate to select the pre-factor
in accordance with an objective prior, e.g. uniform (Lebesgue) measure. Moreover, it is
not sensible to construct high-rank moment systems based on unreliable prior information.
Instead, the hierarchy of the moment systems can be exploited to update prior information,
i.e. the pre-factor for each moment system beyond k = 3 can be extracted from the solution
to a lower-rank moment system. It is to be noted that a pre-factor corresponding to a solution
of the Euler equations corresponds to a specific instance of such a hierarchical procedure.

6 Conclusion

To avoid the realizability problem inherent to the maximum-entropy closure relation for
moment-system approximations of the Boltzmann equation, we proposed a new class of
closure relations based on ϕ-divergence minimization. We established that ϕ-divergences
provide a natural generalization of the usual relative-entropy setting of the moment-closure
problem. It was shown that minimization of certain ϕ-divergences leads to suitable clo-
sure relations and that the corresponding moment-constrained ϕ-divergence minimization
problems are not impaired by the realizability problem inherent to minimization of the
Kullback–Leibler divergence. Moreover, if the collision operator under consideration dissi-
pates a ϕ-divergence, then the corresponding minimal-divergence moment-closure systems
retain the fundamental structural properties of the Boltzmann equation, namely, conserva-
tion of mass, momentum and energy, Galilean invariance, and dissipation of an entropy,
sc. the ϕ-divergence. For suitable ϕ-divergences, the closure relation yields non-negative
approximations of the one-particle marginal. Divergence-based moment systems are gener-
ally symmetric hyperbolic, which implies linear well-posedness.

We inferred that moment systems can alternatively be conceived of as Galerkin approx-
imations of a renormalized Boltzmann equation. We considered moment systems based
on a renormalization map composed of Tsallis’ q-exponential. This renormalization map
is concomitant with a ϕ-divergence corresponding to the anti-derivative of the inverse q-
exponential, which yields a natural approximation to relative entropy. The evaluation of
moments of the q-exponential, elementary in numerical methods for the corresponding
moment system, is tractable, as opposed to the evaluation of moments of exponentials of
arbitrary-order polynomials, connected with maximum-entropy closure.

Numerical results have been presented for the one-dimensional spatially homogeneous
Boltzmann-BGK equation. The nonlinear projection problem associated with the moment-
constrained ϕ-divergence minimization problems was solved by means of Newton’s method.
We observed that the condition number of the Jacobian matrices in the tangent problems
generally deteriorates as the number of moments increases. Nevertheless, in all considered
cases approximations up to at least 15 moments could be computed. We observed that the
q-exponential approximation converges exponentially in the L1(R)-norm with increasing
number of moments. Moreover, we demonstrated that functionals of the approximate dis-
tribution display super convergence, in accordance with the Babuška–Miller theorem for
Galerkin approximations.
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Appendix: Generalized BGK Collision Operator

In [35], Levermore introduced a class of multiscale generalizations of the BGK collision
operator based on a finite sequence of increasingly constrained entropic projections of the
form (20). In particular, given an admissible space of polynomials M, consider a sequence
of nested subspaces {Mk}K

k=1 with M0 = E and strictly contained in M, i.e. E = M1 ⊂
M2 ⊂ · · · ⊂ MK ⊂ M. For each k and f ∈ F, let f �→ Fk( f ) =: Fk be the Mk-moments
constrained entropic projection of f ,

F
k( f ) := arg ming∈F

{
〈η(g)〉 : 〈mg〉 = 〈m f 〉, ∀m ∈ Mk

}
, (71)

with η(g) = g log g − g, under the assumption that (71) admits a solution for each k. Based
on the sequence of projections {Fk}K

k=1, one can define a multiscale relaxation operator:

C( f ) = −θK ( f − F
K ) −

K−1∑

k=1

θk(F
k+1 − F

k) (72)

with {θk}K
k=1 an increasing sequence of positive relaxation rates depending on f . The relax-

ation rate θk with k ∈ {1, 2, . . . , K − 1} constitutes the rate at which Fk+1 decays to Fk ,
while θK is the rate at which f decays to F K . In [35] it is shown that the Prandtl number can
be controlled via the relaxation rates.

The above construction of the generalized BGK operator can be extended to ϕ-divergences.
To this end, consider an arbitrary ϕ-divergence and let f �→ Fk( f ) =: Fk denote the cor-
responding divergence-minimization projection according to (71), i.e. Fk is defined by (71)
with η(·) = Mϕ((·)/M). Based on the projections Fk , an extended BGK operator can be
defined analogous to (72). To establish that η′(·) = ϕ′((·/M) corresponds to an entropy
density for the generalized BGK operator, we first note that the (strong) convexity of η

implies:

(η′(s) − η′(t))(s − t)
〉
≥ 0 (73)

for all s, t in the domain of η and equality in (73) holds if and only if s = t . Rearranging the
sum in (72) yields:

C( f ) = −θ1
(

f − F
1) −

K−1∑

k=1

(
θk+1 − θk

)(
f − F

k+1) (74)

From the minimization problem (71) we infer that for all k it holds that η′(Fk) ∈ Mk and
〈m( f − Fk)〉 = 0 for all m ∈ Mk . Hence, 〈η′(Fk) f 〉 − 〈η′(Fk)Fk〉 = 0 yields a partition
of zero for all k. From (74) and the aforementioned partition of zero, we obtain
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〈
η′( f )C( f )

〉
= − θ1

〈
η′( f )

(
f − F

1)〉 −
K−1∑

k=1

(
θk+1 − θk

)〈
η′( f )

(
f − F

k+1)〉

= − θ1
〈(
η′( f ) − η′(F1)( f − F

1)〉

−
K−1∑

k=1

(
θk+1 − θk

)〈(
η′( f ) − η′(Fk+1)

)(
f − F

k+1)〉 (75)

From θ1 > 0 and θk+1 > θk (k = 1, . . . , K − 1), and the convexity of η(·) according
to (73) we conclude that η and C satisfy the dissipation relation (5), i.e. 〈η′( f )C( f )〉 ≤ 0
for all admissible f . To verify the second prerequisite relation between η and C, viz., the
equivalence of the statements in (6), we first observe that the implication (6)(i) ⇒ (6)(i i)
is trivial. To validate the reverse implication in (6), we note that (6)(i i) in combination
with the convexity of η according to (73) and the ultimate expression in (75) implies that
(η′( f ) − η′(Fk))( f − Fk) vanishes almost everywhere for all k = 1, . . . , K . This, in turn,
implies that f = F1 = · · · = F K . Condition (6)(i) then follows directly from (74). To verify
the implication (6)(i i) ⇒ (6)(i i i), we note that Fk according to (71) satisfies η′(Fk) ∈ Mk

for all k. Recalling that (6)(i i) implies f = F1, we infer η′( f ) ∈ M1 = E in accordance
with (6)(i i i). Finally, the reverse implication (6)(i i i) ⇒ (6)(i i) follows immediately from (74)
and the moment constraints in (71).
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