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Abstract: We give moment equalities for sums of independent and identically distributed random variables including, in

particular, centered and specifically symmetric summands. Two different types of proofs, combinatorial and analytical,

lead to 2 different types of formulas. Furthermore, the combinatorial method allows us to find the optimal lower and

upper constants in the Marcinkiewicz–Zygmund inequalities in the case of even moment-orders. Our results are applied

to give elementary proofs of the classical central limit theorem (CLT) and of the CLT for the empirical bootstrap.

Moreover, we derive moment and exponential inequalities for self-normalized sums.
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1. Introduction and main results

Let X1, . . . , Xn be n ∈ N independent and identically distributed (i.i.d.) copies of a real random variable X

with Sn :=
∑

1≤i≤n Xi the pertaining sum. If for some m ∈ N the mth moment µm := E[Xm] is a real

number, then we wish to compute the mth moment

Mn(m) := E[(
n∑

i=1

Xi)
m]

of Sn explicitly in terms of µ1, . . . , µm . This paper focuses on centered (µ1 = 0) and also more specifically on

symmetric summands. In these cases there exists a host of publications dealing with inequalities for Mn(m),

but to the best of our knowledge, we are not aware of exact formulas for Mn(m).

If µ1 = 0, first simple calculations show that Mn(1) = 0, Mn(2) = nµ2, Mn(3) = nµ3, and Mn(4) =

nµ4 + 3n(n − 1)µ2
2 . Indeed, we will formalize these calculations of Mn(m) for general m ∈ N and give an

explicit formula involving integer partitions as specified below. It allows for a simple implementation with

formal computer algebra programs. Another method is based on characteristic functions and Faà di Bruno’s

extension of the chain rule for differentiation. It results in a second expression that mathematically has a more

appealing form. The idea for this approach can be traced back to Lukacs [11], who used Faà di Bruno’s formula

for deriving the well-known relations between moments and cumulants of a random variable; refer to Theorem 3
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there. For a historical survey on Faà di Bruno’s formula we recommend the work of Johnson [10]. Constantine

and Savits [3] generalized Faà di Bruno’s formula to functions with several arguments and with it they extended

Lukacs’ [11] relations to multivariate moments and cumulants; refer to Theorem 4.5 there.

The representation of our formulas requires some minimal notation. For r ∈ N and k = (k1, . . . , kr) ∈ Nr ,

let
Jm,r := {k ∈ Nr : k1 + . . .+ kr = m}

be the set of all ordered integer partitions of m into exactly r summands (parts) and let

Im,r := {k ∈ Nr : k1 + . . .+ kr = m, k1 ≥ · · · ≥ kr}

denote the corresponding subset of all unordered partitions, where the parts are decreasingly arranged and

thus the order of the components is not taken into account. For example: J5,3 = {(3,1,1), (1,3,1), (1,1,3),
(2,2,1), (2,1,2), (1,2,2)} with pertaining set of unordered partitions I5,3 = {(3, 1, 1), (2, 2, 1)} . To each integer

partition k ∈ Jm,r there belongs the unique tuple (κ1, . . . , κa) of a distinct parts κ1 > · · · > κa and

their respective (positive) multiplicities (n1, . . . , na). Thus, for every k = (k1, . . . , kr) ∈ Jm,r , one has

k1 + . . . + kr = n1κ1 + . . . + naκa = m with 1 ≤ a ≤ r and n1 + . . . + na = r . For example, k =

(7, 7, 5, 5, 5, 2, 1, 1, 1) ∈ I34,9 ⊆ J34,9 has a = 4 distinct parts (7, 5, 2, 1) with pertaining multiplicities (2, 3, 1, 3).

Finally, for any set K ⊆ Nr we use the traditional convention

K + 1 := {(k1 + 1, . . . , kr + 1) : k ∈ K}.

Observe that there is a one-to-one correspondence between the set Im,r and the set

Lm,r := {l = (l1, . . . , lm) ∈ Nm
0 :

m∑
i=1

ili = m,
m∑
i=1

li = r}.

Indeed, given a k ∈ Im,r with distinct parts κ1 < . . . < κa (increasingly ordered) and pertaining multiplicities

(n1, . . . , na), put lκi := ni, 1 ≤ i ≤ a and lj := 0 for j ∈ {1, . . . ,m} \ {κ1, . . . , κa} . Then
m∑
i=1

ili =
a∑

i=1

κilκi =

a∑
i=1

κini = m and
m∑
i=1

li =
a∑

i=1

lκi =
a∑

i=1

ni = r , whence l = (l1, . . . , lm) ∈ Lm,r . The inverse map is as

follows: given an l = (l1, . . . , lm) ∈ Lm,r , consider the indices i with li ̸= 0, say a many, and let them

be decreasingly ordered, which gives the distinct parts κ1 > . . . > κa . Put ni := lκi for i = 1, . . . , a .

Then k := (κ1, . . . , κ1, κ2, . . . , κ2, . . . , κa, . . . , κa) with exactly ni entries of κi an element of Im,r , because
a∑

i=1

ni =
a∑

i=1

lκi =
m∑
j=1

lj = r and
∑r

i=1 ki =
∑a

i=1 niκi =
∑a

i=1 lκiκi =
∑m

j=1 jlj = m .

The starting point for the derivation of our main results on centered or symmetric summands is the

following Lemma 1.1. In the first part thereof, we consider more generally summands that are not necessarily

centered and possibly are not identically distributed.

Denote by Nn := {1, . . . , n} the set of the first n integers and let us agree for a nonempty subset

{a1, . . . , ar} ⊆ Nn, 1 ≤ r ≤ n, that ai ̸= aj ∀ i ̸= j . Moreover, recall the usual definition
(
n
r

)
:= 0, if r > n .

Lemma 1.1 Let m be any positive integer and assume that X1, . . . , Xn are random variables with E[|Xi|m] <

∞ for each 1 ≤ i ≤ n .
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(1) If X1, . . . , Xn are independent, then

E[(
n∑

i=1

Xi)
m] =

m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

E[Xks
as
] . (1.1)

(2) If X1, . . . , Xn are i.i.d., then

E[(
n∑

i=1

Xi)
m] =

∑
1≤r≤m

Ar,m

(
n

r

)
(1.2)

with constants

Ar,m = Ar,m(µ1, . . . , µm) =
∑

k∈Im,r

(
m

k1 . . . kr

)(
r

n1 . . . na

)
µn1
κ1

· · ·µna
κa

(1.3)

= r!m!
∑

l∈Lm,r

m−r+1∏
j=1

{ 1
j!µj}lj

lj !
. (1.4)

Equation (1.1) is a rather simple consequence of the multinomial theorem in combination with linearity

of the expectation and the multiplication rule for products with independent factors. As for formulas (1.2) and

(1.3), Packwood [12] used a different combinatorial method, coming up with another formula. However, using

the concept of integer partitions, his expression can be broken down such that it coincides with (1.2) and (1.3).

In the case of centered random variables Xi , the key problem lies in figuring out exactly those summands

in (1.3) or (1.4), respectively, that vanish by virtue of µ1 = 0. Indeed, Packwood [12] pointed out that this is

still an open problem (“While there appears to be no general formula ...”, see p.8). The solution of this main

issue is stated in the following:

Theorem 1.2 Let m be any positive integer and assume that X1, . . . , Xn are i.i.d. copies of some mean zero

random variable X with E[|X|m] < ∞ . Then for every n ∈ N the following equality holds:

E[(
n∑

i=1

Xi)
m] =

∑
1≤r≤m/2

Br,m

(
n

r

)
(1.5)

with constants

Br,m = Br,m(µ2, µ3, . . . , µm) =
∑

k∈Im−r,r +1

(
m

k1 . . . kr

)(
r

n1 . . . na

)
µn1
κ1

· · ·µna
κa

(1.6)

= r!m!
∑

l∈Lm−r,r

m−r∏
j=1

{ 1
(j+1)!µj+1}lj

lj !
. (1.7)

The implementation of (1.3) and (1.6) in MATHEMATICA is very simple, especially by using the built-

in function IntegerPartitions[m, {r}] , which generates the sets Im,r . Moreover, a representation of Mn(m) as
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polynomial in the variable n is easily possible; see the example in the Appendix. Indeed, by (1.5) the mth

moment Mn(m) as a function in n is a polynomial of degree [m/2] with [·] denoting the floor-function. Since

(2p)!/(2pp!) = (2p− 1)!! :=

p∏
i=1

(2i− 1) for every p ∈ N (1.8)

as follows easily by induction, we obtain from (1.6) or (1.7) that the leading coefficient for m ≥ 2 is given by

1

p!
Bp,m = (m− 1)!! µp

2, if m = 2p is even

and
1

(p− 1)!
Bp−1,m =

1

6
m!! (m− 1)µp−2

2 µ3, if m = 2p− 1 is odd.

In Section 3.1 below we will apply Theorem 1.2 to give elementary proofs of the classical central limit

theorem (CLT) and of the CLT for the empirical bootstrap, which plays an important role in probability theory

as well as in statistics.

If the summands are actually symmetric, then not only the first moment but also all odd moments of

X are equal to zero. This leads to a further considerable reduction of the nonvanishing summands. In fact,

E[Sm
n ] = 0 for every odd m , because symmetry of the summands entails symmetry of the whole sum Sn . In

contrast to this extreme case in which actually all summands are equal to zero, we obtain for m even:

Theorem 1.3 Let p be any positive integer and assume that X1, . . . , Xn are i.i.d. copies of some symmetric

random variable X with E[|X|2p] < ∞ . Then for every n ∈ N the following equality holds:

E[(
n∑

i=1

Xi)
2p] =

∑
1≤r≤p

Cr,p

(
n

r

)
(1.9)

with constants

Cr,p = Cr,p(µ2, µ4, . . . , µ2p) =
∑

k∈Ip,r

(
2p

2k1 . . . 2kr

)(
r

n1 . . . na

)
µn1
2κ1

· · ·µna
2κa

(1.10)

= r!(2p)!
∑

l∈Lp,r

p−r+1∏
j=1

{ µ2j

(2j)!}
lj

lj !
. (1.11)

For symmetric variables we can also easily derive the (lower and upper) Marcinkiewicz–Zygmund in-

equalities restricted to even moment-orders but with best constants. In Section 3.2 we will use these to derive

moment and exponential inequalities for self-normalized sums.

Theorem 1.4 Let p be any positive integer. If

X1, . . . , Xn are independent and symmetric with E|Xi|2p < ∞, 1 ≤ i ≤ n, (1.12)

then

E
[
{

n∑
i=1

X2
i }p

]
≤ E[(

n∑
i=1

Xi)
2p] ≤ (2p− 1)!! E

[
{

n∑
i=1

X2
i }p

]
. (1.13)
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Here, the constant 1 in the lower inequality and the constant (2p−1)!! in the upper inequality are optimal in the

following sense: if there are constants Dp and Cp such that for each n ∈ N and every sequence (X1, . . . , Xn)

with (1.12) the inequalities

Dp E
[
{

n∑
i=1

X2
i }p

]
≤ E[(

n∑
i=1

Xi)
2p] ≤ Cp E

[
{

n∑
i=1

X2
i }p

]
(1.14)

hold, then Dp ≤ 1 and Cp ≥ (2p− 1)!! .

Remark 1.5 (1) Under the assumption of the above theorem, Egorov [7,8] derived the upper inequality in (1.14)

with Cp = Ce−p(2p)p , where C is some absolute constant with C ≥
√
2 . Note that C =

√
2 cannot be taken

for granted so far. However, with (1.8) and with the sharp inequalities of Batir [1] for the factorial, one verifies

easily that
√
2e−p(2p)p > (2p − 1)!! for all p ∈ N , whence Theorem 1.4 confirms that Egorov’s bound Cp is

valid for C =
√
2 .

Egorov [7,8] actually states that

E[|
n∑

i=1

Xi|s] ≤ Cs E
[
{

n∑
i=1

X2
i }s/2

]
for every real s ≥ 2 (1.15)

and justifies this simply by the monotonicity of the Ls -norm. Even though we expect (1.15) to be true, his

argument requires some more clarification.

(2) Let fi : Rn → R be the i th projection, ν := ν1 ⊗ . . . ⊗ νn with νi denoting the distribution of Xi ,

s := 2p , and c := (s− 1)!!1/s . The upper inequality in (1.13) can then be restated as follows:

(

∫
(

n∑
i=1

fi)
sdν)1/s ≤ c (

∫
(

n∑
i=1

f2
i )

s/2dν)1/s. (1.16)

Defant and Junge [4] considered linear and continuous operators T : Lq(µ) → Ls(ν) (with µ and ν arbitrary

measures) and f1, . . . , fn ∈ Lq(µ) . Given a triple (s, q, r) ∈ [1,∞]3 , the problem is to find the minimal constant

c = c(s, q, r) ≥ 0 such that for each T the following inequality holds:

(

∫
(

n∑
i=1

|Tfi|r)s/rdν)1/s ≤ c||T ||(
∫
(

n∑
i=1

|fi|r)q/rdµ)1/q. (1.17)

For r = 2 and q = s we see that the integrals on the right-hand side of (1.16) and (1.17), respectively,

coincide. However, then the corresponding integrals on the left-hand sides do not fit together even if we choose

T to be the identity map. Indeed, these integrals in each case are incompatible because the summands fi in

(1.16) have the counterparts |Tfi| in (1.17) and it is the absolute value that makes the main difference here.

Unfortunately, Defant and Junge [4] also called (1.17) the Marcinkiewicz–Zygmund inequality, and this might

cause some confusion. However, as we just have pointed out, there is no intrinsic link between these 2 results

up to the same denomination.

562



FERGER/Turk J Math

2. The proofs

We start with the following version of the multinomial theorem, which is better suited for our intentions.

Theorem 2.1 (Modified multinomial theorem) Let x1, . . . , xn be n ∈ N real numbers (or any elements

of some field). Then for every m ∈ IN:

(

n∑
i=1

xi)
m =

m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

xks
as
.

Proof Expanding the left term gives (
n∑

i=1

xi)
m =

∑
j∈Nm

n

∏m
s=1 xjs . Now, for every summation index

j = (j1, . . . , jm), there is the unique set {a1, . . . , ar} ⊆ Nn of r ∈ {1, . . . ,m} pairwise distinct components

with pertaining multiplicities k1, . . . , kr . Notice that k1+ . . .+kr = m , whence k = (k1, . . . , kr) ∈ Jm,r . Thus,

we can decompose the last sum into

∑
j∈Nm

n

m∏
s=1

xjs =
m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

∑
j

′ r∏
s=1

xks
as
,

where
∑′

extends over all j ∈ {a1, . . . , ar}m with each ai occurring exactly ki times, 1 ≤ i ≤ r . Since
∑′

has
(

m
k1...kr

)
summands that do not depend on the summation index j , the assertion follows. 2

Proof of Lemma 1.1 From Theorem 2.1 we can infer that

E[(
n∑

i=1

Xi)
m]

=
m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

(
m

k1 . . . kr

)
E[

r∏
s=1

Xks
as
] by linearity

=
m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

E[Xks
as
] by independence, (2.1)

which shows the first part (1).

From our assumption in part (2) it follows that E[Xks
as
] = µks for all 1 ≤ s ≤ r and so the right-hand

side in (2.1) simplifies to

m∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

µks =
m∑
r=1

(
n

r

) ∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

µks . (2.2)

Next note that in the inner sum on the right-hand side of (2.2) none of the summands

s(k) = s(k1, . . . , kr) :=

(
m

k1 . . . kr

) r∏
s=1

µks

changes if the arguments k1, . . . , kr are permuted arbitrarily. Consider an arbitrary summation index k ∈ Jm,r .

It is an ordered integer partition of m with, let us say, a distinct parts (κ1, . . . , κa) and pertaining multiplicities

563



FERGER/Turk J Math

(n1, . . . , na). Since summation is invariant with respect to interchanging the summands, there are exactly

q :=
(

r
n1...na

)
different ordered integer partitions k1, . . . ,kq (including the original k) with the same distinct

parts (κ1, . . . , κa) and multiplicities (n1, . . . , na). In particular, every ki emerges from k by a permutation so

that all summands s(ki) coincide, 1 ≤ i ≤ q . Finally, among the set {k1, . . . ,kq} there is exactly one element

in Im,r that without loss of generality is k1 . Thus,
∑

1≤i≤q s(ki) = q s(k1) =
(

r
n1...na

)(
m

k1...kr

)
µn1
κ1

· · ·µna
κa

,

whence ∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

µks
=

∑
k∈Im,r

(
m

k1 . . . kr

) (
r

n1 . . . na

) a∏
s=1

µns
κs

and the assertion (1.2) with constants Ar,m given in (1.3) follows by (2.1) and (2.2).

For the proof of (1.4), let ϕn and ϕ denote the characteristic functions of Sn and X , respectively. Then

it is well known from probability theory (see, e.g., Resnick [13], chapter 9) that

ϕn(t) = {ϕ(t)}n

and that

ϕ(m)
n (0) = im E(Sm

n ) where ϕ(m)
n (t) :=

dm

dtm
ϕn(t).

Now, the formula of Faà di Bruno gives the mth derivative of a composite function f ◦ g ; see, e.g., Johnson

[10]:

(f ◦ g)(m)(t) =
∑
l∈Lm

m!

l1! · · · lm!
f (l1+...+lm)(g(t))

m∏
j=1

{ 1
j!
g(j)(t)}lj ,

where

Lm := {l ∈ Nm
0 :

m∑
i=1

i li = m} =
m⊎
r=1

Lm,r.

An application of this formula with f(t) = tn and g(t) = ϕ(t) and taking into account that ϕ(0) = 1 and

ϕ(j)(0) = ijµj yields:

E(Sm
n ) =

∑
l∈Lm

m!

l1! · · · lm!
f (l1+...+lm)(1)

m∏
j=1

{ 1
j!
µj)}lj

=

m∑
r=1

r!

(
n

r

) ∑
l∈Lm,r

m!

l1! · · · lm!

m∏
j=1

{ 1
j!
µj)}lj . (2.3)

From this, (1.4) follows immediately, once we have shown that

l ∈ Lm,r ⇒ lj = 0 ∀ j > m− r + 1 . (2.4)

In fact, assume that there is some j > m− r + 1 with lj ≥ 1. Then we can conclude that

m =

m∑
i=1

ili ≥
∑

1≤i≤m,i̸=j

li + jlj =

m∑
i=1

li + (j − 1)lj = r + (j − 1)lj ≥ r + (j − 1) > r + (m− r) = m,
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which results in the contradiction m > m . With (2.3) and (2.4), the proof of (1.4) is complete.

Proof of Theorem 1.2 According to (2.1) and (2.2) we have that

E(Sm
n ) =

m∑
r=1

(
n

r

) ∑
k∈Jm,r

(
m

k1 . . . kr

) r∏
s=1

µks . (2.5)

Recall that µ1 = 0, whence the product
∏r

s=1 µks vanishes if there exists at least one index such that ks = 1. At

any rate, this applies to each r > m/2, because otherwise ks ≥ 2 ∀ 1 ≤ s ≤ r and therefore k1+. . .+kr ≥ 2r > m

in contradiction to k ∈ Jm,r . Thus, the sum in (2.5) reduces to

∑
1≤r≤m/2

(
n

r

) ∑
k∈Jm,r

′
(

m

k1 . . . kr

) r∏
s=1

µks
=

∑
1≤r≤m/2

(
n

r

) ∑
k∈Jm−r,r+1

(
m

k1 . . . kr

) r∏
s=1

µks
, (2.6)

where
∑′

extends over all k ∈ Jm,r with ks ≥ 2 ∀ 1 ≤ s ≤ r , which is equivalent to k ∈ Jm−r,r + 1 .

Now, note that in the inner sum on the right-hand side of (2.6), none of the summands

s(k) = s(k1, . . . , kr) :=

(
m

k1 . . . kr

) r∏
s=1

µks

change if the components k1, . . . , kr are arranged in an arbitrary order. Therefore, the same arguments as in

the derivation of (1.3) (with Jm,r there replaced by Jm−r,r + 1 here) lead to

∑
k∈Jm−r,r+1

(
m

k1 . . . kr

) r∏
s=1

µks
=

∑
k∈Im−r,r+1

(
m

k1 . . . kr

) (
r

n1 . . . na

) a∏
s=1

µns
κs

and the assertion (1.5) with constants Br,m given in (1.6) follows by (2.5) and (2.6).

As to the proof of (1.7), recall that by (2.3)

E(Sm
n ) =

m∑
r=1

r!

(
n

r

) ∑
l∈Lm,r

m!

l1! · · · lm!

m∏
j=1

{ 1
j!
µj)}lj .

In view of µ1 = 0, the product vanishes for all l ∈ Lm,r with l1 ≥ 1. The latter is true for all r > m/2,

because otherwise l1 = 0 and one had m < 2r = 2
∑

1≤i≤m li =
∑

2≤i≤m 2li ≤
∑

2≤i≤m ili =
∑

1≤i≤m ili = m ,

a contradiction.

Thus, in the last displayed formula the summation can be reduced to 1 ≤ r ≤ m/2 and we obtain:

E(Sm
n ) =

∑
1≤r≤m/2

r!

(
n

r

) ∑
l∈Lm,r

m!

l1! · · · lm!

m∏
j=1

{ 1
j!
µj)}lj . (2.7)

Recall that in the sum over l ∈ Lm,r , all those summands vanish with l such l1 ≥ 1. In view of the remaining

summands observe that

l = (0, l2, . . . , lm) ∈ Lm,r ⇔ l = (0, l2, . . . , lm−r+1, 0, . . . , 0) with (l2, . . . , lm−r+1) ∈ Lm−r,m. (2.8)
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Indeed, for l = (0, l2, . . . , lm) ∈ Lm,r we see from (2.4) that l = (0, l2, . . . , lm−r+1, 0, . . . , 0) and consequently

m− r =
m∑
i=2

(ili − li) =
m∑
i=2

(i− 1)li =
∑

2≤i≤m−r+1

(i− 1)li =
∑

1≤j≤m−r

jlj+1.

Moreover,
∑m−r

i=1 li+1 =
∑m

i=1 li = r , whence (l2, . . . , lm−r+1) ∈ Lm−r,r . The reverse direction in (2.8) follows,

because the last 2 equalities also show that if (l2, . . . , lm−r+1) ∈ Lm−r,r then l = (0, l2, . . . , lm−r+1, 0, . . . , 0) ∈
Lm,r .

From (2.7) and (2.8) we immediately obtain that

E(Sm
n ) =

∑
1≤r≤m/2

r!

(
n

r

) ∑
(l2,...,lm−r+1)∈Lm−r,r

m!

l2! · · · lm−r+1!

m−r+1∏
j=2

{ 1
j!
µj}lj

=
∑

1≤r≤m/2

r!

(
n

r

) ∑
(l1,...,lm−r)∈Lm−r,r

m!

l1! · · · lm−r!

m−r∏
j=1

{ 1

(j + 1)!
µj+1}lj

=
∑

1≤r≤m/2

(
n

r

)
r!m!

∑
l∈Lm−r,r

m−r∏
j=1

{ 1
(j+1)!µj+1}lj

lj !
,

which yields the desired result, (1.7).

Proof of Theorem 1.3 By (2.5) and (2.6) we have that

E[(
n∑

i=1

Xi)
2p] =

∑
1≤r≤p

(
n

r

) ∑
k∈J2p,r

′
(

2p

k1 . . . kr

) r∏
s=1

µks , (2.9)

where
∑′

extends over all k ∈ J2p,r with ks ≥ 2 ∀ 1 ≤ s ≤ r . Since all odd moments of X vanish by

symmetry we can further infer that the product µk1 · · ·µkr vanishes if at least one of the indices k1, . . . , kr is

odd. Therefore, the summation reduces to all tuples k = (2l1, . . . , 2lr) = 2l with 2l1 + . . . + 2lr = 2p and

2ls ≥ 2 ∀ 1 ≤ s ≤ r , i.e. l ∈ Jp,r . Conclude that

∑
k∈J2p,r

′
(

2p

k1 . . . kr

) r∏
s=1

µks =
∑

k∈Jp,r

(
2p

2k1 . . . 2kr

) r∏
s=1

µ2ks .

Again, all involved summands in the last sum are permutation-invariant so that arguing analogously as in the

proofs above leads to

∑
k∈Jp,r

(
2p

2k1 . . . 2kr

) r∏
s=1

µ2ks =
∑

k∈Ip,r

(
2p

2k1 . . . 2kr

) (
r

n1 . . . na

)
µn1
2κ1

. . . µna
2κa

,

which gives (1.9) and (1.10).

For the derivation of (1.11) we may use (2.7) with m = 2p as the starting point:

E(S2p
n ) =

∑
1≤r≤p

r!(2p)!

(
n

r

) ∑
l∈L2p,r

2p∏
j=1

{ 1
j!µj}lj

lj !
. (2.10)

566



FERGER/Turk J Math

Since µj = 0 for odd indices j , all those summands vanish that belong to an l ∈ L2p,r such that there

is at least one nonzero component lj with odd j . Thus, the remaining summands possess indices l =

(0, l2, 0, l4, 0, . . . , 0, l2p). For such an index l we observe that:

r =

2p∑
i=1

li =

p∑
i=1

l2i and 2p =

2p∑
i=1

ili = 2

p∑
i=1

il2i,

whence (l2, l4, . . . , l2p) ∈ Lp,r . On the other hand, if (l2, l4, . . . , l2p) ∈ Lp,r then by the above equalities we

know that (0, l2, 0, l4, 0, . . . , 0, l2p) ∈ L2p,r . Therefore, equality (2.10) can be restated as

E(S2p
n ) =

∑
1≤r≤p

r!(2p)!

(
n

r

) ∑
(l2,l4,...,l2p)∈Lp,r

p∏
j=1

{ 1
(2j)!µ2j}l2j

l2j !

=
∑

1≤r≤p

r!(2p)!

(
n

r

) ∑
l∈Lp,r

p∏
j=1

{ 1
(2j)!µ2j}lj

lj !

=
∑

1≤r≤p

r!(2p)!

(
n

r

) ∑
l∈Lp,r

p−r+1∏
j=1

{ 1
(2j)!µ2j}lj

lj !
,

where the last equality holds by (2.4). This finishes our proof.

Proof of Theorem 1.4 It follows from (1.1) in Lemma 1.1 that:

E[(
n∑

i=1

Xi)
2p] =

2p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈J2p,r

(
2p

k1 . . . kr

) r∏
s=1

E[Xks
as
] .

By assumption, E[Xas ] = 0 for all 1 ≤ s ≤ r and consequently the product
∏r

s=1 E[Xks
as
] vanishes if there is at

least one index ks equal to one. As already pointed out in the treatment of (2.5), this is true for every k ∈ J2p,r

as long as r > p . Therefore, we obtain

E[(
n∑

i=1

Xi)
2p] =

p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈J2p,r

(
2p

k1 . . . kr

) r∏
s=1

E[Xks
as
] .

Next, observe that by symmetry E[Xks
as
] = 0 whenever ks is odd, so that the product

∏r
s=1 E[Xks

as
] vanishes if

there is at least one odd index ks . Thus, in the inner sum only those summands pertaining to k = (2l1, . . . , 2lr) ∈
J2p,r with solely even components do remain. Since (2l1, . . . , 2lr) ∈ J2p,r is equivalent to (l1, . . . , lr) ∈ Jp,r , we

see that

E[(
n∑

i=1

Xi)
2p] =

p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jp,r

(
2p

2k1 . . . 2kr

) r∏
s=1

E[X2ks
as

] .

Notice that the product is nonnegative and that

(
2p

2k1 . . . 2kr

)
=

(
2p

2k1...2kr

)(
p

k1...kr

) (
p

k1 . . . kr

)
≤ Mp

(
p

k1 . . . kr

)
,
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where

Mp := max{
(

2p
2k1...2kr

)(
p

k1...kr

) : k ∈ Jp,r, 1 ≤ r ≤ p},

and so

E[(
n∑

i=1

Xi)
2p] ≤ Mp

p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jp,r

(
p

k1 . . . kr

) r∏
s=1

E[X2ks
as

]

= Mp

p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jp,r

(
p

k1 . . . kr

)
E[

r∏
s=1

X2ks
as

] by independence

= Mp E
[ p∑
r=1

∑
{a1,...,ar}⊆Nn

∑
k∈Jp,r

(
p

k1 . . . kr

) r∏
s=1

X2ks
as

]
by linearity

= Mp E
[
{

n∑
i=1

X2
i }p

]
by Theorem 2.1.

If in the above arguments we replace Mp by

mp := min{
(

2p
2k1...2kr

)(
p

k1...kr

) : k ∈ Jp,r, 1 ≤ r ≤ p},

we obtain

E[(
n∑

i=1

Xi)
2p] ≥ mp E

[
{

n∑
i=1

X2
i }p

]
.

For the computation of the constant Mp observe that for every k ∈ Jp,r and each 1 ≤ r ≤ p one has by (1.8)

that (
2p

2k1...2kr

)(
p

k1...kr

) =
(2p)!

(2k1)! . . . (2kr)!

k1! . . . kr!

p!
=

(2p)!

2k1+...krp!

k1!2
k1

(2k1)!
· · · kr!2

kr

(2kr)!

=
(2p)!

2pp!

{ r∏
j=1

(2kj)!

kj !2kj

}−1

=
(2p− 1)!!∏r

j=1(2kj − 1)!!
.

Since each factor (2kj − 1)!! is greater or equal to one, so is the product. In fact, this lower bound is attained

for k = (1, . . . , 1) ∈ Jp,p , whence

Mp = (2p− 1)!!.

As to the constant mp , note that { (
2p

2k1...2kr
)

( p
k1...kr

)
: k ∈ Jp,r, 1 ≤ r ≤ p} is a set of positive integers, which in

particular contains 1 (take r = 1 and observe that Jp,1 = {p} .) This shows (1.13).
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It remains to show optimality. To this end consider Xi with P(Xi = 1) = P(Xi = −1) = 1
2 , 1 ≤ i ≤ n .

Then the upper inequality in (1.14) can be restated as

E[(
n∑

i=1

Xi)
2p] ≤ Cp np

and it follows from the CLT, the continuous mapping theorem, and Theorem 3.4 of Billingsley [2] that:

Cp ≥ lim inf
n→∞

E[(n− 1
2

n∑
i=1

Xi)
2p] ≥ E[N(0, 1)2p] = (2p− 1)!! .

Finally, it follows immediately from the lower inequality in (1.14) with n = 1 that Dp ≤ 1, and so the proof is

complete.

3. Applications

3.1. The CLT for the empirical bootstrap

The empirical bootstrap is a well-established method in statistics. Here, one generates a new random sample

X∗
1 , . . . , X

∗
n from the empirical distribution function, say Fn , pertaining to the original sample X1, . . . , Xn with

distribution function, say, F . To understand the basic idea, consider a certain statistic (e.g., a standardized

estimator) Tn = Tn(X1, . . . , Xn, F ), which is known to have some distributional limit T , e.g., the normal

distribution. Then, if Tn is replaced by its bootstrap version T ∗
n = Tn(X

∗
1 , . . . , X

∗
n, Fn), it very often turns out

that the distribution of T ∗
n gives a better approximation to the distribution of Tn than the limit T does. Now,

even though the distribution of T ∗
n usually is analytically intractable, it can be approximated with arbitrary

accuracy by using the Monte-Carlo method. For an introduction to the bootstrap method we recommend the

textbook of Efron and Tibshirani [6], whereas the monograph of Hall [9] gives advanced insight into the theory.

The precise formal description can be as follows: let (Xi, i ∈ N) be a sequence of i.i.d. random variables

defined on some probability space (Ω,A,P). The empirical distribution function Fn pertaining to X1, . . . , Xn

is defined by

Fn(ω, x) :=
1

n

n∑
i=1

1{Xi(ω)≤x}, ω ∈ Ω, x ∈ R.

Furthermore, let (Ui, i ∈ N) be a sequence of i.i.d. random variables with the uniform distribution on (0, 1)

defined on some other probability space (Ω∗,A∗,P∗). If F−1
n denotes the quantile function of Fn , then we put

for every 1 ≤ i ≤ n and each n ∈ N :

X∗
in(ω, ω

∗) := F−1
n (ω,Ui(ω

∗)), ω ∈ Ω, ω∗ ∈ Ω∗.

Then our (canonical) construction ensures that for every n ∈ N and for all ω ∈ Ω

X∗
1n(ω, ·), . . . , X∗

nn(ω, ·) are i.i.d. with respect to P∗ (3.1)

and have distribution function Fn(ω, ·). In the sequel we will shortly write X∗
i for X∗

in(ω, ·) and simply Fn(x)

instead of Fn(ω, x), but still keep in mind that these quantities depend on ω .
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The prototype of an example for a statistic Tn as mentioned above is

Tn = Tn(X1, . . . , Xn, F ) =
1√
nσ2

n∑
i=1

(Xi − µ)

with µ = E[X1] =
∫
x F (dx) and σ2 = Var(X1) =

∫
(x− µ)2 F (dx). Since

E∗[X∗
1 ] =

∫
x Fn(dx) =

1

n

n∑
i=1

Xi =: X̄n (3.2)

and

Var∗[X∗
1 ] =

∫
(x− X̄n) Fn(dx) =

1

n

n∑
i=1

(Xi − X̄n)
2 =: s2n,

the corresponding bootstrap version is given by

T ∗
n = Tn(X

∗
1 , . . . , X

∗
n, Fn) =

1√
ns2n

n∑
i=1

(X∗
i − X̄n). (3.3)

Now, we will give a simple derivation of:

Theorem 3.1 (CLT for bootstrap) If all moments of X1 exist and are finite, then

T ∗
n

L→ N(0, 1), n → ∞, for P− almost all ω ∈ Ω. (3.4)

Proof By the method of moments (see, e.g., Shorack [15], Theorem 8.2 in chapter 11), it suffices to show that

E∗[{T ∗
n}m] → E[N(0, 1)m], n → ∞ for all m ∈ N P-almost surely, (3.5)

where it is well known that E[N(0, 1)m] = (m − 1)!! for even moment-order m and E[N(0, 1)m] = 0 for odd
m .

Now,

E∗[{T ∗
n}m] = {ns2n}−

m
2 E∗[{

n∑
i=1

(X∗
i − X̄n)}m] (3.6)

and by (3.1) and (3.2) we may apply Theorem 1.2 to the variables X∗
i − X̄n for computing the expectation on

the right side in (3.6). Here, recall that the constants in (1.6) or (1.7), respectively, depend on the moments µk

there: Br,m = Br,m(µ2, . . . , µm). In our case, these moments are given by

E∗[(X∗
1 − X̄n)

k] =
1

n

n∑
i=1

(Xi − X̄n)
k =: µk,n, 2 ≤ k ≤ m.

Thus with

B(n)
r,m := Br,m(µ2,n, . . . , µm,n),

Theorem 1.2 and (3.6) yield

E∗[{T ∗
n}m] = {s2n}−

m
2

[m/2]∑
r=1

B(n)
r,m n−m

2

(
n

r

)
. (3.7)
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Using the strong law of large numbers, the sample moments µk,n are easily seen to be strongly consistent; see,

e.g., Serfling [14]. Consequently,

µk,n → µk = E[(X1 − µ)k], n → ∞, for all 2 ≤ k ≤ m P-almost surely. (3.8)

So, by continuity,

B(n)
r,m → Br,m(µ2, . . . , µm), n → ∞, for all 1 ≤ r ≤ [m/2] P-almost surely (3.9)

and (because s2n = µ2,n ),

{s2n}−
m
2 → {µ2}−

m
2 P-almost surely. (3.10)

Finally, in view of (3.7) note that

n−m
2

(
n

r

)
=

1

r!
n−m

2 +r(1 + o(1)) as n → ∞. (3.11)

Thus, if m is an odd integer, then [m/2] < m/2 so that by (3.9) and (3.11) every summand in (3.7) vanishes

P-almost surely as n → ∞ and therefore by (3.10):

E∗[{T ∗
n}m] → 0, n → ∞ for all odd integers m P-almost surely.

However, if m = 2p, p ∈ N , is an even integer, then the (last) summand in (3.7) pertaining to r = p remains

and converges to 1
p!Bp,m = (m− 1)!!µp

2 . Consequently, by (3.10) we obtain that

E∗[{T ∗
n}m] → (m− 1)!!, n → ∞ for all even integers m P-almost surely.

Hence, we have shown (3.5) and the proof is finished. 2

Remark 3.2 (1) If we apply Theorem 1.2 to the centered random variables Xi − µ , we obtain

E[{Tn}m] = {σ2}−m
2

[m/2]∑
r=1

Br,m n−m
2

(
n

r

)
. (3.12)

It follows immediately from (3.11) and (3.12) that

E[{Tn}m] → 0, n → ∞ for all odd integers m (3.13)

and
E[{Tn}m] → (m− 1)!!, n → ∞ for all even integers m. (3.14)

Thus, Theorem 1.2 in combination with the method of moments also gives a very short proof of the

classical CLT:

Tn
L→ N(0, 1), n → ∞. (3.15)

(2) We would like to mention that indeed our proofs of the CLTs both are rather brief and in particular

are elementary. On the other hand, however, our moment assumption is more restrictive than in the classical

formulations, where only the finiteness of the second moment E[X2
1 ] is required; see, e.g., van der Vaart [16].

(3) Packwood [12] followed the same strategy to derive the classical CLT, but first he considered only

symmetric summands, so that (3.13) was trivially fulfilled. Second, he stated (3.14), but gave a formal proof

only for m ∈ {2, 4, 6} and left the complete solution open.
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3.2. Inequalities for self-normalized sums

In this section, we assume that the X1, . . . , Xn are independent and symmetric with positive variances. The

latter condition is only to exclude the degenerated case in which all Xi vanish with probability of one. Recall

that Sn :=
∑n

i=1 Xi and put Vn :=
√∑n

i=1 X
2
i , which by assumption is positive almost surely. Then

Tn :=
Sn

Vn

is called a self-normalized sum. The nomenclature comes from the fact that the variance of Tn is equal to one,

provided that the variances of the Xi are finite.

Theorem 3.3 Let p be any positive integer and assume that X1, . . . , Xn are independent, symmetric, and

2p-integrable. Then

E[T 2p
n ] ≤ (2p− 1)!! . (3.16)

Proof We use a so-called symmetrization argument. Let (ϵ1, . . . , ϵn) be i.i.d. with

P(ϵi = 1) = P(ϵi = −1) = 1/2 and such that (ϵ1, . . . , ϵn) and (X1, . . . , Xn) are independent. Then by

independence and symmetry it follows that

(X1, . . . , Xn)
L
= (ϵ1X1, . . . , ϵnXn),

and so (upon noticing that ϵ2i = 1 a.s.)

Tn
L
=

∑n
i=1 ϵiXi√∑n
i=1(ϵiXi)2

=

∑n
i=1 ϵiXi√∑n

i=1 X
2
i

=

∑n
i=1 ϵiXi

Vn
. (3.17)

Thus, conditioning on (X1, . . . , Xn) yields

E[T 2p
n ]

= E
[{∑n

i=1 Xi ϵi}2p

V 2p
n

]
= E

[
E
({∑n

i=1 Xi ϵi}2p

V 2p
n

|X1, . . . , Xn

)]
= E

[
V −2p
n E

(
{

n∑
i=1

Xi ϵi}2p|X1, . . . , Xn

)]
. (3.18)

As to the conditional expectation in (3.18), notice that by independence

E
[
{

n∑
i=1

Xi ϵi}2p|X1 = x1, . . . , Xn = xn

]
= E

[
{

n∑
i=1

xi ϵi}2p
]

(3.19)

for ν -almost every (x1, . . . , xn) ∈ Rn , where ν := P ◦ (X1, . . . , Xn)
−1 denotes the distribution of the vector

(X1, . . . , Xn). An application of Theorem 1.4 to the variables xiϵi ensures that

E
[
{

n∑
i=1

xi ϵi}2p
]
≤ (2p− 1)!! E[{

n∑
i=1

(xiϵi)
2}p] = (2p− 1)!! {

n∑
i=1

x2
i }p, (3.20)
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recalling that ϵ2i = 1 P -almost surely. Consequently, by (3.19)

E
(
{

n∑
i=1

Xi ϵi}2p|X1, . . . , Xn

)]
≤ (2p− 1)!! {

n∑
i=1

X2
i }p = (2p− 1)!! V 2p

n P− a.s.,

which in view of (3.18) yields the desired result. 2

Theorem 3.3 improves the result of Egorov [7,8], who found the weaker upper bound Ce−p(2p)p ≥
√
2e−p(2p)p > (2p− 1)!! ; refer to our Remark 1.5 (1).

Another application of the symmetrization in combination with Theorem 1.4 gives the exponential

inequality of Efron [5]. Here, we do not require any moment condition.

Theorem 3.4 (Efron) Let X1, . . . , Xn be independent and symmetric with positive variances, which need not

be finite. Then

P(Tn ≥ x) ≤ exp{−1

2
x2) for all x > 0. (3.21)

Proof According to (3.17) we have that

P(Tn ≥ x) = P
(∑n

i=1 Xi ϵi
Vn

≥ x
)
= E

[
P
( n∑

i=1

Xi ϵi ≥ xVn |X1, . . . , Xn

)]
. (3.22)

For every fixed point (x1, . . . , xn) ∈ Rn , we put Zn :=
∑n

i=1 xiϵi and vn :=
√∑n

i=1 x
2
i . It follows by

independence that for all t > 0:

P
( n∑

i=1

Xi ϵi ≥ xVn |X1 = x1, . . . , Xn = xn

)

= P
( n∑

i=1

xi ϵi ≥ xvn

)
= P

(
Zn ≥ xvn

)
≤ e−txvnE[etZn ] by Markov’s inequality

= e−txvnE[
∞∑
k=0

(tZn)
k

k!
]

= e−txvn

∞∑
k=0

tk

k!
E[Zk

n]

by the dominated convergence theorem. In fact, observe that for every m ∈ N0 the partial sums Ym :=∑m
k=0

(tZn)
k

k! are bounded:

|Ym| ≤
m∑

k=0

|tZn|k

k!
≤

∞∑
k=0

|tZn|k

k!
= e|t||Zn| ≤ e|t|

∑n
i=1 |xi| ∀ m ∈ N0,
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where the last inequality holds, because |Zn| = |
∑n

i=1 xiϵi| ≤
∑n

i=1 |xi||ϵi| ≤
∑n

i=1 |xi| . Thus, the constant

e|t|
∑n

i=1 |xi| is a P-integrable majorant for (Ym) and therefore the dominated convergence theorem is applicable.

It follows that

P
( n∑

i=1

Xi ϵi ≥ xVn |X1 = x1, . . . , Xn = xn

)

= e−txvn

∞∑
p=0

t2p

(2p)!
E[Z2p

n ] by symmetry of Zn

≤ e−txvn

∞∑
p=0

t2p

(2p)!
(2p− 1)!!v2pn by (3.20)

= e−txvn

∞∑
p=0

( 12 t
2v2n)

p

p!
by (1.8)

= e−txvne
1
2 t

2v2
n = e−txvn+

1
2 t

2v2
n . (3.23)

The last expression in (3.23) is minimal for t = x/vn , whence we obtain:

P
( n∑

i=1

Xi ϵi ≥ xVn |X1, . . . , Xn

)
≤ exp{−1

2
x2} P− a.s.

and the assertion follows from (3.22). 2

Appendix

Example For m = 11 we obtain the following polynomial expansion:

Mn(11) = n5 17325µ4
2µ3

+ n4(15400µ2µ
3
3 − 173250µ4

2µ3 + 34650µ2
2µ3µ4 + 6930µ3

2µ5)

+ n3(606375µ4
2µ3 − 92400µ2µ

3
3 − 207900µ2

2µ3µ4 + 5775µ3µ
2
4 − 41580µ3

2µ5 + 4620µ2
3µ5

+ 6930µ2µ4µ5 + 4620µ2µ3µ6 + 990µ2
2µ7)

+ n2(169400µ2µ
3
3 − 866250µ4

2µ3 + 381150µ2
2µ3µ4 − 17325µ3µ

2
4 + 76230µ3

2µ5

− 13860µ2
3µ5 − 20790µ2µ4µ5 − 13860µ2µ3µ6 + 462µ5µ6 − 2970µ2

2µ7 + 330µ4µ7

+ 165µ3µ8 + 55µ2µ9)

+ n (415800µ4
2µ3 − 92400µ2µ

3
3 − 207900µ2

2µ3µ4 + 11550µ3µ
2
4 − 41580µ3

2µ5 + 9240µ2
3µ5

+ 13860µ2µ4µ5 + 9240µ2µ3µ6 − 462µ5µ6 + 1980µ2
2µ7 − 330µ4µ7 − 165µ3µ8

− 55µ2µ9 + µ11).
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For m = 25, the corresponding r -th, coefficient of
(
n
r

)
with, e.g., r = 11, is given by

B11,25 = 46284535177040160000000µ8
2µ

3
3 + 23142267588520080000000µ9

2µ3µ4

+ 1388536055311204800000µ10
2 µ5.
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