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Suppose one uses a parametric density function based on the first four (conditional) moments to model risk.
There are quite a few densities to choose from and depending on which is selected, one implicitly assumes
very different tail behavior and very different feasible skewness/kurtosis combinations. Surprisingly, there
is no systematic analysis of the tradeoff one faces. It is the purpose of the article to address this. We focus
on the tail behavior and the range of skewness and kurtosis as these are key for common applications such
as risk management.
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1. INTRODUCTION

Suppose a researcher cares about the (conditional) moments
of returns, in particular variance, skewness, and kurtosis. In ad-
dition, assume that he or she wants to use a parametric density
function with the first four (conditional) moments given. The
idea of keeping the number of moments small and character-
izing densities by those moments has been suggested in vari-
ous articles. This practice is popular among practitioners who
use risk-neutral densities: see Madan, Carr, and Chang (1998);
Theodossiou (1998); Aas, Haff, and Dimakos (2005); Eriks-
son, Ghysels, and Wang (2009); among others.1 Depending on
which density is selected, one implicitly assumes very differ-
ent tail behavior and very different feasible skewness/kurtosis
combinations.

The bulk of the academic literature has focused on estimating
an asset return model and then uses its associated option pricing
model. However, the bulk of practitioner’s implementations do
not involve estimating parameters via statistical methods, but
rather via calibration. Black-Scholes implied volatilities are the
most celebrated example of this practice. The common practice
is of implied parameters, especially volatilities, being “plugged
into” formulas. Our article tries to provide a deeper understand-
ing of the common practice of calibration.

Many appealing distributions commonly used in financial
modeling belong to a larger class of densities called the gen-
eralized hyperbolic (GH) class of distributions which, as a
rich family, has wide applications in risk management and fi-
nancial modeling.2 The GH class is characterized by five pa-
rameters which, when further narrowed down to subclasses of

1Figlewski (2007) provided a comprehensive literature review of various ap-
proaches to derive risk neutral densities—we focus on moment-based methods.
2See, for example, Eberlein, Keller, and Prause (1998), Rydberg (1999), Eberlein
(2001a), Eberlein and Prause (2002), Eberlein and Hammerstein (2004), Bibby
and Sørensen (2003), Chen, Hardle, and Jeong (2008), among many others.

four-, three-, or two-parameter distributions, yields widely used
distributions such as the normal inverse Gaussian distribution,
the hyperbolic distribution, the variance gamma distribution, the
generalized skewed t distribution, the student t distribution,
the gamma distribution, the Cauchy distribution, the normal
distribution, etc.

In this article we focus on the normal inverse Gaussian (NIG)
distribution, the variance gamma (VG) distribution, and the gen-
eralized skewed t (GST) distribution, because they are fully
characterized by their first four moments, and are extensively
used in the risk management literature.3 We use the distributions
to model the risk neutral density of asset returns, with moments
extracted from derivative contracts. In particular, the risk neu-
tral moments are formulated by a portfolio of the out-of-money
European Call/Put options indexed by their strikes (Bakshi, Ka-
padia, and Madan 2003). The risk neutral density is important
to price derivative contracts. Focusing on risk neutral densities

3The application of the NIG distribution in the context of risk management ap-
pears in Eberlein and Keller (1995a), Barndorff-Nielsen 1997a, 1997b, Rydberg
(1997), Eberlein (2001b), Venter and de Jongh (2002), Aas et al. (2006), Kale-
manova (2007), Eriksson, Ghysels, and Wang (2009), among others. The VG
distribution was introduced in Madan and Seneta (1990). It was further studied
by Madan, Carr, and Chang (1998), Carr et al. (2002), Konikov and Madan
(2002), Ribeiro and Webber (2004), Hirsa and Madan (2004), Seneta (2004),
Avramidis and L’Ecuyer (2006), Moosbrucker (2006), among others. Finally,
the GST distribution also has had many applications, including Frecka and Hop-
wood (1983), Theodossiou (1998), Prause (1999), Wang (2000), Bams, Lehnert,
and Wolff (2005), Bauwens and Laurent (2005), Aas, Haff, and Dimakos (2005),
Kuester, Mittnik, and Paolella (2006), Rosenberg and Schuermann (2006), and
Bali and Theodossiou (2007).
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allows us to use relevant parameter settings—given the widely
availability of options data and its applications. Note that Aı̈t-
Sahalia and Lo (2000a) argued in more general terms for the
use of risk neutral distributions for the purpose of risk manage-
ment. Yet, many of the issues we address pertain to distributions
in general—not just risk neutral ones. In particular, we focus
on the tail behavior and so-called feasible domain, that is, the
skewness/kurtosis combinations that are feasible for each of the
densities. We derive closed-form expressions for the moments
(which can be used for the purpose of estimation) for the three
aforementioned classes of distributions.

Note that there are alternatives to the GH class of distribu-
tions, such as Edgeworth and Gram-Charlier expansions, SNP
distributions or mixtures of normals. While some of these al-
ternatives have a wider range of feasible skewness-kurtosis val-
ues, they go beyond characterizing the first four moments and
typically involve considerable more parameters (in some cases
an unbounded number).4 Because the first four moments have
straightforward interpretations they are commonly used by prac-
titioners. Our article studies the consequences of focusing on
those moments and fitting a density either for option pricing or
characterizing value-at-risk. The former involves risk-neutral
densities, whereas the latter involves physical densities. We
study the use of four-moment-based densities both in a risk
neutral option pricing setting and physical value-at-risk setting.
To appraise how well the various density approximations per-
form, we consider affine jump-diffusion and GARCH models,
which yield closed form expressions for the risk neutral den-
sity. This allows us to appraise how well the various classes of
distributions approximate the density implied by realistic jump
diffusions and GARCH models and their resulting derivative
contracts. We study the moment-implied density approach in the
pricing of options. In addition, we also discuss the transforma-
tion from the risk neutral to the physical measure within the class
of GH densities and study their use in value-at-risk calculations.

The rest of this article is outlined as follows: we start with
a review on the GH family of distributions in Section 2, and
then study their tail behavior and moment-based parameter es-
timation. In Section 3 we characterize the feasible domains of
various distributions using S&P 500 index options data and re-
port findings of a simulation study based on jump diffusion
processes and GARCH option pricing model. An option pric-
ing exercise with real data is discussed in Section 4. Section 5
discusses the transformation from the risk neutral to the phys-
ical measure within the class of GH densities and study their
use in value-at-risk calculations. Concluding remarks appear in
Section 6. The technical details are in an Appendix.

2. MOMENT CONDITIONS OF THE GENERALIZED
HYPERBOLIC DISTRIBUTION

The GH distribution was introduced by Barndorff-Nielsen
(1977) to study aeolian sand deposits, and it was first applied in

4The so called Hamburger theorem proves the existence of a distribution for
any given feasible skewness kurtosis values, however it does not show how to
construct the density (see e.g., Widder 1946; Chihara 1989). In addition, with
SNP distributions the space spanned by the skewness and kurtosis values is
bounded for any finite expansion; see Figure 1 and Section 2.3 of León, Mencı́a,
and Sentana (2009).

a financial context by Eberlein and Keller (1995b). In this section
we will give a brief review of the GH family of distributions and
then discuss their tail behavior and moments.

2.1 The Generalized Hyperbolic Distribution

The GH distribution is a normal variance-mean mixture where
the mixture is a Generalized Inverse Gaussian (GIG) distribu-
tion. Suppose that Y is GIG distributed with density

f (y; ψ, χ, λ) = (ψ/χ )λ/2

2Kλ(
√

ψχ)
yλ−1 exp

[
−1

2
(ψy + χy−1)

]
,

y > 0,

where Kλ(z) = 1/2
∫ ∞

0 yλ−1 exp[−1/2z(y + y−1)]dy (for z >

0) is a modified Bessel function of the third kind with index

λ. We then write Y
L= GIG(ψ, χ, λ). The parameter space of

GIG(ψ, χ, λ) is {ψ > 0, χ > 0, λ = 0} ∪ {ψ > 0, χ ≥ 0, λ >

0} ∪ {ψ ≥ 0, χ > 0, λ < 0}.
A GH random variable is constructed by allowing for the

mean and variance of a Normal random variable to be GIG
distributed. Namely, a random variable X is said to be GH

distributed, or X
L= GH(α, β, μ, b, p), if X

L= μ + βY + √
YZ

where Y
L= GIG(α2 − β2, b2, p), Z

L= N (0, 1), and Y is inde-
pendent of Z. The density function of X is therefore

fGH(x; α, β, μ, b, p) = α1/2−p(α2 − β2)p/2e(x−μ)β

√
2πbKp(b

√
α2 − β2)

Kp−1/2

×
(

αb

√
1 + (x − μ)2

b2

)

×
(

1 + (x − μ)2

b2

)p/2−1/4

(1)

with parameters satisfying α > |β|, b > 0, p ∈ R, μ ∈ R.
The GH distribution is closed under linear transforma-

tion, which is a desirable property notably in portfolio

management. Note that for X
L= GH(α, β, μ, b, p), tX + l

is GH(α/|t |, β/t, tμ + l, |t |b, p) distributed for t �= 0 due
to the scaling property of the GIG distribution, that is,

if Y
L= GIG(ψ, χ, λ), then tY

L= GIG(ψ/t, tχ, λ) for t > 0.

It follows that the set {μ + βY + σ
√

YZ : Y
L= GIG(α2 −

β2, b2, p), Z
L= N (0, 1), Y ⊥ Z, α > |β|, b > 0, p ∈ R, μ ∈

R, σ > 0} is equivalent to the set {μ + βY + √
YZ : Y

L=
GIG(α2 − β2, b2, p), Z

L= N (0, 1), Y ⊥ Z, α > |β|, b > 0,

p ∈ R, μ ∈ R} under an affine transform. Therefore, it is suffi-
cient to characterize the GH distribution with five parameters.
It also follows that the GH distribution is infinitely divisible, a
property that yields GH Lévy processes by subordinating Brow-
nian motions. However, the GH distribution is not closed under
convolution in general except when p = −1/2.

Various subclasses of the GH distribution can be derived by
confining the parameters to a subset of the parameter space. The
widely used distributions, which form subclasses of the GH dis-
tribution, are the symmetric GH distribution GH(α, 0, μ, b, p),
the hyperbolic distribution GH(α, β, μ, b, 1), and the normal in-
verse Gaussian (NIG) distribution GH(α, β, μ, b,−1/2). Note
that the parameter space of the GH distribution excludes {α >
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|β|, b = 0, p > 0} and {α = |β|, b > 0, p < 0} which are per-
mitted by the GIG distribution. If we allow parameters to take
values on the boundary of parameter space, we can obtain vari-
ous limiting distributions. These include the (1) variance gamma
distribution, (2) generalized skewed T distribution, (3) skewed
T distribution, (4) noncentral student T distribution, (5) Cauchy
distribution, (6) normal distribution, among others (see, e.g.,
Bibby and Sørensen 2003; Eberlein and Hammerstein 2004;
Haas and Pigorsch 2007).

2.2 Tail Behavior

The GH family covers a wide range of distributions and there-
fore exhibits various tail patterns. We discuss its tail behavior in
general.5 We write A(x) ∼ B(x) as x → ∞ for functions A and
B if limx→∞ A(x)/B(x) = c for some constant c.

Note that fGH(x; α, β, μ, b, p) ∼ |x − μ|p−1 exp(−α|x −
μ| + β(x − μ)) (see Haas and Pigorsch 2007). An application
of L’Hôpital’s rule yields the following:

Proposition 2.1. Suppose that X is GH(α, β, μ, b, p) dis-
tributed with α > |β|, b > 0, p ∈ R, μ ∈ R. Its right tail and
left tail satisfy P (X − μ > x) ∼ xp−1e−(α−β)x and P (X − μ <

−x) ∼ xp−1e−(α+β)x , respectively, where x > 0 is sufficiently
large.

Therefore, α, β, and p control tail behavior. A small α and a
large p yield heavy tails. β pertains to skewness. The right tail is
heavier when β > 0, whereas the left tail is heavier when β < 0.

β = 0 yields a symmetric distribution. The tails of subclasses of
the GH distribution can be derived from Proposition 2.1 directly.

Next we look at the tails of various “limiting” distributions.
One obtains the Variance Gamma (VG) distribution from the GH
distribution by letting b go to 0 and keeping p positive. Hence,
the VG has the same tail behavior as the GH distribution. Set α

= |β| in (1), and we will have the Generalized Skewed T (GST)
distribution.

Corollary 2.1. Suppose that X is GST(β,μ, b, p) distributed
with |β| > 0, μ ∈ R, b > 0, and p < 0. Then for x > 0 suf-
ficiently large, P (X − μ > x) ∼ xp and P (X − μ < −x) ∼
xp−1e−2βx for β > 0, while P (X − μ > x) ∼ xp−1e2βx and
P (X − μ < −x) ∼ xp for β < 0.

The skewed T distribution is derived from the GST dis-
tribution by allowing p = −b2/2. Letting β go to 0 in
the GST distribution yields the noncentral student T distri-
bution with −2p degrees of freedom. Its density behaves
like fGH(x; 0, 0, μ, b, p) ∼ |x − μ|2p−1 for sufficiently large
|x − μ|, and hence P (|X − μ| > x) ∼ x2p when x > 0 is suf-
ficiently large. The tail property of the Cauchy distribution, as a
special case of the noncentral student T distribution, is obtained
by p = − 1

2 .
The normal distribution can be viewed as a limiting case

of the GH law (the hyperbolic distribution in particular, i.e.,
p = 1) as well with mean μ + βσ 2 and variance σ 2, where
σ 2 = limα→∞(b/α).

5Bibby and Sørensen (2003) discussed the tail behavior of the GH family using
a different parameterization.

It is known from the above discussion that the tails of the GH
and VG distributions are exponentially decaying, and is slower
than the normal distribution but faster than the GST and the
skewed T distribution. The GH and VG distributions are there-
fore also referred to as semiheavy tailed (see Barndorff-Nielsen
and Shephard 2001), and they possess moments of arbitrary or-
der. The GST distribution does not have moments of arbitrary
order. The rth moment exists if and only if r < −p. However,
tails of the GST distribution are a mixture of polynomial and ex-
ponential decays—one heavy tail and one semiheavy tail, which
distinguishes the GST law from the others (see Aas and Haff
2006).

2.3 Skewness and Kurtosis

We are interested in the first four moments, in particular, the
space spanned by the squared skewness and excess kurtosis. In
this section, we will first present general results regarding the
GH distribution to characterize the mapping between moments
and parameters.

For a centered GH distribution (i.e., μ = 0), the moments
of arbitrary order can be expanded as an infinite series of
Bessel functions of the third kind with gamma weights (see,
e.g., Barndorff-Nielsen and Stelzer 2005). Using this represen-
tation, we have the following proposition:

Proposition 2.2. Suppose that X is GH(α, β, 0, b, p) dis-
tributed. The first four moments, mn = EXn for n = 1, 2, 3, 4,
can be explicitly expressed as

m1 = bβKp+1(bγ )

γKp(bγ )
,

m2 = bKp+1(bγ )

γKp(bγ )
+ β2b2Kp+2(bγ )

γ 2Kp(bγ )
,

m3 = 3βb2Kp+2(bγ )

γ 2Kp(bγ )
+ β3b3Kp+3(bγ )

γ 3Kp(bγ )
,

m4 = β4b4Kp+4(bγ )

γ 4Kp(bγ )
+ 6β2b3Kp+3(bγ )

γ 3Kp(bγ )
+ 3b2Kp+2(bγ )

γ 2Kp(bγ )
,

(2)

where γ =
√

α2 − β2.

Proof. See Appendix A. �
Therefore, the mean M, variance V , skewness S, and excess

kurtosis K of a GH(α, β, μ, b, p) distribution can be expressed
explicitly as functions of the five parameters, which yield a map-
ping (call it T ) from the parameter space to the space spanned
by (M,V, S,K).6 Note, however, that T may not be a bijec-
tion and therefore its inverse may not exist. Since this article is
aimed at modeling financial returns which are skewed and lep-
tokurtic and aimed at building densities based on skewness and
(excess) kurtosis, we restrict our attention to subclasses of the
GH family which have a four-parameter characterization and

6The moment-generating function and characteristic function of an arbitrary
GH(α, β, μ, b, p) can be found in for instance Prause (1999). Particularly,
Prause (1999) also gave explicit expressions of the mean and variance.
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yield a bijection between moments and parameters. It is impos-
sible to express in general parameters explicitly via the first four
moments due to the presence of Bessel functions. We will focus
in the remainder of the article on the cases where we have an
explicit mapping between moments and parameters, namely we
will focus on the NIG, VG, and GST distributions.

2.3.1 The Normal Inverse Gaussian Distribution. One ob-
tains the NIG distribution from the GH distribution by letting
p = −1/2. Therefore, as an application of Proposition 2.2, we
have the following:

Proposition 2.3. Denote by M, V, S, K the mean, variance,
skewness, and excess kurtosis of a NIG(α, β, μ, b) random vari-
able with α > |β|, μ ∈ R, and b > 0. Then we have the follow-
ing: (1)

M = μ + βb

γ
, V = bα2

γ 3
, S = 3β

α
√

bγ
,

K = 3(4β2 + α2)

bα2γ
, (3)

where γ =
√

α2 − β2. (2) If D ≡ 3K − 5S2 > 0,

α = 3

√
D + S2

D
V −1/2, β = 3S

D
V −1/2,

μ = M − 3S

D + S2
V 1/2, b = 3

√
D

D + S2
V 1/2.

The proof of (1) uses the fact that Kn+1/2(z) = K1/2(z)
(1 + ∑n

i=1[(n + i)!2−iz−i]/[i!(n − i)!]). The formal derivation
of (2) appears in Eriksson, Forsberg, and Ghysels (2004).

2.3.2 The Variance Gamma Distribution. Recall that the
VG distribution is obtained by keeping α > |β|, μ ∈ R, p > 0
fixed and letting b go to 0. Proposition 2.2 is stated for the GH
distribution. For the limiting cases, similar results are derived by
applying the dominant convergence theorem. Particularly, when
b approaches 0, we have the following result:

Proposition 2.4. Denote by M, V, S, K the mean, variance,
skewness, and excess kurtosis of a VG(α, β, μ, p) random vari-
able with α > |β|, μ ∈ R, and p > 0. Then, (1)

M = μ + βp

η
, V = p

η2
(η + β2), S = β(3η + 2β2)

(η + β2)3/2p1/2
,

K = 3(η2 + 4ηβ2 + 2β4)

p(η + β2)2
, (4)

where η = α2−β2

2 > 0. (2) If 2K > 3S2, letting C = 3S2/2K,

the equation (C − 1)R3 + (7C − 6)R2 + (7C − 9)R + C =
0 has a unique solution in (0, 1), denoted by R, and

α = 2
√

R(3 + R)√
V |S|(1 − R2)

, β = 2R(3 + R)√
V S(1 − R2)

,

p = 2R(3 + R)2

S2(1 + R)3
, μ = M − 2

√
V R(3 + R)

S(1 + R)2
.

Proof. See Appendix A. �

2.3.3 The Generalized Skewed T Distribution. The GST
distribution is obtained from the GH distribution by α → |β|,
with parameters satisfying β ∈ R, μ ∈ R, b > 0, and p < −4
so that the 4th moment exists. An application of the dominant
convergence theorem to Proposition 2.2 yields the following:

Proposition 2.5. Denote by M, V, S, K the mean, variance,
skewness and excess kurtosis of a GST(β,μ, b, p) random vari-
able with β ∈ R, μ ∈ R, b > 0, and p < −4. Then, (1)

M = μ + b2β

v − 2

V = b2

v − 2
+ 2b4β2

(v − 2)2(v − 4)

S =
[

6(v − 2) + 16b2β2

v − 6

]
bβ(v − 4)1/2

[(v − 2)(v − 4) + 2b2β2]3/2

K =
[

8b4β4(5v − 22)

(v − 6)(v − 8)
+ 16b2β2(v − 2)(v − 4)

v − 6

+ (v − 2)2(v − 4)

]
6

[(v − 2)(v − 4) + 2b2β2]2
, (5)

where v = −2p > 8. (2) If (K, S2) satisfy

32(yU + 4)

(yU + 2)2
> S2 where

yU ≡
√

K2 + 156K + 900 − K + 30

K
> 0, (6)

the following system of equations:

0 = 2ρ[3(v − 6) + 4(v − 4)ρ]2 − S2(v − 4)(v − 6)2(1 + ρ)3

0 = 12(v − 4)(5v − 22)ρ2 + 48(v − 4)(v − 8)ρ

+ 6(v − 6)(v − 8) − K(v − 4)(v − 6)(v − 8)(1 + ρ)2 (7)

has a unique solution satisfying ρ > 0 and v > 8, denoted by
(ρ, v). We then have

β = sig(S)

√
ρ(1 + ρ)(v − 4)

2V
, μ=M−sig(S)

√
ρ(v − 4)V

2(1 + ρ)
,

b =
√

V (v − 2)

1 + ρ
, p = −v/2.

Proof. See Appendix A. �
2.3.4 Feasible Domain. It follows from Proposition 2.3

that the range of excess kurtosis and skewness admitted by the
NIG distribution is Dnig ≡ {(K, S2) : 3K > 5S2}, which will
be referred to as the feasible domain of the NIG distribution.
The feasible domain of the VG distribution read from Propo-
sition 2.4 is Dvg ≡ {(K, S2) : 2K > 3S2} and it includes Dnig.

The GST distribution has a feasible domain of Dgst ≡{(K, S2) :
S2 < 32(yU +4)

(yU +2)2 } where yU =
√

1 + 156/K + 900/K2 − 1 +
30/K. Note that Dgst is included in the set {(K, S2) : S2 <

min(32, 8K/15)}, which is a subset of Dnig and Dvg. The GST
distribution has bounded skewness. The VG distribution has the
largest feasible domain among the three. It should also be noted
that {(K, S2) : 2K = 3S2} is the skewness-kurtosis combination
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of the Pearson Type III distribution. Further details regarding
feasible domains appear in Section 3.2.

3. RISK NEUTRAL MOMENTS AND IMPLIED
DENSITIES

We are interested in modeling asset returns with NIG, VG,
and GST distributions for the purpose of risk management. It
is therefore natural to think in terms of the risk neutral dis-
tribution since it plays an important role in derivative pricing.
In this section, we present risk neutral moment-based estima-
tion methods using the European put and call contracts. Affine
jump-diffusion models and GARCH option pricing models will
be used to evaluate the performance of the NIG, VG, and GST
approximations.

3.1 Estimating Moments of Risk Neutral Distributions

Given an asset price process {St }, Bakshi, Kapadia, and
Madan (2003) showed that the risk neutral conditional moments
of τ−period log return Rt (τ ) = ln(St+τ ) − ln(St ), given time t
information, can be written as an integral of out-of-the-money
(OTM) call and put option prices. In particular, the arbitrage-
free prices of the volatility contract V (t, τ ) = E

Q
t (e−rτRt (τ )2),

cubic contract W (t, τ ) = E
Q
t (e−rτRt (τ )3) and quartic contract

X(t, τ ) = E
Q
t (e−rτRt (τ )4) at time t can be expressed as

V (t, τ ) =
∫ ∞

St

2(1 − ln(K/St ))

K2
C(t, τ ; K)dK

+
∫ St

0

2(1 − ln(K/St ))

K2
P (t, τ ; K)dK (8)

W (t, τ ) =
∫ ∞

St

6 ln(K/St ) − 3(ln(K/St ))2)

K2
C(t, τ ; K)dK

+
∫ St

0

6 ln(K/St ) − 3(ln(K/St ))2

K2
P (t, τ ; K)dK (9)

X(t, τ ) =
∫ ∞

St

12(ln(K/St ))2 − 4(ln(K/St ))3)

K2
C(t, τ ; K)dK

+
∫ St

0

12(ln(K/St ))2 − 4(ln(K/St ))3

K2
P (t, τ ; K)dK

(10)

where Q represents the risk neutral measure, r is risk-free rate,
while C(t, τ ; K) and P (t, τ ; K) are the prices of European calls
and puts written on the underlying asset with strike price K
and expiration τ periods from time t. Therefore, the time t
conditional risk neutral moments (mean, variance, skewness,
and excess kurtosis) of ln(St+τ ) are:

Mean(t, τ ) = μ(t, τ ) + ln(St ) (11)

var(t, τ ) = erτV (t, τ ) − μ(t, τ )2 (12)

Skew(t, τ ) = erτW (t, τ ) − 3μ(t, τ )erτV (t, τ ) + 2μ(t, τ )3

[erτV (t, τ ) − μ(t, τ )2]3/2

(13)

EKurt(t, τ ) = (erτX(t, τ ) − 4μ(t, τ )erτW (t, τ )

+ 6erτμ(t, τ )2V (t, τ ) − 3μ(t, τ )4)

/ ([erτV (t, τ ) − μ(t, τ )2]2) − 3 (14)

where μ(t, τ ) = erτ − 1 − erτV (t, τ )/2 − erτW (t, τ )/6 −
erτX(t, τ )/24.

Typically we cannot implement directly Equations (8), (9),
and (10) since we do not have a continuum of strike prices
available. Hence, the integrals are replaced by approximations
involving weighted sums of OTM puts and calls across (a sub-
set of) available strike prices. While the approximation entails
a discretization bias, Dennis and Mayhew (2002) reported that
such biases are typically small even with a small set of puts and
calls.7 In particular, the integrals in Equations (8), (9), and (10)
are evaluated by a trapezoid approximation method described
in Conrad, Dittmar, and Ghysels (2013). Therefore, the above
formulas—computed using discrete weighted sums—yield es-
timates of the mean, variance, skewness, and excess kurtosis
of the risk neutral density. In the empirical work, we follow
the practical implementation discussed by Conrad, Dittmar, and
Ghysels (2013).

Note that the approach pursued here is different from statisti-
cal analysis based on return-based estimation via sample coun-
terparts of population moments. The use of derivative contracts
for the purpose of pricing and risk management is widespread in
the financial industry. We follow exactly this strategy, by com-
puting moments of risk neutral densities obtained from extract-
ing information from existing derivatives contracts. Then we
will use parametric densities based on the extracted moments to
compute various objects of interest, ranging from pricing other
derivative contracts to value-at-risk computations, etc.

3.2 Risk Neutral Moments and Feasible Domains

The very first question we address is whether the range of
moments that are extracted from market data fall within the
feasible domain of the respective densities. Figure 1 plots daily
skewness and kurtosis extracted from S&P 500 index options
with 5–14 days to maturity for a sample covering January 4,
1996, to October 30, 2009.8 There are 1258 dots in Figure 1(a).
Each dot represents a daily combination of squared skewness
and excess kurtosis calculated via expressions (13) and (14).
The pairs of OTM call/put options involved in the calculation
of risk neutral moments per day ranges from 3 to 85, with an
average of 21.26 (see Table 1).

Superimposed on the dots are the feasible domains of the
NIG, VG, and GST distributions, that is, the area under the
curves with labels “VG,” “NIG,” and “GST,” respectively.
The line labeled “Upper bound” represents the largest possible

7As noted by Dennis and Mayhew (2002) and Conrad, Dittmar, and Ghysels
(2013), it is critical to select a set of puts and calls that are symmetric in
strike prices. In contrast, discretely weighted sums of asymmetrically positioned
puts/calls result in biases.
8The data are obtained from Optionmetrics through Wharton Research Data
Services. A number of data filters are applied to screen for recording errors -
these are standard in the literature and described elsewhere, see, for example, in
Battalio and Schultz (2006) and Conrad, Dittmar, and Ghysels (2013), among
others. Notably we use filters to try to ensure that our results are not driven
by stale or misleading prices. In addition to eliminating option prices below 50
cents and performing robustness checks with additional constraints on option
liquidity, we also remove options with less than one week to maturity, and
eliminate days in which closing quotes on put-call pairs violate no-arbitrage
restrictions. We encountered some days with two pairs of OTM call/put options.
The literature often puts a lower bound of three pairs to avoid noisy moment
estimates.
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Figure 1. Daily squared skewness and kurtosis of SPX from January 1996 to October 2009. Panel (a) plots the daily squared skewness and
excess kurtosis extracted from the S&P 500 index options with 5–14 days to maturity for a sample covering January 4, 1996, to October 30,
2009. Superimposed are the feasible domains of the NIG, VG, and GST distributions, that is, the area under the curves with labels “VG,” “NIG,”
and “GST,” respectively. The line labeled “Upper bound” represents the largest possible skewness-kurtosis combination of an arbitrary random
variable. When zooming in on Panel (a) we obtain Panel (b). The area under the curve with a range of excess kurtosis from 0 and 4 is the feasible
domain of A-type Gram-Charlier series expansion (GCSE).

skewness-kurtosis combination of an arbitrary random variable,
and it is obtained by the formula S2 = K + 2. The region above
the bound is the so-called impossible region. As reported in Ta-
ble 1, the VG-feasible region covers 94.54% of the data points,
and the NIG feasible region covers 92.59%. Finally, the cover-
age of the GST feasible region is 81.44% of the data points.

Table 1 summarizes coverage of VG, NIG, and GST dis-
tributions, and number of contracts used to compute the risk
neutral moments. Though the VG, NIG, and GST distributions
cannot accommodate any arbitrary skewness-kurtosis combina-
tions, most of the S&P 500 options with short maturities feature
skewness-kurtosis combinations within the feasible region of
the VG and NIG distributions. The number of contracts listed
in Table 1 deserves some clarification. The smallest number of
contracts is 3. This does not mean that we fit four moments with
three prices. The header in the table says “put/call pairs.” Three
prices, means 6 contracts, 3 puts, and 3 calls. This prompts the
question as to how many contracts are needed to obtain reliable
moment estimates. This is not so straightforward to answer, but
is discussed notably in Dennis and Mayhew (2002). The accu-

racy depends not only on the number of contracts, but also how
well they cover the range over which to compute the discrete
approximations to the integral formulas discussed earlier.

When we zoom in Figure 1(a) we obtain the next plot (b).
The area under the curve with a range of excess kurtosis from
0 and 4 is the feasible domain of A-type Gram-Charlier se-
ries expansion (GCSE). The A-type GCSE and the Edgeworth
expansion have been studied by Madan and Milne (1994), Ru-
binstein (1998), Eriksson, Ghysels, and Wang (2009), among
others as a way to approximate the unknown risk neutral den-
sity. Since the Edgeworth expansion admits a smaller feasible
region than the A-type GCSE (see Barton and Dennis 1952 for
more detail), we only draw the feasible domain of the A-type
GCSE in Figure 1. Clearly, most of the dots are outside the fea-
sible region of the A-type GCSE and, hence, outside the feasible
region of the Edgeworth expansion.

Figure 2 plots the squared skewness and excess kurtosis using
options with longer time to expiration: 17–31 days (around
1 month), 81–94 days (around 3 months), and 171–199 days
(around 6 months). Table 1 contains again the numerical values

Table 1. Coverage of VG, NIG, and GST distributions

Pairs of call/put

Total min max average VG NIG GST Impossible region

5–14 1258 3 85 21.26 94.54% 92.59% 81.44% 0
17–31 1855 3 90 22.22 74.45% 69.06% 50.08% 0
81–94 1220 3 61 13.96 23.89% 15.66% 3.63% 34/1220
171–199 1294 3 39 11.54 8.06% 5.43% 3.47% 25/1294

The table reports the number of contracts used to compute the daily risk neutral moments, and the coverage of the VG, NIG, and GST distributions for the S&P 500 index options with
5–14, 17–31, 81–94, and 171–199 days to maturity, from January 4, 1996 to October 30, 2009.
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Figure 2. Daily squared skewness and kurtosis of SPX from January 1996 to October 2009, continued.

of the feasible domain coverage for the various distributions.
The VG feasible region covers 74.45% of the data points (out
of 1855 contracts) for 17–31 days to maturity, and 23.89% (out
of 1220) for 81–94 days to maturity. Moreover, when the time-
to-maturity increases to 171–199 days, the coverage drops to
8.06% (out of 1294). These observations are consistent with the
fact that the returns are more leptokurtic when sampled more
frequently. It should also be noted that a few data points in
Figure 2(c)–(d) are in the impossible region – 2.78% (81–94)
and 1.93% (171–199), respectively, according to the figures in
the last column of Table 1. This could be due to estimation error
in the moments. Moreover, we plot in Figure 3 the skewness
and excess kurtosis for the various time-to-maturities. This is
consistent with the study of Bakshi, Kapadia, and Madan (2003)
that “the risk neutral distribution of the index is generally left
skewed.”

The overall picture that emerges from our analysis so far
is that the classes of distributions we examine have appeal-
ing properties in terms of the skewness-kurtosis coverage—in
particular, when compared with approximating densities (e.g.,
A-type GCSE and the Edgeworth expansion) proposed in the

prior literature. The feasible domain does become more restric-
tive for longer term maturities beyond 3 months. We, therefore,
focus on options with maturities up to 1 month.

3.3 Simulation Evidence

We want to assess the accuracy of the various distributions
via a simulation experiment. To do so we characterize risk neu-
tral densities with a commonly used framework in financial
asset pricing and risk management, namely continuous time
jump diffusion processes. We also consider the GARCH option
pricing models for the numerical evaluation. In particular, we
simulate the log prices using either affine jump-diffusions or
a GARCH(1,1), which yield explicit expressions for the risk
neutral density and option prices. We select parameters that are
empirically relevant, allowing us to assess numerically how ac-
curate the various approximating distributions are in realistic
settings. The discussion will focus again on the VG, NIG, and
GST distributions.

3.3.1 Affine Jump-Diffusion Models. Suppose that the log
price process Yt = ln(St ) is generated from the following affine
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Figure 3. Daily skewness and kurtosis of SPX from January 1996 to October 2009.

jump-diffusion model under the risk neutral measure:

dYt =
(

r − λJ μ̄ − 1

2
Vt

)
dt +

√
VtdW 1

t + dNt

dVt = κ(θ − Vt )dt + σρ
√

VtdW 1
t + σ

√
1 − ρ2

√
VtdW 2

t ,

(15)

where Nt is a compound Poisson process with Lévy measure
ν(dy) = λJ f (dy), and μ̄ = ∫

R
eyf (dy) − 1 is the mean jump

size. W 1, W 2 are two independent Brownian motions, and are
independent of Nt as well.

For any u ∈ C, the conditional characteristic function of YT

at time t is

�t (u; T , xt )
.= E(euYT |Ft ) = exp(ψ1(u, T − t)

+ ψ2(u, T − t)Vt + uYt ), (16)

where xt = (Yt , Vt ), ψ1(u, τ ) = ruτ − κθ ( γ+b

σ 2 τ + 2
σ 2 ln[1 −

γ+b

2γ
(1 − e−γ τ )]) −λJ τ (1 + μ̄u) + λJ τ

∫
R

euyf (dy), ψ2(u, τ )

= − a(1−e−γ τ )
2γ−(γ+b)(1−e−γ τ ) , and b = σρu − κ , a = u(1 − u), and

γ = √
b2 + aσ 2 (see Duffie, Pan, and Singleton 2000). The

density function of YT conditional on information up to
time t is therefore ft (y; T , xt ) = 1

π

∫ ∞
0 e−iuy�t (iu; T , xt )du,

which follows from inverse Fourier transform. The price of
European call option written on Y with maturity T and strike
price K is defined as Ct (K; T , xt ) = E((eYT − K)+|Ft ),
and it has an explicit expression: Ct (K; T , xt ) =
P1(K, t, T , xt ) − KP2(K, t, T , xt ) where P1(K, t, T , xt ) =
1
2 st − e−r(T −t)

π

∫ ∞
0 Im[ eiv ln(K)�t (1−iv;T ,xt )

v
]dv, P2(K, t, T , xt ) =

1
2e−r(T −t) − e−r(T −t)

π

∫ ∞
0 Im[ eiv ln(K)�t (−iv;T ,xt )

v
]dv and Im repre-

sents the imaginary part of a complex number (see Duffie, Pan,
and Singleton 2000). The put price follows from the put/call
parity. In the numeric calibration, we apply the fast Fourier
transform of Carr and Madan (1999) to both ft (y; T , xt ) and
Ct (K; T , xt ) (see also Lee 2004). The details are in Appendix B.

We focus exclusively on two cases involving jumps: Gaus-
sian jumps, that is,

∫
R

euyf (dy) = exp(μJ u + σ 2
J u2/2), and

exponential jumps, that is,
∫

R
euyf (dy) = (1 − uμJ )−1, as they

represent the most realistic processes. The model parameters
are taken from Duffie, Pan, and Singleton (2000): r = 3.19%,
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Figure 4. Skewness and kurtosis of noisy option prices generated by the AJD model. The figure displays the squared skewness and excess
kurtosis calculated from the noisy option prices which are constructed by multiplying a Gamma-distributed noise to the option prices calculated
from affine jump-diffusion (15) with Gaussian Jumps (see Panel (a)) and Exponential Jumps (see Panel (b)). Superimposed, we draw the feasible
domains of the VG, NIG, and GST distributions.

ρ = −0.79, θ = 0.014, κ = 3.99, σ = 0.27, λJ = 0.11. We con-
sider μJ = −0.14, and σJ = 0.15 for Gaussian jumps, while
μJ = 0.14 for Exponential jumps. To determine the value of
x0 = (y0, v0), we simulate the log price process starting from
value 0 and draw from the invariant distribution of the volatility
process which is a Gamma distribution with characteristic func-
tion φ(u) = (1 − iuσ 2/(2κ))−2θκ/σ 2

(see, e.g., Keller-Ressel
2011). We simulate 1000 sample paths. For each, we drop the
first 1000 observations and use the 1001th observation from
simulation as the value of x0.

Note that in reality, the observed option prices might de-
viate from the true prices due to mistakes in the recording
of data, bid-ask spread, nonsynchronicity, liquidity premia,
or other market frictions. We add observational errors to
the simulated call/put prices. The “observed” call/put prices
are constructed by multiplying a noise ε to the theoreti-
cal call/put prices, that is, C∗

0 (K; T , x0) = εC0(K; T , x0) and
P ∗

0 (K; T , x0) = εP0(K; T , x0). The noise ε is assumed to be
Gamma distributed with mean 1 and variance s where s is
the bid-ask spread. Note that the spread is larger for the
in-the-money options than for the OTM options. We set
s = min(M(C0(K; T , x0)),M(C0(K; T , x0) + K − y0), which
is the maximum spread allowed by the Chicago Board Options
Exchange. M(·) is a piecewise linear function on the interval
[0, 50], with knots M(0) = 1/8, M(2) = 1/4, M(5) = 3/8, M(10)
= 1/2, M(20) = 3/4, and M(q) = 1 for q ≥ 50.9 We eliminate
option prices which violate the arbitrage-free bounds.

We use the approximating densities to price European call op-
tions and compare them with the observed prices C∗

0 (K; T , x0).
Two measures of pricing errors are considered. The first is based
on absolute price difference, denoted by La . The second is de-
fined in terms of relative price difference, denoted by Lr . The

9See Bondarenko (2003) for more details.

two measures are defined as follows:

La =
√√√√1

n

n∑
i=1

(
Cmodel

i − Cobs
i

)2
and

Lr =
√√√√1

n

n∑
i=1

(
Cmodel

i − Cobs
i

Cobs
i

)2

, (17)

where Cobs
i and Cmodel

i represent the “observed” price and the
price estimated from the approximating distribution. The sum is
taken over a range of strikes (or moneyness, which is the ratio
of asset price St and strike price Ki) for contracts written on the
same security. These measures are, respectively, absolute and
relative pricing errors.

Figure 4 displays the skewness and kurtosis calculated from
the noisy option prices which are generated from AJD models
with Gaussian jumps and Exponential jumps, respectively, for
T = 1/12 (in years) and 1/2 (in years).10 Table 2 reports the
mean pricing errors L̄a and L̄r , an average of La and Lr over
1000 iterations, for three different ranges of moneyness. Figure 4
shows that the most of the skewness-kurtosis combinations are
within the feasible domain of the NIG and VG distributions, but
the GST is inadequate in terms of feasible domain coverage—
for both the Gaussian and Exponential jump cases. This is why
we cover in Table 2 only the NIG and VG cases. The pricing
errors of the two approximating densities are quite similar—
particularly in absolute terms. In relative measures (using the
Lr loss function) it seems that the NIG has a slight edge for
short maturities (1 month) while the reverse is true for the longer
maturity (6 months). Yet, in terms of feasible domain and pricing

10It is worth noting that we applied Kolmogorov-Smirnov tests to see whether
there were significant differences between the model-based densities and the
approximating ones. In almost all cases we rejected the null of identical distribu-
tions. The Kolmogorov-Smirnov test statistics reflect overall fit, however, while
we will focus on the parts of the distributions that matter for risk management.
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Table 2. Mean pricing errors for the noisy call prices generated by the AJD model

Gaussian jump Exponential jump

(0.7, 0.8) (0.8, 0.9) (0.97, 1.03) (0.7, 0.8) (0.8, 0.9) (0.97, 1.03)

L̄a L̄r L̄a L̄r L̄a L̄r L̄a L̄r L̄a L̄r L̄a L̄r

1 month
NIG 0.0000 1.2315 0.0000 1.5701 0.0014 0.2298 0.0001 0.2972 0.0002 0.2919 0.0019 0.2377
VG 0.0000 1.2944 0.0001 2.8800 0.0022 0.3409 0.0001 0.3096 0.0002 0.4269 0.0030 0.3091

6 months
NIG 0.0000 1.6878 0.0003 0.8600 0.0019 0.0557 0.0003 0.2501 0.0010 0.2608 0.0023 0.0668
VG 0.0000 1.5009 0.0003 0.9554 0.0021 0.0667 0.0003 0.2327 0.0014 0.3616 0.0037 0.1140

The table reports the mean pricing errors for the noisy call prices in terms of L̄a and L̄r —an average of absolute pricing error La and relative pricing error Lr over 1000 iterations—for
three different ranges of moneyness: (0.7,0.8), (0.8,0.9), and (0.97,1.03). The noisy option prices are constructed by multiplying a Gamma-distributed noise to the option prices calculated
from affine jump-diffusion (15) with Gaussian jumps and exponential jumps, respectively.

errors it is fair to say that the two classes of distributions are
comparable.

3.3.2 GARCH Option Pricing Models. Besides the affine
jump-diffusion models, we also consider the GARCH(1,1) op-
tion pricing model of Heston and Nandi (2000)—see also Duan
(1995)—to assess the approximation errors of the VG, NIG, and
GST distributions. We consider the GARCH option pricing ex-
ample as a reasonable alternative—used by practitioners as well
as academics. Many other models—such as stochastic volatility
models—require quite involved estimation procedures and fil-
tering of latent volatilities. The GARCH option pricing model is
arguably on the same level of simplicity as our moment-implied
density approach. Many other methods are much more involved
and harder to implement.

The GARCH(1,1) process under the risk neutral measure is

ln

(
St

St−1

)
= r − 1

2
σ 2

t + σtεt , εt
iid∼ N (0, 1)

σ 2
t = ω + a(εt−1 − cσt−1)2 + bσ 2

t−1. (18)

The time-t price of European call option with strike K at maturity
T is explicitly given by

Ct

(
K; T , St , σ

2
t+1

)
= 1

2

(
St − Ke−r(T −t)) + e−r(T −t)

π

×
(∫ ∞

0
Re

[
K−iφf (t, T ; iφ + 1)

iφ
]dφ

− K

∫ ∞

0
Re

[
K−iφf (t, T ; iφ)

iφ

]
dφ

)
, (19)

where f (t ; T , φ) = S
φ
t exp(At + Btσ

2
t+1) and

At = φr + At+1 + ωBt+1 − 0.5 ln(1 − 2aBt+1)

Bt = φ(−0.5 + c) − 0.5c2 + 0.5(φ − c)2

1 − 2aBt+1
+ bBt+1 (20)

with terminal condition AT = BT = 0.
The values of parameters are taken from Table 1 of Heston and

Nandi (2000): r = 0, ω = 5.02 ∗ 10−6, a = 1.32 ∗ 10−6, b =
0.589, c = 422. We simulate 2000 daily prices under the risk
neutral measure, with initial state variables S0 = 100 and σ 2

1 =
(0.152)/252. We drop the first 1000 observations, so we end up
with a sample path of 1000 daily observations {(St , σ

2
t+1), t =

1, . . . , 1000}. For each t, we calculate the call price via (19) and
put price using the put/call parity, with T = 22 (in days) or 1
month and T = 132 (in days) or 6 months. We also consider
14 days to maturity which is more relevant to the option pricing
exercise in Section 4.2. Moreover, as described in Section 3.3.1,
we add Gamma-distributed noise to the theoretical option prices.

Table 3. Mean pricing errors for the noisy call options simulated from the GARCH model

(0.7, 0.8) (0.8, 0.9) (0.97, 1.03)

Moneyness L̄a L̄r L̄a L̄r L̄a L̄r

14 days
NIG 0.0939 0.7828 0.0111 0.9763 0.4571 0.3997
VG 0.0915 0.7580 0.0112 0.9830 0.4756 0.4028

22 days
NIG 0.0495 0.8666 0.0362 31.0302 0.5566 0.4289
VG 0.0497 0.8758 0.0414 36.0376 0.6105 0.4426

132 days
NIG 0.0007 34.9586 0.0248 43.6354 1.9885 0.8831
VG 0.0009 45.3229 0.0251 50.2347 1.9902 0.8837

The table reports the mean pricing errors for the noisy call prices in terms of L̄a and L̄r —an average of absolute pricing error La and relative pricing error Lr over 1000 iterations—for
three different ranges of moneyness: (0.7,0.8), (0.8,0.9), and (0.97,1.03). The noisy option prices are constructed by multiplying a Gamma-distributed noise to the option prices calculated
from (19).
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Figure 5. Skewness and kurtosis of noisy option prices generated by the GARCH model. The figure displays the squared skewness and excess
kurtosis calculated from the noisy option prices which are constructed by multiplying a Gamma-distributed noise to the option prices calculated
from the GARCH(1,1) option pricing model (18). Superimposed, we draw the feasible domains of the VG, NIG, and GST distributions.

The noisy prices, which violate the arbitrage-free bounds, are
removed.

Figure 5 displays the squared skewness and excess kurtosis
calculated from the noisy option prices with 14 days and 22 days
to maturity (Panel (a)) and 132 days to maturity (Panel (b)). Su-
perimposed are the feasible domains of the VG, NIG, and GST
distributions. Since the GST distribution has a more restrictive
feasible domain, we consider only the VG, NIG distributions
to approximate the option prices implied by the GARCH(1,1).
The mean pricing errors are reported in Table 3. The VG and
NIG approximations do a poor job in terms of the relative
measure for the deep OTM options with time-to-maturity over
1 month. When the time-to-maturity changes from 6 months to
2 weeks, the relative pricing error decreases significantly for all
the three moneyness ranges, and the two distributions—VG and
NIG—are comparable.

4. OPTION PRICING

We start from the observation that a good method of option
pricing should be able to price contracts in situations where only
a few contracts are traded. We, therefore, design experiments
where we compute risk neutral moments using a smaller set
of option contracts than is available. We then price contracts
which are not used to compute the moments via the approximate
densities. This means we use a subset of existing market prices to
extract risk neutral moments and another set of existing market
prices to appraise the accuracy of the approximate option prices.
Hence, we will examine, through an experimental design, how
data sparseness affects option pricing via VG, NIG, and GST
density approximations. We do this in such a way that we can
appraise how well our methods perform to price options that are
deep out-of-the-money versus options that are not. The former
is the most challenging task to achieve for any method—and
we show that we do very well. It will be helpful to explain the

empirical investigation first with an illustrative example—which
is covered first—followed by a full sample implementation.

4.1 An Illustrative Empirical Case

We start with an illustrative example and then proceed to a
full sample formal analysis. To illustrate the design we use SPX
options (European options on the S&P 500 index) priced on
September 23, 2009 (which is a Wednesday) with 7 days to
maturity (i.e., September 30, 2009) to illustrate the procedure.
There are 42 call options and 42 put options with 7 days to
maturity on 2009/9/23. The data consists of 20 OTM calls and
22 OTM puts. Figure 6(a) plots all the available OTM options.
We then focus on the options with moneyness (i.e., the ratio of
index level S and strike price K) between 0.8 and 1.2, which
are displayed in Figure 6(b). Since the valuation of formulas
(8), (9), and (10) require the calls and put to have the same (or
similar) distance from strike price to the index level to mitigate
estimation error (recall the discussion in footnote 7), we use
|K/S − 1| as x-axis in Figure 6(b). To evaluate the option pricing
via the VG, NIG, and GST approximations and assess how data
sparseness affects pricing accuracy, we consider two strategies:
(1) select the call/put pairs with |K/S − 1| closest to 0.03, 0.06,
0.09, 0.12, and 0.15, and (2) select the call/put pairs with |K/S −
1| closest to 0.03, 0.09, and 0.15. Therefore, we pick call/put
pairs in Circles 1–5 in Figure 6(b) for Strategy 1, and call/put
pairs in Circles 1, 3, and 5 for Strategy 2. For each strategy,
we derive the approximating densities—the VG, NIG, and GST
distributions, and then price all the “unused” call options.11

Table 4 reports the pricing errors measured by La and Lr

(defined in (17) where Cobs
i is the observed market call option

price). Denote by [a, b] the range of moneyness of call options

11We do not consider call options with moneyness greater than 1.03, because
they are not liquid, that is, infrequently traded.
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Figure 6. OTM SPX calls and puts, 2009/9/23, expired on 2009/9/30. The figure plots all the available out-of-the-money S&P 500 index
call/put options priced on September 23, 2009 with 7 days to maturity.

that are used for pricing. We divide all the “unused” calls into
three groups: Group 1 contains “unused” options with mon-
eyness within [a, b], Group 2 contains “unused” options with
moneyness less than a, and Group 3 contains “unused” calls
with moneyness greater than b. In particular:

• Strategy 1: a = 0.8660 and b = 0.9733. There are 2 points
in [a, b], 10 points in ‘< a’, 4 points in ‘> b’, a total of 16
unused points.

• Strategy 2: a = 0.8660 and b = 0.9733. There are 4 points
in [a, b], 10 points in ‘< a’, 4 points in ‘> b’, a total of 18
unused points.

The three groups are labeled as [a, b], < a, and > b, respec-
tively, in Table 4. The following observations emerge from ex-
amining Table 4:

• The GST approximation is not feasible using Strategy 1,
while it is for Strategy 2.
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Table 4. Pricing SPX call options on 2009/9/23

Overall [a, b] < a > b

La Lr La Lr La Lr La Lr

Strategy 1
NIG 2.6837 0.9449 0.6992 0.9606 0.0675 0.9998 5.3434 0.7816
VG 3.1201 0.9194 0.6105 0.7757 0.0674 0.9893 6.2244 0.7962
GST NA NA NA NA NA NA NA NA

Strategy 2
NIG 2.2326 0.8451 0.3739 0.6122 0.0673 0.9782 4.7200 0.6685
VG 2.4797 0.8147 0.3193 0.4496 0.0672 0.9597 5.2494 0.6942
GST 2.0950 0.9493 0.5315 1.0000 0.0675 1.0000 4.4110 0.7454

The table reports the pricing errors measured by La and Lr (defined in (17) where Cobs
i is the observed market call option price) for S&P 500 index call options on September 23, 2009,

with 7 days to maturity. Two strategies are considered. For Strategy 1, we use five pairs of call/put options to construct the approximating VG, NIG, and GST distributions, which are
further used to price other unused options. For Strategy two, three pairs of call/put options are selected to do the pricing. Denote by [a, b] the range of moneyness of call options that are
used for pricing. We divide all the “unused” calls into three groups: Group 1 contains “unused” options with moneyness within [a, b], Group 2 contains “unused” options with moneyness
less than a, and Group 3 contains “unused” calls with moneyness greater than b. The three groups are labeled as [a, b], < a, and > b, respectively.

• The pricing errors are relatively small in Strategy 2.
In other words, the accuracy is improved when we
use fewer options to derive the NIG, VG, and GST
approximations.

• Overall, the VG approximation is best, though Strategy 1
picks NIG and Strategy 2 picks GST for group 3—perhaps
in light of a small sample size in that group.

Since Strategy 2 yields a smaller pricing error than Strategy
1 in terms of both absolute and relative measures, we take a
closer look at this phenomenon. There are 16 “unused” calls in
Strategy 1 and 18 in Strategy 2. We pick up the “unused” call
options in common (i.e., 16) and compare their market values
with the prices derived from both strategies. The results are
shown in Figure 7, where “VG1” and “NIG1” refer to the option
prices estimated by VG and NIG, respectively, using Strategy 1,
while “VG2” and “NIG2” are for Strategy 2. “Market” means
the observed market price. It is apparent that the prices derived
from Strategy 2 is much closer to the market prices, especially
for the at-the-money (ATM) options (i.e., S/K between 0.97
and 1.03).

Since the pricing errors are smaller in Strategy 2 with fewer
observations, we have that the accuracy is improved when fewer
options are used to derive the NIG, VG, and GST approxima-
tions. This may sound counterintuitive since usually more ob-
servations often lead to high accuracy. It is worth recalling that
we are dealing with approximate models where more data may
either improve or worsen the approximation. Hence, we are not
in a regular setting of sampling theory with increased accuracy
with more data. This explains why fewer observations may, as
it turns out, be better.

4.2 Full Sample Analysis

We examine now all the SPX options from January 4, 1996
to October 30, 2009, which are priced on Wednesdays.12 For
each Wednesday and time-to-maturity T0, we pick the ATM call

12We pick Wednesday—as this is common in the empirical option pricing
literature—since it avoids some of the day-of-the-week effects that occur par-
ticularly on Fridays and Mondays.

option with strike price closest to the index level, and then cal-
culate its Black-Scholes implied volatility (IV). We, therefore,
obtain a sample of IVs for time-to-maturity T0. Based on this
sample, we obtain the empirical first and third quartiles, that is,
Q1 and Q3. Denote by D(1, T0) all the Wednesday calls whose
IV is less than Q1, D(2, T0) the Wednesday calls whose IV is
between Q1 and Q3, and D(3, T0) the set of Wednesday calls
whose IV is larger than Q3. Based on observations in Section
3.2, we consider T0 as one week (i.e., 5–14 days), 1 month (i.e.,
17–31 days), and 3 months (i.e., 81–94 days). Therefore, we
end up with nine different combinations. Table 5 lists, for each
combination, the number of days which yield skewness-kurtosis
combination within the feasible domain of the VG, NIG, GST
distributions using Strategies 1 and 2, respectively.13 Namely,
the triplets in Table 5 are the numbers of days feasible for the VG,
NIG, and GST distributions. For instance, the triplet (27, 21, 0)
means that the VG distribution can model 27 dates out of 46
(i.e., first quartile yields 46 data points), NIG can model 21 data
points while none of the 46 days yields a skewness-kurtosis
combination in the feasible domain of the GST distribution.
We note that, as expected, the GST is the most restrictive. We,
therefore, consider two sample configurations—one where all
three distributions are applicable. This is a relatively small sam-
ple that arguably gives unfair advantage to the more restrictive
GST distribution. Hence, we also examine a sample where only
the VG and NIG distributions are feasible. This is a larger and
hence more reliable sample. We analyze the pricing errors for
days identified in Table 5 starting with the most restrictive sam-
ple configurations involving all days where GST, VG, and NIG
distributions apply. We focus on the set D(2, T0) with T0 = 17–
31 and 81–94, D(3, T0) with T0 = 5–14 and 17–31 because they
have relatively more observations than the other cells. For days
identified in each of the cells, we repeat the analysis described
for the single day 2009/9/23, and derive La and Lr. We then
average La and Lr within each cell. These averages, denoted by
L̄a and L̄r respectively, are reported in Table 9.

To appraise the performance of the VG, NIG, and GST
approximations, we use the prices computed from the

13We removed days which have fewer than five calls or five puts.
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Figure 7. Compare Strategy 1 with Strategy 2 for SPX call options on September 23, 2009. The figure compares the market prices of 16 call
options (on September 23, 2009 with 7 days to maturity) with the prices derived from Strategy 1 and Strategy 2. “VG1” and “NIG1” refer to
the option prices estimated by VG and NIG, respectively, using Strategy 1, while “VG2” and “NIG2” are for Strategy 2. “Market” means the
observed market price.

Black-Scholes model and the GARCH(1,1) option pricing
model (18) as benchmarks, which will be denoted BLS and
GARCH, respectively, in the tables. The volatility that enters
the Black-Scholes formula is the Black-Scholes implied volatil-
ity of the previous-day ATM call option, which has the shortest
time-to-maturity and strike price closest to the index level.14 To
obtain the GARCH option pricing (19), we first estimate model
parameters by considering the following GARCH(1,1) under
the physical measure

ln

(
St

St−1

)
= r + λ̃σ 2

t + σtεt , εt ∼ N (0, 1)

σ 2
t = ω + a(εt−1 − c̃σt−1)2 + bσ 2

t−1. (21)

We use the S&P 500 index over the full sample—from
January 4, 1996 to October 30, 2009 to estimate the pa-
rameters (a, b, c̃, ω, λ̃). The maximum likelihood estima-
tors are (â, b̂, ˆ̃c, ω̂, ˆ̃λ) = (1.72e − 05, 0.4895, 164.1, 7.5e −
05, 1.4685), and hence ĉ = ˆ̃c + ˆ̃λ + .5 = 166.0685.

What do we learn from Table 9? For median volatility regimes
(D(2, .)) we note that option pricing based on Black-Scholes
implieds perform best in absolute terms (La) but not in relative
terms. This observation applies to both strategies and across
moneyness. In terms of relative pricing errors the picture is
quite different. Namely, in terms of relative pricing errors, we
find that either the VG approximation or the GST one is the
best. It should also be noted, however, that the NIG and VG
approximations typically yield similar relative pricing errors.
The GST appears to perform better for ATM options > b. It
is also worth noting that Strategies 1 and 2 yield comparable
pricing errors. This is rather impressive as it means that we can
use less data (i.e., contracts) and still find similar pricing errors.

14This is considered the most heavily traded and accurately priced contract; see
Bates (1995) and Chernov and Ghysels (2000).

In turbulent times (D(3, .)) we note that BLS starts to per-
form poorly both in absolute and relative pricing error terms.
Overall—all maturities pooled—we find GST to perform best
in absolute terms, but the VG approximation is again clearly
dominant, with NIG quite similar in terms of performance. It
is clear that the distributional approximations make a big dif-
ference compared to Black-Scholes implied option pricing as
the pricing errors are substantially larger for BLS. In terms of
relative pricing errors, the differences between BLS and distri-
butional approximations are particularly important.

What happens when we drop the GST distribution, which
is most restrictive in terms of feasibility? The results—where
we remove the GST distribution—appear in Table 10. Given
the different sample configuration, we look at a larger set of
combinations, namely, we look at the sets D(1, T0) with T0

= 5–14 and 17–31, D(2, T0) with T0 = 5–14, 17–31 and 81–
94, and finally D(3, T0) with T0 = 5–14 and 17–31. Hence,
we not only looking at a larger dataset within each cell (see
Table 5) but also a broader set of maturity/moneyness/volatility-
state combinations. We start with the cases that are common

Table 5. Number of days that yield skewness-kurtosis combination
within the feasible domains of the VG, NIG, GST distributions, SPX

options (1996–2009)

T0 Total Strategy D(1, T0) D(2, T0) D(3, T0)

5 ∼ 14 184 1 (27, 21, 0) (66, 55, 3) (41, 39, 19)
2 (34, 28, 2) (78, 76, 32) (43, 40, 32)

17 ∼ 31 352 1 (34, 22, 1) (114, 88, 15) (60, 48, 25)
2 (65, 55, 2) (142, 126, 40) (62, 53, 31)

81 ∼ 94 255 1 (16, 7, 0) (52, 36, 17) (5, 4, 4)
2 (22, 10, 0) (43, 30, 14) (4, 4, 3)

The table lists, for each of nine combinations, the number of days which yield the risk
neutral skewness-kurtosis combination within the feasible domains of the VG, NIG, GST
distributions using Strategies 1 and 2, respectively. The skewness and kurtosis are extracted
from S&P 500 index options from January 4, 1996 to October 30, 2009.
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between Tables 9 and 10. We note that whenever GST is best
when feasible the NIG distribution fills the void. However, since
NIG and VG are again often close—it is also the case that VG
is equally appealing. Overall, we find quantitatively the same
results as in the more constraint sample where GST is feasible.
Namely, Strategies 1 and 2 appear similar, the absolute pricing
errors are dominated by BLS in the low volatility regime—as
before—but in terms of relative pricing errors there are clear
gains across all moneynesses and maturities. Moreover, once
we move to high volatility states BLS no longer performs well.
Finally, it is also worth noting that the GARCH option pricing
model reported in Tables 9 and 10 performs very poorly, both
in absolute and relative terms. Hence, the methods we propose
are clearly superior to the GARCH option pricing model.

5. FROM THE RISK NEUTRAL MEASURE TO THE
PHYSICAL MEASURE

In this section, we discuss the relation between the risk neutral
measure and the physical measure in terms of the first four
moments.

Let ft (x; τ ) be the conditional density function of Rt (τ ) =
ln(St+τ ) − ln(St ) at time t under the risk neutral measure Q,
while f̃t (x; τ ) the conditional density under the physical mea-
sure P. Consider a power utility function with coefficient of
relative risk aversion θ1, and scaling factor θ0. The pricing ker-
nel is then

mt (Rt (τ ), θ ) = θ0e
−θ1Rt (τ ). (22)

The physical density, risk neutral density, and utility function
are related in the following way:

f̃t (x; τ ) = exθ1ft (x; τ )∫
eyθ1ft (y; τ )dy

(23)

and θ1 should be such that
∫

eyθ1ft (y; τ )dy exists.15 The fol-
lowing proposition links the cumulants under the risk neutral
measure and the physical measure.

Proposition 5.1. Suppose that there exist 0 < rq, rp <

∞ such that
∫

eyλft (y; τ )dy < ∞ for |λ| < rq and∫
eyλf̃t (y; τ )dy < ∞ for |λ| < rp. Let κn be the nth cumulant

of Rt (τ ) conditional on information up to time t under the risk
neutral measure, and κ̃k under the physical measure. Then for
l ≥ 1,

κ̃l = κl +
∞∑

n=1

κn+l

θn
1

n!
. (24)

The proof can be found in Rompolis and Tzavalis (2010). To
a leading order, we have κ̃l ≈ κl + θ1κl+1. Moreover, κl = κ̃l −
θ1κ̃l+1 + ∑∞

n=2(n − 1)κn+l
θn

1
n! ≈ κ̃l − θ1κ̃l+1, for l ≥ 1. Bakshi,

Kapadia, and Madan (2003) obtained similar results for the
central moments of return.

15See Aı̈t-Sahalia and Lo (2000b), Jackwerth (2000), Rosenberg and Engle
(2002), Liu et al. (2007), among others.

Let M̃ean(t, τ ) ṽar(t, τ ), S̃kew(t, τ ), and ẼKurt(t, τ ) be the
time t conditional mean, variance, skewness, and excess kur-
tosis of ln(St+τ ) under the physical measure. It follows from
Proposition 5.1 that,

M̃ean(t, τ ) ≈ Mean(t, τ ) + θ1κ2 (25)

ṽar(t, τ ) ≈ var(t, τ ) + θ1κ3 (26)

S̃kew(t, τ ) ≈ Skew(t, τ ) + θ1
(
κ

−3/2
2 κ4 − 1.5κ

−5/2
2 κ2

3

)
= Skew(t, τ ) + θ1(EKurt(t, τ )

− 1.5Skew(t, τ )2)Var(t, τ )1/2 (27)

ẼKurt(t, τ ) ≈ EKurt(t, τ ) + θ1
(
κ−2

2 κ5 − 2κ−3
2 κ3κ4

)
= EKurt(t, τ ) + θ1

(
κ−2

2 κ5 − 2κ
1/2
2

× EKurt(t, τ
)
Skew(t, τ )), (28)

where κ5 needs the pricing of E
Q
t (e−rτRt (τ )5), which is

E
Q
t (e−rτRt (τ )5)

=
∫ ∞

St

20(ln(K/St ))3 − 5(ln(K/St ))4

K2
C(t, τ ; K)dK

+
∫ St

0

20(ln(K/St ))3 − 5(ln(K/St ))4

K2
P (t, τ ; K)dK

Equations (25)–(28) allow us to calculate the first four moments
under the physical measure.

Because the transformation formulas (25)–(28) are derived
under the assumption that κ̃l ≈ κl + θ1κl+1, we report in Table
6 the sample mean and standard deviation of the risk neutral
cumulants κ2, κ3, κ4, and κ5 for the S&P 500 index over the full
sample—from January 4, 1996, through October 30, 2009.16

On average, the higher-order cumulants are of order 10−4 for
time-to-maturity up to 1 month. Therefore, it is reasonable to
believe that the transformation formulas (25)–(28) provide a
good approximation if θ1 is relatively small, say, less than 10.

Next we will discuss in detail the VG, NIG, and GST distri-
butions under the physical measure, and the estimation of the
relative risk aversion coefficient θ1.

5.1 The GH Family of Distributions: The Risk Neutral
Measure or the Physical Measure?

Suppose that the conditional distribution of Rt (τ ) given in-
formation up to time t is approximated by GH(αt , βt , μt , bt , pt )
under the physical measure P. Consider the moment-generating
function of GH(α, β, μ, b, p). For |β + z| < α,

MGH(z; α, β, μ, b, p) =
∫

R

ezxfGH(x)dx

= eμz (α2 − β2)p/2

(α2 − (β + z)2)p/2

Kp(b
√

α2 − (β + z)2)

Kp(b
√

α2 − β2)
, (29)

16The results are similar in magnitude to the estimates of κ3 and κ4 reported
in Rompolis and Tzavalis (2010) who looked at S&P 500 index returns and
options over 22 trading days from January 1996, to December 2007.
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Table 6. Summary statistics for SPX from January 1996 to October 2009

Skewness Excess kurtosis κ2 κ3 κ4 κ5

5∼14 days to maturity
Mean –1.5131 22.8377 0.0015 –0.0002 0.0001 –0.0001
SD 1.7441 50.4268 0.0020 0.0005 0.0005 0.0008

17∼31 days to maturity
Mean –1.3942 7.3299 0.0037 –0.0006 0.0003 –0.0003
SD 0.8565 13.2251 0.0050 0.0018 0.0014 0.0016

81∼94 days to maturity
Mean –1.2633 3.0027 0.0129 –0.0031 0.0016 –0.0011
SD 0.6652 8.9794 0.0144 0.0076 0.0065 0.0070

171∼199 days to maturity
Mean –1.1723 1.5461 0.0258 –0.0069 0.0027 –0.0009
SD 0.5268 3.6149 0.0239 0.0138 0.0103 0.0076

The table reports the sample mean (mean) and standard deviation (SD) of the risk neutral skewness, the risk neutral excess kurtosis, and the risk neutral cumulants κ2, κ3, κ4, and κ5 for
S&P 500 index over the full sample (January 4, 1996 – October 30, 2009). The risk neutral moments and cumulants are extracted from option prices via (8), (9), and (10).

where fGH(x) is defined in (1). The pricing kernel (22) satisfies
the following arbitrage free conditions

EP
t [mt (Rt (τ ), θt )] = e−rτ , EP

t

[
mt (Rt (τ ), θt )e

Rt (τ )
] = 1

(30)

if and only if

MGH(−θ1; αt , βt , μt , bt , pt ) = θ−1
0 e−rτ ,

MGH(1 − θ1; αt , βt , μt , bt , pt ) = θ−1
0 (31)

given that |βt − θ1| < αt and |βt + 1 − θ1| < αt .17 It follows
that log MGH(1; αt , βt − θ1, μt , bt , pt ) = rτ . Therefore, Rt (τ )
is GH(αt , βt − θ1, μt , bt , pt ) under the risk neutral measure. On
the other hand, if the conditional distribution of Rt (τ ) belongs
to the GH family under the risk neutral measure, then after
exponential tilting the real-world distribution of Rt (τ ) is within
the GH family as well again in the absence of arbitrage. In
particular, under the arbitrage free assumption, Rt (τ ) is NIG (or
VG) distributed under the risk neutral measure if and only if it
is NIG (or VG) distributed under the physical measure, but it
does not apply to the GST distribution.

Next we will consider estimating θ1 when the approximating
densities are the VG and NIG. We use the maximum likelihood
estimation outlined in Liu et al. (2007). Let {t∗i , 1 ≤ i ≤ n} be
the expiration times of the options and let ti be the time when risk
neutral densities are formed for options that expire at time t∗i .
{t∗i , ti} should satisfy ti < t∗i ≤ ti+1 for 1 ≤ i ≤ n − 1 with t∗n =
tn+1 so that the densities do not overlap. With τ = t∗i − ti , θ1 is
estimated by maximizing the following log-likelihood function

log L(Rt1 (τ ), . . . , Rtn (τ )|θ1) =
n∑

i=1

log f̃ti (Rti (τ )|θ1, �̂ti ),

(32)

where f̃ti (Rti (τ )|θ1, �̂ti ) is the real-world distribution of Rti (τ )
conditional on information up to ti , and �̂ti represents the

17See, for instance, Singleton (2006) and León, Mencı́a, and Sentana (2009).

vector of estimated parameters in the associated risk neu-
tral density. To be specific, if Rti (τ ) is NIG(αti , βti , μti , bti )
distributed under the risk neutral measure, then f̃ti (·) is
the density function of NIG(αti , βti + θ1, μti , bti ) with �ti =
(αti , βti , μti , bti ). �̂ti is obtained by matching the moments as
described in Section 3.1. Similarly, if Rti (τ ) is modeled by
VG(αti , βti , μti , pti ) under the risk neutral measure, then it is
VG(αti , βti + θ1, μti , pti ) distributed under the physical mea-
sure with �ti = (αti , βti , μti , pti ). Table 7 reports the estimates
of θ1 using the S&P 500 index options from January 4, 1996, to
October 30, 2009, with τ = 7, 14, 22 days.

5.2 Value-at-Risk Forecasting

Last but certainly not least, we consider value-at-risk (VaR)
forecasting. We use the notation introduced in Section 3.1.
−Rt (τ ) can be viewed as the loss from time t to t + τ . The
τ−period-ahead VaR forecast at level 100(1 − α)% is defined
as VaRt (τ, α) = infy{y : P (−Rt (τ ) ≥ y|Ft ) ≤ α}. We consider
VaR evaluated under the risk neutral measure Q as well as the
physical measure P, which will be denoted by VaRQ

t (τ, α) and
VaRP

t (τ, α), respectively. Let V̂aR
Q

t (τ, α) (or V̂aR
P

t (τ, α)) be
the estimate of VaRQ

t (τ, α) (or VaRP
t (τ, α)). The real-world es-

timates are obtained using θ1 reported in Table 7. Therefore, only
the VG and NIG distributions are considered in this exercise.

Table 7. The estimates of θ1 using SPX options from January 1996 to
October 2009

Time to maturity VG NIG

7 days 2.8953 3.0914
14 days 0.7484 0.2421
22 days 0.0140 0.0198

The table reports the estimates of the relative risk aversion coefficient θ1 using S&P 500
index options from January 4, 1996, to October 30, 2009, with 7 days, 14 days, 22 days to
maturity.
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(a) VG approximation
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Figure 8. The 95% VaR forecast for SPX over 7 days. The figure plots the losses {−Rt (7)} (the curves) of S&P 500 index from January 1996
to October 2009, and the 95% VaR forecasts under the risk neutral measure (i.e., stars for V̂aR

Q

t (7, 0.05)) and the physical measure (i.e., dots for

V̂aR
P

t (7, 0.05)). The forecasts are derived using the VG and the NIG densities. The real world forecasts are obtained using θ1 reported in Table 7.
The vertical line divides the series into two subperiods: (1) prior to August 2008 and (2) the financial crisis period.
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(a) VG approximation
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Figure 9. The 95% VaR forecast for SPX over 14 days. The figure plots the losses {−Rt (14)} (the curves) of S&P 500 index from January
1996 to October 2009, and the 95% VaR forecasts under the risk neutral measure (i.e., stars for V̂aR

Q

t (14, 0.05)) and the physical measure (i.e.,

dots for V̂aR
P

t (14, 0.05)). The forecasts are derived using the VG and the NIG densities. The real world forecasts are obtained using θ1 reported
in Table 7. The vertical line divides the series into two subperiods: (1) prior to August 2008 and (2) the financial crisis period.

We consider again the SPX options from January 4, 1996 to
October 30, 2009, with 7 days and 14 days to maturity. Hence,
we do as if we hold the market portfolio or something similar to
that, and compute its VaR forecast. Figures 8 and 9 plot the losses
{−Rt (τ )} over the life time of options, that is, τ = 7 and 14. The
vertical line divides the series into two subperiods: (1) Prior to
August 2008 and (2) the Financial crisis period.18 Superimposed
are the out-of-sample VaR forecasts at the 95% level under the
risk neutral measure (stars) and the physical measure (dots). The
estimates are derived using the VG and the NIG densities. There
are 229 observations for τ = 7. Among them, 216 observations

18We also remove days which have only two pairs of contracts.

can be modeled by the VG density while 213 by the NIG density.
For τ = 14, 155 out of 172 can be approximated by the VG and
149 out of 172 by the NIG density.

To better understand the difference between the VG and NIG
densities and their goodness of fit, we consider the VaR fail-
ure indicator which is defined as It (τ, α) = I{−Rt (τ )>V̂aR

P

t (τ,α)},

that is, It (τ, α) = 1 if Rt (τ ) < −V̂aR
P

t (τ, α) and 0 otherwise.
Figure 10 plots the 95% VaR forecasts under the physical mea-
sure (i.e., V̂aR

P

t (τ, 0.05)) using both VG and NIG densities
against the losses {−Rt (τ )} over the lift time of the options
for τ = 7 and 14. Denote by T the number of VaR forecasts.
Then

∑T
t=1 It (τ, α) is the total number of exceedances of the

100(1 − α)% VaR forecasts, and T −1 ∑T
t=1 It (τ, α) is referred
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Figure 10. The 95% VaR forecasts under the physical measure for SPX (Jan. 1996–Oct. 2009). The figure shows the 95% VaR forecasts
under the physical measure (i.e., V̂aR

P

t (τ, 0.05)) using both VG and NIG densities against the losses {−Rt (τ )} (the curves) over the lift time of
the S&P 500 index call options for τ = 7 and 14. The real world forecasts are obtained using θ1 reported in Table 7. The vertical line divides the
series into two subperiods: (1) prior to August 2008 and (2) the financial crisis period.

to as the empirical risk level. We report in Table 8 the empirical
risk level (see the columns with label “Emp. Risk”) for the full
sample and the two subsamples: prior to the financial crisis and
during the crisis. For the VG approximation, we report the em-
pirical risk levels across all the observations which are within
the VG feasible domain—see the rows labeled “VG(216)” and
“VG(155),” as well as the empirical risk levels for observations
which are common for both VG and NIG distributions—see the
rows labeled “VG(213)” and “VG(149).” The latter allows us to
compare the two densities. For nominal risk level 0.025 and τ

= 7, the two densities yield the same empirical risk level over
the full sample and they over-estimate the risk. For the subsam-
ple “Prior to August 2008,” the VG provides a more accurate
estimate of the risk. For the “Financial Crisis Period,” the NIG

underestimates the risk, but it provides a more accurate esti-
mate than the VG approximation. When the nominal risk level
increases to 0.05, both over-estimate the risk in the three sam-
ples, and overall the NIG provides a more accurate estimate. We
also consider the nominal risk level 0.05 and τ = 14. The two
densities yield the same results and they underestimate the risk.

To backtest the accuracy of VaR forecasts, we consider the un-
conditional coverage test of Christoffersen (1998), which tests
for the null hypothesis of EP (It (τ, α)) = α against a two-sided
alternative. The column labeled “Uncond” in Table 8 reports
the p-values of unconditional coverage test. The test is not ap-
plicable when α = 0.05 and τ = 14 during the financial crisis
period. This is because the exceedance of VaR forecast is 0. The
p-values, when applicable, indicate that there is no significant

Table 8. VaR Backtesting

Full sample Prior to August 2008 Financial crisis period

Emp. Risk Uncond Emp. risk Uncond Emp. risk Uncond

α = 0.025, τ = 7
VG(216) 0.0324 0.5046 0.0312 0.6258 0.0357 0.6291
VG(213) 0.0282 0.7715 0.0253 0.9797 0.0364 0.6128
NIG(213) 0.0282 0.7715 0.0316 0.6071 0.0182 0.7337

α = 0.05, τ = 7
VG(216) 0.0694 0.2144 0.0688 0.3019 0.0714 0.4881
VG(213) 0.0657 0.3140 0.0633 0.4608 0.0727 0.4676
NIG(213) 0.0610 0.4745 0.0570 0.6942 0.0727 0.4676

α = 0.05, τ = 14
VG(155) 0.0194 0.0467 0.0219 0.0909 0 –
VG(149) 0.0201 0.0584 0.0229 0.1128 0 –
NIG(149) 0.0201 0.0584 0.0229 0.1128 0 –

The table reports the empirical risk levels (see the columns with label “Emp. risk”), and the p-values of the unconditional coverage test of Christoffersen (1998) (see the columns with
label “Uncond”). The empirical risk level is defined as the total exceedances divided by the number of forecasts. The unconditional coverage test is not applicable when α = 0.05 and
τ = 14 during the financial crisis period, and hence the p-values are not reported. For the VG approximation, we report the empirical risk levels and p-values across all the observations
which are within the VG feasible domain—see the rows labeled “VG(216)” and “VG(155),” as well as for observations which are common for both VG and NIG distributions—see the
rows labeled “VG(213)” and “VG(149).”
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departure from adequacy except for the VG at α = 0.05
and τ = 14 which yields a marginally significant p-value—
considering the 5% significance level.

6. CONCLUDING REMARKS

We revisit in this article the generalized hyperbolic family of
distributions, which covers a wide range of distributions com-
monly used in the literature to model the financial risk. We
specifically study the VG, NIG, and GST distributions, whose
densities have closed-form expression in terms of the first four
moments. We study the properties of the NIG, VG, and GST dis-
tributions in terms of tail behavior and feasible domain. Among
them, the VG distribution admits the largest possible combina-
tions of skewness and (excess) kurtosis while the GST is the
most restrictive.

In the context of risk management we analyze option
pricing—assuming an unknown risk neutral density which is
approximated by the class of distributions we study as well as
Gram-Charlier and Edgeworth expansions. We show, through
numerical and empirical evidence, that the VG and NIG dis-
tributions are roughly similar as candidate approximating risk
neutral densities for option pricing applications. The GST—
with a more restrictive feasible domain—also performs well
when applied.

We also find that the NIG and VG approximations work ex-
tremely well in terms of option pricing in particular during high
volatility periods, compared to the industry standard of using
previous period ATM implied Black-Scholes volatilities. More-
over, we find that with only a small set of quoted contracts, we
can extrapolate and price very well options not used in the com-
putation of risk neutral moments and hence options not used
to compute the approximations. When compared to GARCH
option pricing model, the methods proposed in this article are
remarkably accurate and clearly dominating. Unfortunately, we
also find from the tail density test that the distributional approx-
imations do not do so well as far as VaR goes.

APPENDICES

A. PROOFS

Proof of Proposition 2.2. Note that

mn = 2� n
2 �γ̄ pb2� n

2 �βñ

√
πKp(γ̄ )ᾱp+� n

2 �

∞∑
k=0

2kβ̄2k�(k + � n
2 � + 1

2 )

ᾱk(2k + ñ)!
Kp+k+� n

2 �(ᾱ),

(A.1)

where ñ ≡ n(mod 2) ᾱ = bα, β̄ = bβ, γ̄ =
√

ᾱ2 − β̄2 (see
Barndorff-Nielsen and Stelzer 2005). Expression (2) is derived
from (A.1) together with the fact that

Kv(z) = zv

xv

∞∑
k=0

1

2kk!

y2k

xk
Kv+k(x),

z =
√

x2 − y2, x > 0, y > 0, v ∈ R.

∞∑
k=0

β̄2k

ᾱk

(2k + 3)

2kk!
Kp+k+2(ᾱ) = Kp+3(γ̄ )

ᾱp+2β̄2

γ̄ p+3

+ Kp+2(γ̄ )
3ᾱp+2

γ̄ p+2
,

∞∑
k=0

β̄2k

ᾱk

(2k + 3)(2k + 1)

2kk!
Kp+k+2(ᾱ)

=Kp+4(γ̄ )
β̄4ᾱp+2

γ̄ p+4
+Kp+3(γ̄ )

6β̄2ᾱp+2

γ̄ p+3
+Kp+2(γ̄ )

3ᾱp+2

γ̄ p+2
.

�

Proof of Proposition 2.4. (1) Use the fact that limb→0
bkKp+k(γ̄ )

Kp(γ̄ )

= 2k�(p+k)
γ k�(p) for k ∈ Z+ and p > 0, and the dominant convergence

theorem.
(2) Note that (4) implies

S = 2ρ(3 + R)√
V α(1 − R2)

, K = 6(1 + 6R + R2)

V α2(1 − R)2(1 + R)
,

where ρ = β
α

(|ρ| < 1) and R = ρ2 < 1. Therefore,

3S2

2K
= R(3 + R)2

(1 + 6R + R2)(1 + R)
. (A.2)

Define C = 3S2

2K
and C ∈ (0, 1). Note that f (R) =

R(3+R)2

(1+6R+R2)(1+R) is continuous and strictly increasing on (0, 1)

with range (0, 1). Given S,K and 3S2 < 2K , there exists
a unique R ∈ (0, 1) satisfying (A.2), or (C − 1)R3 + (7C −
6)R2 + (7C − 9)R + C = 0. It follows immediately that

α = 2ρ(3 + R)√
V S(1 − R2)

= 2
√

R(3 + R)√
V |S|(1 − R2)

,

β = ρα = 2R(3 + R)√
V S(1 − R2)

p = V (1 − R)2α2

2(1 + R)
= 2R(3 + R)2

S2(1 + R)3
,

μ = M − 2βp

α2 − β2
= M − 2

√
V R(3 + R)

S(1 + R)2
.

�

Proof of Proposition 2.5. (1) It follows from the fact that
limγ→0

Kp+k(γ̄ )
γ kKp(γ̄ ) = bk�(−p−k)

2k�(−p) for k ∈ Z+ and p < 0, and an ap-
plication of the dominated convergence theorem.
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(2) Define ρ = 2b2β2

(v−2)(v−4) . 0 < ρ < b2β2/12. Expression (5)
implies that

V = (1 + ρ)b2

v − 2

S2 =
(

3 + 4(v − 4)ρ

v − 6

)2 2ρ

(v − 4)(1 + ρ)3

K =
[

2(5v − 22)(v − 4)ρ2

(v − 6)(v − 8)
+ 8(v − 4)ρ

v − 6
+ 1

]
× 6

(1 + ρ)2(v − 4)

and thus b2 = V (v − 2)/(1 + ρ), and β2 = ρ(1 + ρ)(v −
4)/(2V ), where ρ > 0 and v > 8 are solutions of the follow-
ing system of equations

S2 =
(

3 + 4(v − 4)ρ

v − 6

)2 2ρ

(v − 4)(1 + ρ)3
(A.3)

K =
[

2(5v − 22)(v − 4)ρ2

(v − 6)(v − 8)
+ 8(v − 4)ρ

v − 6
+ 1

]
× 6

(1 + ρ)2(v − 4)

or

0 = 2ρ[3(v − 6) + 4(v − 4)ρ]2 − S2(v − 4)(v − 6)2(1 + ρ)3

0 = 12(v − 4)(5v − 22)ρ2 + 48(v − 4)(v − 8)ρ

+ 6(v − 6)(v − 8) − K(v − 4)(v − 6)(v − 8)(1 + ρ)2.

Note that (A.3) may not have solutions with arbitrary combi-
nation of K and S2. We next need to justify that the necessary
and sufficient (N&S) condition under which (A.3) has one and
only one solution is (6). Let x = ρ and y = v − 8. Both are
positive. Fix y, S,K , and define

f1(x; y,K) ≡ x2

[
12(5y + 18)

(y + 2)y
− K

]
+ 2x

[
24

y + 2
− K

]
+ 6

y + 4
− K ≡ Ax2 + 2Bx + C (A.4)

f2(x; y, S) ≡ x3

[
32(y + 4)

(y + 2)2
− S2

]
+ 3x2

[
16

y + 2
− S2

]
+ 3x

[
6

y + 4
− S2

]
− S2

≡ Dx3 + 3Ex2 + 3Fx − S2. (A.5)

Since

12(5y + 18)

(y + 2)y
>

32(y + 4)

(y + 2)2
>

24

y + 2
>

16

y + 2
>

6

y + 4
> 0,

the N&S condition that (A.4) has one and only one positive
root is 12(5y+18)

(y+2)y > K > 6
y+4 . The positive root is x1(y; K) =

√
B2−AC−B

A
and yL < y < yU where yL = max(0, 6/K − 4) and

yU =
√

1 + 156/K + 900/K2 − 1 + 30/K. Define

g(y; S,K) = f2(x1(y; K); y, S), for yL < y < yU . (A.6)

Lemma A.3 implies that g has root(s) in (yL, yU ) if and only if

lim
y→y−

U

D > 0 or
32(yU + 4)

(yU + 2)2
> S2. (A.7)

The root is unique as well. Therefore, the N&S condition that
one can estimate the GST parameters via the first four moments
is (6). �

To complete the proof of Proposition 2.5 , we need to justify
the following lemmas:

Lemma A.1. x1(y; K) is increasing in y, and
limy→y+

L
x1(y; K) = 0, limy→y−

U
x1(y; K) = +∞.

Proof. (1) Note that x ′
1 = −A′x2

1 +2B ′x1+C ′

2
√

B2−AC
> 0. x1 is increasing

in y.
(2) If K < 3/2, then yL = 6/K − 4 > 0. Note that

limy→y+
L

A > 0, limy→y+
L

B > 0, limy→y+
L

C ↗ 0. We have
limy→y+

L
x1 = 0. If K ≥ 3/2, then yL = 0. Similarly we have

limy→y+
L

x1 ↘ 0.
(3) Note that limy→y−

U
A ↘ 0, limy→y−

U
B < 0, and

limy→y−
U

C < 0. limy→y−
U

x1 = limy→y−
U

−C√
B2−AC+B

= +∞. �
Lemma A.2. For g(y; S,K) defined in (A.6), if there exists

y0 > 0 such that g(y0) = 0, then g′(y0) > 0.

Proof. Define a = A + K , b = B + K , c = C + K(= F +
S2), d = D + S2, and e = E + S2. Then

K = ax2
1 + 2bx1 + c

(x1 + 1)2
, S2 = dx3

1 + 3ex2
1 + 3cx1

(x1 + 1)3

∣∣∣
y=y0

.

�
Therefore,

dx1

dy
=−A′x2

1 + 2B ′x1 + C ′

2(Ax1 + B)
=−

(
a′x2

1 + 2b′x1 + c′)(1 + x1)

2((a − b)x1 + (b − c))
,

dg

dy

∣∣∣
y=y0

= D′x3
1 + 3E′x2

1 + 3F ′x1

+ 3
(
Dx2

1 + 2Ex1 + F
)dx1

dy

∣∣∣
y=y0

= (
d ′x2

1 + 3e′x1 + 3c′)x1

− 3
(
(d − e)x2

1 + 2(e − c)x1 + c
)

×
(
a′x2

1 + 2b′x1 + c′)x1

2
(
(a − b)x2

1 + (b − c)x1
) ∣∣∣

y=y0

= −(
a′x2

1 + 2b′x1 + c′)x1

×
(

3

2

(d − e)x2
1 + 2(e − c)x1 + c

(a − b)x2
1 + (b − c)x1

− d ′x2
1 + 3e′x1 + 3c′

a′x2
1 + 2b′x1 + c′

)∣∣∣
y=y0

.

With some algebra, one can show that

3

2

(d − e)x2
1 + 2(e − c)x1 + c

(a − b)x2
1 + (b − c)x1

− d ′x2
1 + 3e′x1 + 3c′

a′x2
1 + 2b′x1 + c′ > 0

for all y > 0, and hence g′(y0) > 0.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
C

hi
ca

go
] 

at
 1

0:
32

 3
1 

Ja
nu

ar
y 

20
14

 



110 Journal of Business & Economic Statistics, January 2014

Lemma A.3. Consider g(y; S,K) defined in (A.6). If
limy→y−

U
D > 0, g has one and only one root in (yL, yU ). If

limy→y−
U

D ≤ 0, g(y) < 0 for all y ∈ (yL, yU ).

Proof. If limy→y−
U

D > 0, then D(y) > 0 for all y ∈ (yL, yU ).
It follows from Lemma A.1 that limy→y+

L
g = −S2 < 0 and

limy→y−
U

g = +∞. Therefore g(y) has one and only one root in
(yL, yU ) due to intermediate value theorem and Lemma A.2. �

Next we will show that g(y) < 0 for all y ∈ (yL, yU ) if
limy→y−

U
D ≤ 0. Define yD = inf{y ∈ (yL, yU ) : D(y) ≤ 0}. If

yD = yL, then F < E < D ≤ 0 on (yL, yU ) and hence g(y) < 0
for y ∈ (yL, yU ). Suppose yD ∈ (yL, yU ). We have D(y) > 0
for y ∈ (yL, yD). Note that limy→yD

D = 0, limy→yD
E < 0,

limy→yD
F < 0, and limy→yD

x1 is finite and positive. Thus
limy→yD

g < 0. Note also that limy→y+
L

g = −S2 < 0. It fol-
lows from Lemma A.2 that g(y) < 0 for y ∈ (yL, yD] and hence
g(y) < 0 for y ∈ (yL, yU ).

B. FAST FOURIER TRANSFORM FOR DENSITY
FUNCTION AND CALL PRICE

We use fast Fourier transform of Carr and Madan (1999)
to numerically evaluate conditional density function and call
option prices derived from Model (15). The conditional den-
sity ft (y; T , xt ) = 1

π

∫ ∞
0 e−iuy�t (iu; T , xt )du which is inverse

Fourier transform of characteristic function, is approximated by

ft (yl ; T , xt ) ≈
N∑

j=1

e−(l−1)(j−1) 2π
N

i x̃(j ),

x̃(j ) = η

π
δje

ibuj �t (iuj ; T , xt ), (B.8)

where yl = −b + λ(l − 1) with b = Nλ/2 and λ = 2π/(ηN )
for l = 1, 2, . . . , N . uj = η(j − 1), and δj = 1/2 when j = 1
and 1 otherwise. For call price, consider the fact that

Ct (K; T , xt ) ≡ E((eYT − K)+|Ft )

= e−ξ log(K)

π

∫ ∞

0
e−iu log(K)φ(u)du,

φ(u) = e−r(T −t)�t (iu + (1 + ξ ); T , xt )

ξ 2 + ξ − u2 + iu(2ξ + 1)
,

where ξ is a dampening coefficient. Therefore, Ct (K; T , xt ) is
approximated by

Ct (Kl ; T , xt ) ≈ e−ξ log(Kl )
N∑

j=1

e−(l−1)(j−1) 2π
N

i x̃(j ),

x̃(j ) = δj

η

π
eiuj bφ(uj ), (B.9)

where log(Kl) = −b + λ(l − 1) with b = Nλ/2 and λ =
2π/(ηN ) for l = 1, 2, . . . , N .

Considering the criterion stated in Carr and Madan (1999),
we take in numerical calibration N = 213, η = 0.25 for both
(B.8) and (B.9), and ξ = 4 in (B.9).
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