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Abstract In this paper, we consider various moment inequalities for sums of
random matrices—which are well–studied in the functional analysis and prob-
ability theory literature—and demonstrate how they can be used to obtain
the best known performance guarantees for several problems in optimization.
First, we show that the validity of a recent conjecture of Nemirovski is actually
a direct consequence of the so–called non–commutative Khintchine’s inequality
in functional analysis. Using this result, we show that an SDP–based algorithm
of Nemirovski, which is developed for solving a class of quadratic optimiza-
tion problems with orthogonality constraints, has a logarithmic approximation
guarantee. This improves upon the polynomial approximation guarantee estab-
lished earlier by Nemirovski. Furthermore, we obtain improved safe tractable
approximations of a certain class of chance constrained linear matrix inequal-
ities. Secondly, we consider a recent result of Delage and Ye on the so–called
data–driven distributionally robust stochastic programming problem. One of
the assumptions in the Delage–Ye result is that the underlying probability dis-
tribution has bounded support. However, using a suitable moment inequality,
we show that the result in fact holds for a much larger class of probability dis-
tributions. Given the close connection between the behavior of sums of random
matrices and the theoretical properties of various optimization problems, we
expect that the moment inequalities discussed in this paper will find further
applications in optimization.
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1 Introduction

In a recent groundbreaking work [25], Nemirovski showed that the theoretical
properties of a host of optimization problems are closely related to the behavior
of a sum of certain random matrices. Indeed, he showed that the construction
of so–called safe tractable approximations of certain chance constrained linear
matrix inequalities, as well as the analysis of a semidefinite relaxation of certain
non–convex quadratic optimization problems, can be achieved by answering
the following question:

Question (Q) Let ξ1, . . . , ξh be independent mean zero random variables, each
of which is either (i) supported on [−1, 1], or (ii) normally distributed with unit
variance. Furthermore, let Q1, . . . , Qh be arbitrary m×n matrices. Under what
conditions on t > 0 and Q1, . . . , Qh will we have an exponential decay of the
tail probability

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥ t

)
?

Here, we use ‖A‖∞ to denote the spectral norm (i.e., the largest singular value)
of an m× n matrix A.

Motivated by such connection, Nemirovski proceeded to establish the following
result, which constitutes one possible solution to Question (Q):

Theorem 1 (Nemirovski [25]) Let ξ1, . . . , ξh be independent random variables
with zero first and third moments, and that each of them is either (i) supported
on [−1, 1], or (ii) normally distributed with unit variance. Furthermore, let
Q1, . . . , Qh be arbitrary m× n matrices satisfying

h∑

i=1

QiQ
T
i ¹ Im and

h∑

i=1

QT
i Qi ¹ In, (1)

where Im (resp. In) is the m×m (resp. n×n) identity matrix. Then, whenever
t ≥ 7(m + n)1/6, one has

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥ t

)
≤ 22 exp

(−t2/32
)
. (2)

Note that in order for (2) to hold, some normalization of Q1, . . . , Qh is neces-
sary. One such normalization is provided by condition (1), which is motivated
by the requirements of the optimization problems considered in [25]. Now, even
without knowing the details of those optimization problems, it is clearly desir-
able to have (2) holding (perhaps with different constants) for smaller values
of t. Moreover, it would be nice to remove the assumption that the random
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variables ξ1, . . . , ξh have zero third moment. However, it is not easy, if not
impossible, to extend Nemirovski’s proof to obtain the desired improvements,
as it involves some very tedious moment calculation. Nevertheless, Nemirovski
made the following conjecture, the validity of which would represent a signifi-
cant improvement over the result of Theorem 1:

Conjecture (Nemirovski [25]) Let ξ1, . . . , ξh be independent mean zero ran-
dom variables, each of which is either (i) supported on [−1, 1], or (ii) normally
distributed with unit variance. Furthermore, let Q1, . . . , Qh be arbitrary m×n
matrices satisfying (1). Then, whenever t = Ω(

√
ln(m + n)), one has

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥ t

)
≤ Θ(1) · exp

(−Θ(1) · t2) .

As argued in [25], the threshold t = Ω(
√

ln(m + n)) is in some sense the best
one could hope for. Moreover, if the above conjecture is true, then it would
immediately imply improved performance guarantees for various optimization
problems. Therefore, there is great interest in determining the validity of this
conjecture.

As it turns out, the behavior of the random variable Sh ≡
∑h

i=1 ξiQi

has been extensively studied in the functional analysis and probability the-
ory literature. One of the tools that is particularly useful for addressing Ne-
mirovski’s conjecture and other problems considered in this paper is the so–
called Khintchine–type inequalities. Roughly speaking, such inequalities pro-
vide upper bounds on the p–norm of the random variable ‖Sh‖∞ in terms
of suitable normalizations of the matrices Q1, . . . , Qh. Once these bounds are
available, it is easy to derive tail bounds for ‖Sh‖∞ using Markov’s inequality.
In this paper, we show that the validity of Nemirovski’s conjecture is in fact
a simple consequence of the so–called non–commutative Khintchine’s inequal-
ity in functional analysis (see, e.g., [24,33,10]). As an immediate corollary,
we obtain the best known performance guarantees for the two optimization
problems considered in [25]—namely, the construction of safe tractable approx-
imations of certain chance constrained linear matrix inequalities, and the anal-
ysis of a semidefinite relaxation of certain non–convex quadratic optimization
problems with orthogonality constraints. To further demonstrate the power
of Khintchine–type inequalities, we consider another such inequality, which
is due to Tomczak–Jaegermann [42] and differs from the non–commutative
Khintchine’s inequality mainly on the normalization of Q1, . . . , Qh, and show
how it can be used to extend a recent result of Delage and Ye [11] on data–
driven distributionally robust stochastic programming.

The rest of this paper is organized as follows. In Section 2, we discuss the
various moment inequalities that will be used in our analyses. Then, in Sec-
tion 3, we consider three problems in optimization and show how the moment
inequalities introduced in Section 2 can be used to obtain the best known per-
formance guarantees for them. Finally, we end with some concluding remarks
in Section 4.
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2 Moment Inequalities for Sums of Random Matrices

To motivate our discussion, let us first consider the case where ξ1, . . . , ξh are
independent Bernoulli random variables (i.e., each ξi takes on the values ±1
with equal probability), and let Q1, . . . , Qh be arbitrary scalars (i.e., each Qi

is an 1× 1 matrix). Recall that we are interested in determining the behavior
of the random variable

∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞

=

∣∣∣∣∣
h∑

i=1

ξiQi

∣∣∣∣∣ .

In 1923, in an effort to provide a sharp estimate on the rate of convergence in
Borel’s strong law of large numbers, Khintchine proved the following inequality
that now bears his name [19]:

Khintchine’s Inequality Let ξ1, ξ2, . . . be a sequence of independent Bernoulli
random variables, and let Q1, Q2, . . . be an arbitrary sequence of scalars. Then,
for any h = 1, 2, . . . and p ∈ (0,∞), there exists an absolute constant cp > 0
such that

E

[∣∣∣∣∣
h∑

i=1

ξiQi

∣∣∣∣∣

p]
≤ cp ·

(
h∑

i=1

|Qi|2
)p/2

. (3)

(In fact, Khintchine only established the inequality for the case where p ≥ 2 is
an even integer. However, as shown in, e.g., [32], his proof can be extended to
cover other values of p.) Since then, much effort has been spent on determining
the optimal value of cp in (3). In particular, it has been shown that for p ≥ 2
(which will be the case of interest in our study), the value

c∗p =
(

2p

π

)1/2

Γ

(
p + 1

2

)

is the best possible; see, e.g., [32] for a brief historical account of this result.
Note that c∗p is exactly equal to E [|Z|p], where Z is a standard normal random
variable. This should not be surprising, as the random variable

∑h
i=1 ξiQi

behaves (after suitable normalization) like a standard normal random variable
by the Central Limit Theorem. Indeed, a quick calculation shows that (3) holds
with equality and cp = c∗p when ξ1, ξ2, . . . are i.i.d. standard normal random
variables. Finally, using Stirling’s formula (see, e.g., [34]), one can show that
c∗p is of order pp/2 (in fact, c∗p < pp/2) for all p ≥ 2.

Subsequent to the appearance of Khintchine’s inequality, many extensions
have been investigated. Of particular interest to us is the case where the ele-
ments Q1, Q2, . . . are arbitrary m×n matrices. In 1974, Tomczak–Jaegermann
proved the following inequality, which can be viewed as a natural extension of
(3):
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Theorem 2 (Tomczak–Jaegermann [42]) Let ξ1, ξ2, . . . be a sequence of in-
dependent Bernoulli random variables, and let Q1, Q2, . . . be an arbitrary se-
quence of m× n matrices. Then, for any h = 1, 2, . . . and p ≥ 2, we have

E




∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

Sp


 ≤ pp/2 ·

(
h∑

i=1

‖Qi‖2Sp

)p/2

.

Here, ‖A‖Sp denotes the Schatten p–norm of an m×n matrix A, i.e., ‖A‖Sp =
‖σ(A)‖p, where σ(A) ∈ Rmin{m,n} is the vector of singular values of A, and
‖ · ‖p is the usual `p–norm.

As it turns out, the normalization
∑h

i=1 ‖Qi‖2Sp
is not the only one possible in

order for a Khintchine–type inequality to hold. In 1986, Lust–Piquard showed
that with a different normalization, an inequality similar to the one in Theorem
2 is also valid:

Theorem 3 (Non–Commutative Khintchine’s Inequality; Lust–Piquard [24])
Let ξ1, ξ2, . . . be a sequence of independent Bernoulli random variables, and
let Q1, Q2, . . . be an arbitrary sequence of m× n matrices. Then, for any h =
1, 2, . . . and p ≥ 2, there exists an absolute constant γp > 0 such that

E




∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

Sp


 ≤ γp ·max





∥∥∥∥∥∥

(
h∑

i=1

QiQ
T
i

)1/2
∥∥∥∥∥∥

p

Sp

,

∥∥∥∥∥∥

(
h∑

i=1

QT
i Qi

)1/2
∥∥∥∥∥∥

p

Sp





.

Unfortunately, the proof of Lust–Piquard does not provide an estimate for
γp. In [33], Pisier showed that γp ≤ αpp/2 for some absolute constant α > 0.
Using a result of Buchholz [10], it can be shown that α ≤ 2−p/4(π/e)p/2 < 1
for all p ≥ 2 (see, e.g., [43]). We note that Theorem 3 is also valid (with
γp ≤ αpp/2 < pp/2) when ξ1, ξ2, . . . are i.i.d. standard normal random variables
[10].

As a first illustration of the power of the aforementioned inequalities, let
us see how Theorem 3 can be used to resolve Nemirovski’s conjecture in the
affirmative:

Theorem 4 Let ξ1, . . . , ξh be independent mean zero random variables, each
of which is either (i) supported on [−1, 1], or (ii) normally distributed with unit
variance. Furthermore, let Q1, . . . , Qh be arbitrary m × n matrices satisfying
max{m,n} ≥ 2 and condition (1). Then, for any β ≥ 1/2, we have

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥

√
2e(1 + β) lnmax{m,n}

)
≤ (max{m,n})−β

if ξ1, . . . , ξh are i.i.d. Bernoulli or standard normal random variables; and

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥

√
8e(1 + β) lnmax{m,n}

)
≤ (max{m,n})−β

if ξ1, . . . , ξh are independent mean zero random variables supported on [−1, 1].
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Proof Since Q1, . . . , Qh satisfy condition (1), all the eigenvalues of
∑h

i=1 QiQ
T
i

and
∑h

i=1 QT
i Qi lie in [0, 1]. It follows that

∥∥∥∥∥∥

(
h∑

i=1

QiQ
T
i

)1/2
∥∥∥∥∥∥

Sp

≤ m1/p and

∥∥∥∥∥∥

(
h∑

i=1

QT
i Qi

)1/2
∥∥∥∥∥∥

Sp

≤ n1/p.

Now, let us first consider the case where ξ1, . . . , ξh are i.i.d. Bernoulli or stan-
dard normal random variables. By Theorem 3 and the remarks following it,
we have

E

[∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

∞

]
≤ E




∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

Sp


 ≤ pp/2 ·max{m, n}

for any p ≥ 2. Thus, by Markov’s inequality, for any t > 0 and p ≥ 2, we have

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥ t

)
≤ t−p · E

[∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

∞

]
≤ pp/2 ·max{m,n}

tp
.

Upon setting t =
√

2e(1 + β) ln max{m,n} and p = t2/e > 2 (since β ≥ 1/2
and max{m,n} ≥ 2 by assumption), we obtain

Pr

(∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥
∞
≥

√
2e(1 + β) lnmax{m,n}

)
≤ (max{m,n})−β

as desired.
Next, we consider the case where ξ1, . . . , ξh are independent mean zero ran-

dom variables supported on [−1, 1]. Let ε1, . . . , εh be i.i.d. Bernoulli random
variables that are independent of the ξi’s. A standard symmetrization argu-
ment (see, e.g., [21, Lemma 6.3]), together with Fubini’s theorem and Theorem
3, implies that

E




∥∥∥∥∥
h∑

i=1

ξiQi

∥∥∥∥∥

p

Sp


 ≤ 2p · EξEε




∥∥∥∥∥
h∑

i=1

εiξiQi

∥∥∥∥∥

p

Sp




≤ 2p · pp/2 · Eξ


max





∥∥∥∥∥∥

(
h∑

i=1

ξ2
i QiQ

T
i

)1/2
∥∥∥∥∥∥

p

Sp

,

∥∥∥∥∥∥

(
h∑

i=1

ξ2
i QT

i Qi

)1/2
∥∥∥∥∥∥

p

Sp








≤ 2p · pp/2 ·max{m,n}.
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Here, Eξ (resp. Eε) denotes the mathematical expectation with respect to the
random variables ξ1, . . . , ξh (resp. ε1, . . . , εh). The desired result then follows
from an application of Markov’s inequality. tu

In the sequel, we will demonstrate further how the inequalities introduced
in this section can be used to tackle various problems in optimization.

3 Applications

3.1 Non–Convex Quadratic Optimization with Orthogonality Constraints

Consider the following class of quadratic optimization problems:

(Qp–Oc)

maximize X • AX

subject to X • BiX ≤ 1 for i = 1, . . . , L, (a)
CX = 0, (b)
‖X‖∞ ≤ 1, (c)
X ∈M m,n, (d)

where

– M m,n is the space of m × n real matrices equipped with the trace inner
product X • Y = tr

(
XY T

)
= tr

(
XT Y

)
;

– A, B1, . . . ,BL : M m,n → M m,n are self–adjoint linear operators (in par-
ticular, they can be represented as symmetric mn×mn matrices);

– B1, . . . ,BL are positive semidefinite;
– C : M m,n → Ru is a linear mapping (in particular, it can be represented

as an u×mn matrix);
– ‖X‖∞ is the spectral norm of X (recall that

‖X‖∞ = max {‖Xv‖2 : v ∈ Rn, ‖v‖2 = 1}
by the Courant–Fischer theorem; see, e.g., [17, Theorem 7.3.10]).

As pointed out by Nemirovski [25], Problem (Qp–Oc) is quite general and
captures several well–studied problems in the literature as special cases. Before
we proceed to study the algorithmic aspects of (Qp–Oc), let us consider two
such problems, namely, the Procrustes Problem and the so–called orthogonal
relaxation of the Quadratic Assignment Problem. A common feature of these
two problems is that they both contain the orthogonality constraint XT X = I,
which at first sight does not seem to fit into the form (Qp–Oc). However, by
exploiting the structure of these problems, we may relax the orthogonality
constraint to the norm constraint ‖X‖∞ ≤ 1 with no loss of generality.

The Procrustes Problem
In the Procrustes Problem, one is given K collections P1, . . . ,PK of points

in Rn with the same cardinality |P1| = · · · = |Pk| = m, and the goal is to find
rotations that make these collections as close to each other as possible. More
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precisely, let Ai be an n × m matrix whose l–th column represents the l–th
point in the i–th collection, where i = 1, . . . , K and l = 1, . . . , m. The goal is
to find K n× n orthogonal matrices X1, . . . , XK such that the quantity

∑

1≤i<j≤K

m∑

l=1

‖XiAil −XjAjl‖22

is minimized. Here, Ail is the l–th column of the matrix Ai, where i = 1, . . . , K
and l = 1, . . . ,m. Note that the quantity ‖XiAil − XjAjl‖22 represents the
squared Euclidean distance between the l–th transformed point in the i–th
collection and the l–th transformed point in the j–th collection. The Procrustes
Problem is first studied in psychometrics and has now found applications in
shape and image analyses, market research and biometric identification, just
to name a few (see [15] for details). It is not hard to show that the Procrustes
Problem as defined above is equivalent to

maximize
∑

1≤i<j≤K

tr
(
AT

i XT
i XjAj

)
subject to XT

i Xi = I for i = 1, . . . , K.

(4)
Now, notice that the objective function is linear in each of the Xi’s. Thus,
we may relax the orthogonality constraint XT

i Xi = I to the norm constraint
‖Xi‖∞ ≤ 1 without affecting the optimal value of the problem (we refer the
reader to [25] for details). In other words, Problem (4) has the same optimal
value as the problem

maximize
∑

1≤i<j≤K

tr
(
AT

i XT
i XjAj

)
subject to ‖Xi‖∞ ≤ 1 for i = 1, . . . ,K,

which, after some elementary manipulations, can be cast into the form (Qp–
Oc). tu
Orthogonal Relaxation of the Quadratic Assignment Problem

In the Quadratic Assignment Problem (Qap), one is given a set N =
{1, . . . , n}, two n × n symmetric matrices A and B, and an n × n matrix
C, and the goal is to find a permutation π on N such that the quantity∑n

i=1

∑n
j=1 Aπ(i)π(j)Bij − 2

∑n
i=1 Ciπ(i) is maximized. Equivalently, one can

formulate the Qap as follows (see, e.g., [20,46]):

maximize tr
(
AXBXT − 2CXT

)

subject to XXT = I,

Xij ∈ {0, 1} for i = 1, . . . , n; j = 1, . . . , n.

(5)

The constraints in Problem (5) force the matrix X to be a permutation ma-
trix. Indeed, it is well–known that X satisfies the constraints in (5) iff X is
a permutation matrix. The Qap is a classical problem in combinatorial op-
timization and has found many applications (see, e.g., [30]). However, it is
also a notoriously hard computational problem. Therefore, various relaxations
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have been proposed. One such relaxation, called the orthogonal relaxation, is
obtained by dropping the binary constraints in (5). In other words, consider
the following problem:

maximize tr
(
AXBXT − 2CXT

)
subject to XXT = I. (6)

Note that we can also add the redundant constraint XT X = I to Problem (6),
and indeed this can tighten the relaxation (see, e.g., [46,3,4]). Now, suppose
that we have A,B Â 0. Let A1/2 and B1/2 be the n × n symmetric positive
definite matrices such that A = A1/2A1/2 and B = B1/2B1/2. Then, the
objective function in Problem (6) can be written as

tr
(
(A1/2XB1/2)(A1/2XB1/2)T − 2CXT

)
,

which is a convex quadratic form in X. Consequently, we may relax the or-
thogonality constraint XXT = I to the norm constraint ‖X‖∞ ≤ 1 without
affecting the optimal value of the problem (again, we refer the reader to [25]
for details). In particular, Problem (6) is equivalent to

maximize tr
(
AXBXT − 2CXT

)
subject to ‖X‖∞ ≤ 1,

which can be cast into the form (Qp–Oc) after a standard homogenization
argument (see, e.g., [25]).

The above reformulation is based on the assumption that A, B Â 0. How-
ever, observe that the set of optimal solutions to Problem (6) does not change
if we make the substitution A← A+αI and B ← B+βI for any fixed α, β ∈ R.
Thus, we may always assume without loss that A,B Â 0. We should empha-
size, however, that such a substitution could significantly weaken subsequent
relaxations of Problem (6). tu

Given the generality of Problem (Qp–Oc), it should come as no surprise
that it is NP–hard. Indeed, let A be an m×m symmetric positive semidefinite
matrix, and consider the following binary quadratic optimization problem:

(Bqp) maximize xT Ax subject to x2
i = 1 for i = 1, . . . , L.

It is well–known that (Bqp) includes the Max–Cut problem as a special case
and hence it is NP–hard (see, e.g., [29]). Now, by the convexity of the objective
function x 7→ xT Ax, we see that (Bqp) is equivalent to

(Bqp′) maximize xT Ax subject to ‖x‖∞ ≤ 1 for i = 1, . . . , L,

which is an instance of (Qp–Oc) with n = 1, B1 = · · · = BL = 0 and C = 0.
It follows that (Qp–Oc) is also NP–hard, as claimed.

The above hardness result motivates us to search for efficient algorithms
that can solve Problem (Qp–Oc) approximately. In [25], Nemirovski proposed
to use semidefinite programming (SDP) relaxation to tackle (Qp–Oc). In re-
cent years, SDP has become an invaluable tool in the design of approximation
algorithms. Beginning with the seminal work of Goemans and Williamson
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[14], who showed that SDP can be used to obtain good approximation al-
gorithms for Max–Cut and various satisfiability problems, researchers have
successfully employed the SDP approach to design approximation algorithms
for problems in combinatorial optimization (see, e.g., [13,18,2,6,5]), telecom-
munications (see, e.g., [23,39,38]) and quadratic optimization (see, e.g., [29,
44,41,40]). In fact, for many of those problems, the SDP approach yields the
best known approximation to date, and the situation is no different for the
case of (Qp–Oc). Before we delve into the details of Nemirovski’s approach,
let us describe some of its high–level ideas.

As it turns out, the main feature that distinguishes (Qp–Oc) from the
quadratic optimization problems considered in the approximation algorithms
literature is the norm constraint (Qp–Oc(c)). Indeed, if we drop the norm
constraint (Qp–Oc(c)), then (Qp–Oc) becomes a usual quadratic program,
and an O(lnL) approximation algorithm for it is known [26]1. In [25], Ne-
mirovski showed that a natural SDP relaxation of (Qp–Oc) together with a
simple rounding scheme yields an O

(
max

{
(m + n)1/3, ln L

})
approximation

algorithm for (Qp–Oc). The rounding scheme proposed in [25] resembles that
of Nemirovski et al. [26]. Roughly speaking, it consists of the following steps:

1. extract from the optimal SDP solution a set S = {v1, . . . , vmn} of vectors
and apply a suitable orthogonal transformation to S to obtain vectors
v′1, . . . , v

′
mn

2. generate a random vector ξ = (ξ1, . . . , ξmn), where the entries are i.i.d.
Bernoulli random variables

3. form the (random) vector ζ =
∑mn

i=1 ξiv
′
i and extract from ζ a candidate

solution matrix X̂

In order to analyze the performance of such a procedure, one needs to deter-
mine the behavior of X̂ with respect to both the objective function and the
constraints in (Qp–Oc). Intuitively, the objective function and the constraints
(Qp–Oc(a)) and (Qp–Oc(b)) pose no difficulty, as one should be able to ana-
lyze the behavior of X̂ with respect to those in a manner similar to that in [26].
However, it is more challenging to analyze the behavior of X̂ with respect to
the norm constraint (Qp–Oc(c)). Indeed, as it was shown in [25], the problem
boils down to that of answering Question (Q), i.e., we need to estimate the typ-
ical spectral norm of a sum of certain random matrices. Fortunately, this can
be easily done using the moment inequalities introduced in Section 2. In par-
ticular, using Theorem 4, we show that the SDP–based algorithm described in
[25] actually yields an O (lnmax{m,n,L}) approximation for (Qp–Oc). This
significantly improves upon the O

(
max

{
(m + n)1/3, ln L

})
bound established

in [25] and provides the first logarithmic approximation guarantee for (Qp–
Oc). Before we prove this result, let us review the derivation of Nemirovski’s
SDP relaxation of (Qp–Oc).

1 In fact, for the case where the norm constraint (Qp–Oc(c)) is absent and L ≤ 2, Problem
(Qp–Oc) can be efficiently solved using SDP. This follows from the results of Shapiro [36],
Barvinok [7] and Pataki [31]; see also [45,8,1] for related results.
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3.1.1 A Semidefinite Relaxation of (QP–OC)

The ideas used in the derivation of the SDP relaxation are fairly standard: first
linearize the quadratic terms and then tighten the relaxation with positive
semidefinite constraints. To begin, let us identify the mapping A with an
mn×mn symmetric matrix A whose rows and columns are indexed by pairs
(i, j), where i = 1, . . . , m and j = 1, . . . , n. Specifically, let ei be the i–th
standard basis vector whose dimension depends on the context. The (k, l)–th
column of A is given by VecAEkl, where Ekl = ekeT

l ∈ M m,n and VecX
denotes the mn–dimensional vector obtained by stacking the columns of the
m× n matrix X into a single column. Finally, the entries of A are given by

A(i,j)(k,l) = Eij • AEkl for i, k = 1, . . . , m; j, l = 1, . . . , n.

In a similar fashion, we identify the mappings Bi with mn ×mn symmetric
positive semidefinite matrices Bi, where i = 1, . . . , L. For the mapping C, we
identify it with an u×mn matrix C whose entries are given by

Ci,(k,l) = eT
i CEkl for i = 1, . . . , u; k = 1, . . . ,m; l = 1, . . . , n.

Now, for X ∈M m,n, let Gram X be the mn×mn positive semidefinite matrix
(Vec X)(VecX)T . It is then clear that

X • AX =
m∑

i=1

n∑

j=1

Xij(AX)ij =
m∑

i,k=1

n∑

j,l=1

A(i,j)(k,l)XijXkl = A •Gram X.

Similarly, we have X • BiX = Bi • Gram X for i = 1, . . . , L. To express the
constraints (Qp–Oc(b)) and (Qp–Oc(c)) in terms of Gram X, we follow the
approach of Zhao et al. [46]. First, observe that

CX = 0⇔ CVecX = 0⇔ ‖CVecX‖22 = 0⇔ (VecX)T CT C(Vec X) = 0.

Thus, we have

CX = 0⇔ CT C(VecX)(VecX)T = 0⇔ CT C •Gram X = 0.

Next, observe that ‖X‖∞ ≤ 1 iff XXT ¹ Im. Now, for i = 1, . . . ,m and
j = 1, . . . , n, the (i, j)–th entry of XXT is

∑n
k=1 XikXjk. It follows that

the entries of XXT are linear combinations of the entries in GramX, which
in turn implies the existence of a linear mapping S : S mn → S m such
that XXT ¹ Im iff S Gram X ¹ Im (here, S m is the space of m × m real
symmetric matrices). In a similar fashion, we have ‖X‖∞ ≤ 1 iff XT X ¹ In,
and there exists a linear mapping T : S mn → S n such that XT X ¹ In

iff T GramX ¹ In. Note that both the linear mappings S and T can be
specified explicitly as matrices of appropriate dimensions in polynomial time;
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see, e.g., [46]. Now, upon putting the pieces together and using the fact that
Gram X º 0, we obtain the following SDP relaxation of (Qp–Oc):

(Qp–Oc–Sdr)

maximize A • Y

subject to Bi • Y ≤ 1 for i = 1, . . . , L,

CT C • Y = 0,

SY ¹ Im, T Y ¹ In,

Y ∈ S mn, Y º 0.

Although the constraints S Gram X ¹ Im and T GramX ¹ In imply each
other and are thus redundant in (Qp–Oc), the corresponding relaxed con-
straints SY ¹ Im and T Y ¹ In are not redundant in (Qp–Oc–Sdr). In fact,
the inclusion of these constraints can significantly strengthen various SDP re-
laxations of the Quadratic Assignment Problem (see, e.g., [46,3,4]). Moreover,
as we shall see, they play a crucial role in the quality analysis of (Qp–Oc–
Sdr).

Now, using the ellipsoid method [16], the semidefinite program (Qp–Oc–
Sdr) can be solved to within an additive error of ε > 0 in polynomial time.
Specifically, let θ∗ be the optimal value of (Qp–Oc–Sdr). Then, for any ε > 0,
we can compute in polynomial time a Y ′ º 0 that is feasible for (Qp–Oc–Sdr)
and satisfies θ′ ≡ A • Y ′ ≥ θ∗ − ε.

3.1.2 Analysis of the SDP Relaxation

Let us now analyze the quality of the SDP relaxation (Qp–Oc–Sdr). Our
goal in this section is to prove the following theorem:

Theorem 5 There exists an efficient randomized algorithm that, given a fea-
sible solution of (Qp–Oc–Sdr) with objective value θ′, produces an m × n
matrix X such that

(a) X is feasible for (Qp–Oc); and
(b) X • AX ≥ Ω (1/ lnmax{m,n, L}) · θ′.
To begin, let us consider the following rounding scheme of Nemirovski [25] that
converts a feasible solution Y ′ of (Qp–Oc–Sdr) to a random m×n matrix X̂.
Since Y ′ º 0, there exists a positive semidefinite matrix Y ′1/2 ∈ S mn such
that Y ′ = Y ′1/2Y ′1/2. Moreover, the matrix Y ′1/2AY ′1/2 is symmetric, and
hence it admits a spectral decomposition Y ′1/2AY ′1/2 = UT ΛU , where Λ is
an mn×mn diagonal matrix and U is an mn×mn orthogonal matrix. Now,
we generate a random mn–dimensional vector ξ = (ξij)1≤i≤m, 1≤j≤n, where
the entries are i.i.d. Bernoulli random variables. Then, we define the random
m× n matrix X̂ via Vec X̂ = Y ′1/2UT ξ.

Clearly, the above rounding scheme can be implemented in polynomial
time. We are now interested in the quality of the solution X̂. In the sequel, we
assume that max{m, n} ≥ 2. The following proposition is established in [25].
For completeness’ sake, we include the proof here.
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Proposition 1 The solution X̂ returned by the rounding procedure satisfies

(a) X̂ • AX̂ ≡ θ′;
(b) E[X̂ • BiX̂] ≤ 1 for i = 1, . . . , L;
(c) CX̂ ≡ 0; and
(d) E[X̂X̂T ] ¹ Im and E[X̂T X̂] ¹ In.

Proof Observe that

X̂ • AX̂ = A •Gram X̂ = ξT UY ′1/2AY ′1/2UT ξ = ξT UUT ΛUUT ξ = tr(Λ).

On the other hand, we have

tr(Λ) = tr
(
UT ΛU

)
= tr

(
Y ′1/2AY ′1/2

)
= A • Y ′ = θ′.

This establishes (a). Next, we compute

E[X̂ • BiX̂] = E[Bi •Gram X̂] = Bi • E
[
Y ′1/2UT ξξT UY ′1/2

]
= Bi • Y ′ ≤ 1,

where the third equality follows from the fact that E
[
ξξT

]
= Imn. This proves

(b). To prove (c), we first note that CX̂ = CVec X̂ = CY ′1/2UT ξ. Now, observe
that

E[‖CX̂‖22] = E
[
ξT UY ′1/2CT CY ′1/2UT ξ

]

= UY ′1/2CT CY ′1/2UT • E [
ξξT

]

= CT C • Y ′

= 0.

Since ‖CX̂‖22 ≥ 0 for any realization of ξ ∈ {−1, +1}mn, it follows that CX̂ ≡ 0,
as desired. Finally, to prove (d), it suffices to observe that

E[X̂X̂T ] = E[SGram X̂] = S
(
Y ′1/2UTE

[
ξξT

]
UY ′1/2

)
= SY ′ ¹ Im,

where the second equality follows from the linearity of S. In a similar fashion,
we obtain

E[X̂T X̂] = E[T Gram X̂] = T
(
Y ′1/2UTE

[
ξξT

]
UY ′1/2

)
= T Y ′ ¹ In.

This completes the proof. tu
To obtain the results claimed in Theorem 5, we need to analyze the be-

havior of X̂ with respect to the constraints (Qp–Oc(a)) and (Qp–Oc(c)).
Specifically, we would like to show that the event

{
X̂ • BiX̂ ≤ Γ 2 for all i = 1, . . . , L

} ⋂ {
‖X̂‖∞ ≤ Γ

}
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occurs with constant probability, where Γ = O
(√

lnmax{m,n,L}
)
. This can

be done using the results in Section 2. First, let us tackle the norm constraint
(Qp–Oc(c)). Observe that the matrix X̂ has the form

∑m
k=1

∑n
l=1 ξklQkl,

where each Qkl is an m×n matrix. Indeed, the (i, j)–th entry of Qkl is simply(
Y ′1/2UT

)
(i,j)(k,l)

, where i = 1, . . . ,m and j = 1, . . . , n. Now, we compute

E[X̂X̂T ] = E




m∑

k,k′=1

n∑

l,l′=1

ξklξk′l′QklQ
T
k′l′


 =

m∑

k=1

n∑

l=1

QklQ
T
kl

and

E[X̂T X̂] = E




m∑

k,k′=1

n∑

l,l′=1

ξklξk′l′Q
T
klQk′l′


 =

m∑

k=1

n∑

l=1

QT
klQkl.

By Proposition 1, we have

m∑

k=1

n∑

l=1

QklQ
T
kl ¹ Im and

m∑

k=1

n∑

l=1

QT
klQkl ¹ In.

Thus, by Theorem 4, we obtain the following result:

Proposition 2 For any β ≥ 1/2, we have

Pr
(
‖X̂‖∞ ≥

√
2e(1 + β) ln max{m,n}

)
≤ (max{m,n})−β

.

Now, let us analyze the behavior of X̂ with respect to the constraint (Qp–
Oc(a)). We have the following proposition:

Proposition 3 For any β ≥ 1/2, we have

Pr
(
X̂ • BiX̂ ≥ 2e(1 + β) lnmax{m, n,L}

)
≤ (max{m,n,L})−(1+β)

for i = 1, . . . , L.

Proof For i = 1, . . . , L, we have

X̂ • BiX̂ = Bi • Y ′1/2UT ξξT UY ′1/2 = ξT B′
iξ,

where B′
i = UY ′1/2BiY

′1/2UT º 0 because Bi º 0. In particular, we may
write X̂ • BiX̂ =

∥∥(B′
i)

1/2ξ
∥∥2

2
. Now, by Proposition 1 and a straightforward

calculation, we have

1 ≥ E[X̂ • BiX̂] =
m∑

k=1

n∑

l=1

(B′
i)(k,l)(k,l) =

m∑

k=1

n∑

l=1

∥∥∥(B′
i)

1/2
(·,·)(k,l)

∥∥∥
2

2
, (7)
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where (B′
i)

1/2
(·,·)(k,l) is the (k, l)–th column of (B′

i)
1/2. Since for any vector v and

scalar p ≥ 2, we have ‖v‖Sp
= ‖v‖2, it follows from (7) and Theorem 2 that

E

[∥∥∥∥∥
m∑

k=1

n∑

l=1

ξkl(B′
i)

1/2
(·,·)(k,l)

∥∥∥∥∥

p

2

]
≤ pp/2 ·

(
m∑

k=1

n∑

l=1

∥∥∥(B′
i)

1/2
(·,·)(k,l)

∥∥∥
2

2

)p/2

≤ pp/2.

(8)
In particular, by combining (8) with Markov’s inequality, we conclude that for
any β ≥ 1/2,

Pr
(
X̂ • BiX̂ ≥ 2e(1 + β) ln max{m,n, L}

)

= Pr

(∥∥∥∥∥
m∑

k=1

n∑

l=1

ξkl(B′
i)

1/2
(·,·)(k,l)

∥∥∥∥∥
2

≥
√

2e(1 + β) ln max{m,n, L}
)

≤ (max{m,n, L})−(1+β),

as desired. tu
Remarks One of the referees has suggested a more elementary argument for
proving Proposition 3. It relies on the following theorem, whose proof can be
found in [21] (see inequality (1.9)):

Theorem 6 Let f : Rh → R be a convex function satisfying

|f(x)− f(y)| ≤ L · ‖x− y‖2 for all x, y ∈ Rh.

Let ξ ∈ {−1, +1}h be a vector of i.i.d. Bernoulli random variables, and let Mf

be the median2 of f(ξ). Then, for any t > 0, we have

Pr (|f(ξ)−Mf | > t) ≤ 4 exp
(−t2/8L2

)
.

To prove Proposition 3 (with slightly different constants) using Theorem 6,
consider a fixed i = 1, . . . , L, and let f : Rh → R be given by f(x) =∥∥(B′

i)
1/2x

∥∥
2
. It is clear that f is convex, and for any x, y ∈ Rh, we have

|f(x)− f(y)| ≤
∥∥∥(B′

i)
1/2(x− y)

∥∥∥
2

≤
∥∥∥(B′

i)
1/2

∥∥∥
∞
· ‖x− y‖2

≤
(
(B′

i)
1/2 • (B′

i)
1/2

)
· ‖x− y‖2

= (Bi • Y ′) · ‖x− y‖2
≤ ‖x− y‖2.

2 Recall that the median MX of a real–valued random variable X is defined as MX =
sup{t ∈ R : Pr(X ≤ t) ≤ 1/2}.
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Now, since f(ξ) is a non–negative random variable, we have Mf ≤ 2E [f(ξ)]
by Markov’s inequality. Using (7) and Hölder’s inequality, we compute

E [f(ξ)] ≤ (
E

[
f(ξ)2

])1/2 ≤ 1.

Hence, it follows that

Pr
(∥∥∥(B′

i)
1/2ξ

∥∥∥
2
≥ 2 + t

)
≤ Pr

(∥∥∥(B′
i)

1/2ξ
∥∥∥

2
≥Mf + t

)
≤ 4 exp

(−t2/8
)
.

Upon setting t =
√

8(1 + β) ln (4 max{m, n,L}), we conclude that for any
β ≥ 1/2,

Pr
(
X̂ • BiX̂ ≥ 16(1 + β) ln (4max{m,n, L})

)
≤ (max{m,n, L})−(1+β)

.

Modulo the different constants, this establishes Proposition 3. tu
We are now ready to finish the proof of Theorem 5.

Proof of Theorem 5 Let β = 2 in Propositions 2 and 3. Since max{m,n} ≥
2 by assumption, we see from Propositions 1, 2 and 3 that with probability at
least 1− (1/4 + 1/4) = 1/2, the solution X̂ returned by the rounding scheme
will satisfy

(a) X̂ • AX̂ = θ′;
(b) X̂ • BiX̂ ≤ 6e lnmax{m, n,L} for i = 1, . . . , L;
(c) CX̂ = 0; and
(d) ‖X̂‖∞ ≤

√
6e lnmax{m, n,L}.

It follows that the matrix X = X̂/
√

6e lnmax{m,n, L} has the required prop-
erties. tu

3.2 Safe Tractable Approximations of Chance Constrained Linear Matrix
Inequalities

Another of Nemirovski’s original motivation for studying Question (Q) is to
develop a so–called safe tractable approximation of the following chance con-
strained optimization problem:

(Ccp)

minimize cT x

subject to F (x) ≤ 0,

Pr

(
A0(x)−

h∑

i=1

ξiAi(x) º 0

)
≥ 1− ε, (†)

x ∈ Rn.

Here, c ∈ Rn is a given objective vector; F : Rn → Rl is an efficiently
computable vector–valued function with convex components; A0,A1, . . . ,Ah :
Rn → S m are affine functions in x with A0(x) Â 0 for all x ∈ Rn; ξ1, . . . , ξh
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are independent (but not necessarily identical) mean zero random variables;
and ε ∈ (0, 1) is the error tolerance parameter. We assume that m ≥ 2, so
that (†) is indeed a chance constrained linear matrix inequality. The chance
constrained problem (Ccp) arises in many engineering applications, such as
truss topology design, communications system design, and problems in control
theory, and has received much attention lately (see, e.g., [27,28,25,9,37,22]).
Unfortunately, the constraint (†) in (Ccp) is generally intractable. In an at-
tempt to circumvent this problem, Ben–Tal and Nemirovski [25,9] considered
a safe tractable approximation of (†)—that is, a system of constraints H such
that (i) x is feasible for (†) whenever it is feasible forH, and (ii) the constraints
in H are efficiently computable. Specifically, their strategy is as follows. First,
observe that

Pr

(
A0(x)−

h∑

i=1

ξiAi(x) º 0

)
= Pr

(
h∑

i=1

ξiA′i(x) ¹ I

)
, (9)

where A′i(x) = A0(x)−1/2Ai(x)A0(x)−1/2. Now, suppose that one can choose
γ = γ(ε) > 0 such that whenever

h∑

i=1

(A′i(x))2 ¹ γ2I (10)

holds, the constraint (†) is satisfied. Then, (10) will be a sufficient condition
for (†) to hold. The upshot of (10) is that it can be expressed as a linear matrix
inequality using the Schur complement (see [9]):




γA0(x) A1(x) · · · Ah(x)
A1(x) γA0(x)

...
. . .

Ah(x) γA0(x)



º 0. (11)

Thus, by replacing (†) with (11), Problem (Ccp) becomes tractable. Moreover,
any solution x ∈ Rn that satisfies F (x) ≤ 0 and (11) will be feasible for the
original chance constrained problem (Ccp).

Now, it is not hard to see that if the random variables ξ1, . . . , ξh satisfy the

conditions of Theorem 4 and if (10) holds for γ ≥ γ(ε) ≡
(√

8e ln(m/ε)
)−1

,
then for any ε ∈ (0, 1/2], we have

Pr

(
h∑

i=1

ξiA′i(x) ¹ I

)
= Pr

(∥∥∥∥∥
h∑

i=1

ξiA′i(x)

∥∥∥∥∥
∞
≤ 1

)
> 1− ε. (12)

Indeed, observe that

Pr

(∥∥∥∥∥
h∑

i=1

ξiA′i(x)

∥∥∥∥∥
∞

> 1

)
= Pr

(∥∥∥∥∥
h∑

i=1

ξi

(
1
γ
A′i(x)

)∥∥∥∥∥
∞

>
1
γ

)
.



18

Since
∑h

i=1(γ
−1A′i(x))2 ¹ I, we conclude by Theorem 3 and Markov’s in-

equality that (cf. the proof of Theorem 4)

Pr

(∥∥∥∥∥
h∑

i=1

ξi

(
1
γ
A′i(x)

)∥∥∥∥∥
∞

>
1
γ

)
≤ m · exp

(−1/(8eγ2)
) ≤ ε.

This establishes (12), as desired. Now, upon recalling (9), we obtain the fol-
lowing theorem:

Theorem 7 Let ξ1, . . . , ξh be independent mean zero random variables, each
of which is either (i) supported on [−1, 1], or (ii) normally distributed with
unit variance. Consider the chance constrained problem (Ccp). Then, for
any ε ∈ (0, 1/2], the positive semidefinite constraint (11) with γ ≥ γ(ε) ≡(√

8e ln(m/ε)
)−1

is a safe tractable approximation of (†).

Theorem 7 improves upon Nemirovski’s result in [25], which requires γ =
Ω

(
m1/6 +

√
ln(1/ε)

)
before one could assert that the constraint (11) is a

safe tractable approximation of (†).

3.3 Data–Driven Distributionally Robust Stochastic Programming

In this section, we consider another class of optimization problems that involve
data uncertainty and show how the moment inequalities introduced in Section
2 can be used to establish performance guarantees for them. To begin, let
X ⊂ Rn be a set of admissible actions, and let (Ω, B,P) be a probability
space. Consider the following generic stochastic programming problem:

(Sp) minimize EP [f(x, ω)] subject to x ∈ X .

Here, the uncertain parameter ω ∈ Ω is distributed according to P, and f :
X × Ω → R is the objective function. An assumption that is implicit in the
formulation of (Sp) (and also (Ccp)) is that the distribution P of the uncertain
parameter is fixed a priori. However, in practice, there could be uncertainty
about the distribution as well. For instance, in the newsvendor problem, which
is one of the simplest and most fundamental stochastic optimization problems,
the newsvendor may only have information about the mean and variance of the
customers’ demand [35]. In order to guard against unpleasant surprises that
may arise due to distributional uncertainty, one could consider the following
so–called distributionally robust stochastic programming problem:

(Drsp) minimize max
P∈D

EP[f(x, ω)] subject to x ∈ X .

Here, D is the set of admissible distributions of the uncertain parameter, which
is usually assumed to contain the true distribution. Many candidate distribu-
tion sets D have been proposed and studied in the literature; see, e.g., [12] and
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the references therein. In particular, in a recent work, Delage and Ye [11] con-
sidered the case where D is the set of distributions on Rh whose mean vectors
and covariance matrices are within a certain “distance” of the corresponding
empirical estimates. Specifically, let µ0 ∈ Rh (resp. Σ0 ∈ Rh×h) be an empir-
ical estimate of the mean vector (resp. covariance matrix) of the underlying
distribution, where it is assumed that Σ0 Â 0. Let γm > 0 and γc ≥ 1 be
parameters to be chosen, and let S ⊂ Rh be a closed convex set that is known
to contain the support of the underlying distribution. Now, consider the set

D ≡ D(S, µ0, Σ0, γm, γc)

=




P ∈M :



P(ω ∈ S) = 1

(EP[ω]− µ0)T Σ−1
0 (EP[ω]− µ0) ≤ γm

EP
[
(ω − µ0)(ω − µ0)T

] ¹ γcΣ0








, (13)

whereM is the set of probability measures on the measurable space (Rh, B).
An important advantage of using the set D is that under some mild assump-
tions, Problem (Drsp) can be formulated as a convex optimization problem.
However, there is an undesirable feature in the definition of D. Specifically,
if the parameters γm > 0 and γc ≥ 1 are not chosen carefully, then there
is no guarantee that D will contain the true distribution. In particular, the
optimization problem (Drsp) may have nothing to do with reality! Thus, it is
natural to ask whether there is a rule for choosing γm > 0 and γc ≥ 1 so that
the set D defined in (13) will contain the true distribution with high probabil-
ity. In [11], Delage and Ye showed that if the support of the true distribution
P is bounded, and if one is able to generate independent samples according to
P, then the answer to this question is affirmative. Specifically, they proved the
following theorem:

Theorem 8 (Delage and Ye [11]) Let P be the true distribution of the uncer-
tain parameter ω ∈ Rh. Let µ = EP[ω] ∈ Rh and Σ = EP

[
(ω − µ)(ω − µ)T

] ∈
Rh×h be the true mean vector and covariance matrix of ω ∈ Rh, respectively.
Suppose that Σ Â 0, and that there exists an R > 0 such that

P
(
(ω − µ)T Σ−1(ω − µ) ≤ R2

)
= 1. (14)

Now, let δ ∈ (0, 1) be a confidence parameter, and let ω1, . . . , ωM ∈ Rh be M
independent samples generated according to P, where

M > R4
(√

1− h/R4 +
√

ln(2/δ)
)2

.

Furthermore, let

µ0 =
1
M

M∑

i=1

ωi and Σ0 =
1
M

M∑

i=1

(ωi − µ0)(ωi − µ0)T
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be the empirical estimates of the mean vector µ ∈ Rh and covariance matrix
Σ ∈ Rh×h, respectively. Then, with probability at least 1− δ (over the choices
of ω1, . . . , ωM ), the following constraints will be satisfied:

(µ0 − µ)Σ−1(µ0 − µ) ≤ R2

M

(
2 +

√
2 ln(2/δ)

)2

,

Σ ¹
[
1− R2

√
M

(√
1− h/R4 +

√
ln(4/δ)

)
− R2

M

(
2 +

√
2 ln(2/δ)

)2
]−1

Σ0,

Σ0 ¹
[
1 +

R2

√
M

(√
1− h/R4 +

√
ln(4/δ)

)]
Σ.

Moreover, there exist γm > 0 and γc ≥ 1 such that with probability at least
1 − δ, the true distribution P will belong to the set D defined in (13), where
S = {ω ∈ Rh : (ω − µ)T Σ−1(ω − µ) ≤ R2}.
As it turns out, Theorem 8 can be extended to the case where the true distri-
bution does not have bounded support, but rather satisfies a (weaker) moment
growth condition. One way of proving such an extension is to use the moment
inequalities introduced in Section 2. Before we present the proof, let us be
more precise about the assumption we make on the true distribution P:

Condition (G) The true distribution P of the uncertain parameter ω ∈ Rh

satisfies the following moment growth condition: There exists an absolute con-
stant c > 0 such that for any p ≥ 1, the following holds:

EP
[∥∥∥Σ−1/2(ω − µ)

∥∥∥
p

2

]
≤ (cp)p/2.

Clearly, if P satisfies the bounded–support condition (14), then it also satisfies
Condition (G) with c ≤ R. However, the converse is not true. For instance,
suppose that P is the standard one–dimensional normal distribution. Then,
we have µ = 0 and Σ = 1. It is clear that P(ω2 ≤ R2) < 1 for any R > 0. On
the other hand, for any p ≥ 1, we have

EP [|ω|p] < pp/2.

Thus, Condition (G) is strictly weaker than the bounded–support condition
(14).

Now, let us prove the following result concerning the empirical estimate
µ0 of the true mean vector µ. It extends [11, Corollary 1] to the case where
the true distribution P may have unbounded support but satisfies the moment
growth condition (G).

Proposition 4 Suppose that the true distribution P of the uncertain param-
eter ω ∈ Rh satisfies Condition (G). Let M ≥ 1 be an integer, and let
δ ∈ (0, e−2) be a confidence parameter. Consider M independent samples
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ω1, . . . , ωM ∈ Rh generated according to P. Then, with probability at least
1− δ, we will have

(µ0 − µ)T Σ−1(µ0 − µ) ≤ 4ce2 ln2(1/δ)
M

,

where µ0 = M−1
∑M

i=1 ωi.

Proof Define ζi = Σ−1/2(ωi − µ) for i = 1, . . . , M , and let ε1, . . . , εM be
i.i.d. Bernoulli random variables. Since EP[ζi] = 0 for i = 1, . . . , M , by the
convexity of x 7→ |x|p on R+ for any p ≥ 1 and a standard symmetrization
argument (see, e.g., [21, Lemma 6.3]), we have

EP

[∥∥∥∥∥
M∑

i=1

ζi

∥∥∥∥∥

p

2

]
≤ 2p · E

[∥∥∥∥∥
M∑

i=1

εiζi

∥∥∥∥∥

p

2

]

for any p ≥ 1. Now, by Theorem 2 and Jensen’s inequality, conditioned on the
ζi’s, we have

Eε

[∥∥∥∥∥
M∑

i=1

εiζi

∥∥∥∥∥

p

2

]
< pp/2 ·

(
M∑

i=1

‖ζi‖22
)p/2

≤Mp/2−1 · pp/2 ·
(

M∑

i=1

‖ζi‖p2
)

for any p ≥ 2. Hence, it follows from Fubini’s theorem and Condition (G) that
for any p ≥ 2,

EP

[∥∥∥∥∥
M∑

i=1

ζi

∥∥∥∥∥

p

2

]
≤ 2p ·Mp/2−1 · pp/2 ·

(
M∑

i=1

EP [‖ζi‖p2]
)
≤ 2p · (cM)p/2 · pp.

Now, by Markov’s inequality, for any t > 0 and p ≥ 2, we compute

P

(∥∥∥∥∥
1
M

M∑

i=1

ζi

∥∥∥∥∥
2

> t

)
≤ t−p ·M−p · EP

[∥∥∥∥∥
M∑

i=1

ζi

∥∥∥∥∥

p

2

]
≤ 2p · cp/2 · pp

tp ·Mp/2
.

Upon setting t = e
√

4c/M ln(1/δ) and p = t/e
√

4c/M ≥ 2 (since we have
δ ≤ e−2 by assumption), we conclude that

P
(

(µ0 − µ)T Σ−1(µ0 − µ) >
4ce2 ln2(1/δ)

M

)

= P




∥∥∥∥∥
1
M

M∑

i=1

ζi

∥∥∥∥∥

2

2

>
4ce2 ln2(1/δ)

M




≤ δ,

as desired. tu
Next, we establish a relationship between the matrix Σ̃ = M−1

∑M
i=1(ωi−

µ)(ωi−µ)T and the true covariance matrix Σ. Note that Σ̃ is not the empirical
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estimate of Σ, as it is defined in terms of the true mean vector µ. Nevertheless,
as we shall see in Theorem 9, such a relationship will enable us to derive bounds
on the empirical estimate Σ0 of the true covariance matrix.
Proposition 5 Suppose that the true distribution P of the uncertain param-
eter ω ∈ Rh satisfies Condition (G). Let M ≥ 1 be an integer, and let
δ ∈ (0, 2he−3) be a confidence parameter. Consider M independent samples
ω1, . . . , ωM ∈ Rh generated according to P, where

M > 16c′2(2e/3)3 ln3(2h/δ)

and c′ = max{c, 1}. Then, with probability at least 1− δ, we will have

(1− t)Σ ¹ Σ̃ ¹ (1 + t)Σ,

where Σ̃ = M−1
∑M

i=1(ωi − µ)(ωi − µ)T and

t =
4c′(2e/3)3/2 ln3/2(2h/δ)√

M
.

Proof As in the proof of Proposition 4, define ζi = Σ−1/2(ωi − µ) for i =
1, . . . , M , and let ε1, . . . , εM be i.i.d. Bernoulli random variables. Consider the
matrices Qi = ζiζ

T
i − I ∈ Rh×h, where i = 1, . . . , M . Since

EP
[
ζiζ

T
i

]
= Σ−1/2EP

[
(ωi − µ)(ωi − µ)T

]
Σ−1/2 = I,

we have EP[Qi] = 0, where i = 1, . . . , M . Thus, a standard symmetrization
argument yields

EP




∥∥∥∥∥
M∑

i=1

Qi

∥∥∥∥∥

p

Sp


 ≤ 2p · E




∥∥∥∥∥
M∑

i=1

εiQi

∥∥∥∥∥

p

Sp


 (15)

for any p ≥ 1. Now, by Theorem 2 and Jensen’s inequality, conditioned on the
ζi’s, we have

Eε




∥∥∥∥∥
M∑

i=1

Qi

∥∥∥∥∥

p

Sp


 < pp/2 ·

(
M∑

i=1

‖Qi‖2Sp

)p/2

≤Mp/2−1 · pp/2 ·
(

M∑

i=1

‖Qi‖pSp

)

(16)
for any p ≥ 2. Note that for i = 1, . . . , M , the eigenvalues of Qi are −1 (with
multiplicity h− 1) and ‖ζi‖22 − 1 (with multiplicity 1). Hence, it follows that

‖Qi‖pSp
= h− 1 +

∣∣‖ζi‖22 − 1
∣∣p . (17)

Upon substituting (16), (17) into (15) and noting that the ζi’s are identically
distributed, we have

EP




∥∥∥∥∥
M∑

i=1

Qi

∥∥∥∥∥

p

Sp


 ≤ 2p ·Mp/2 · pp/2 · EP

[
h− 1 +

∣∣‖ζ1‖22 − 1
∣∣p

]

≤ 2p ·Mp/2 · pp/2 ·
(
h + EP

[
‖ζ1‖2p

2

])
(18)

≤ 2p ·Mp/2 · pp/2 · (h + (2cp)p) , (19)
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where (18) follows from the fact that

EP
[∣∣‖ζ1‖22 − 1

∣∣p
]

=
∫

{‖ζ1‖22<1/2}
∣∣‖ζ1‖22 − 1

∣∣p dP

+
∫

{‖ζ1‖22≥1/2}
∣∣‖ζ1‖22 − 1

∣∣p dP

≤ 1 +
∫

Rh

‖ζ1‖2p
2 dP

= 1 + EP
[
‖ζ1‖2p

2

]
,

and (19) follows from Condition (G). Thus, by Markov’s inequality, for any
t > 0 and p ≥ 2, we have

P

(∥∥∥∥∥
1
M

M∑

i=1

Qi

∥∥∥∥∥
∞

> t

)
≤ t−p ·M−p · EP




∥∥∥∥∥
M∑

i=1

Qi

∥∥∥∥∥

p

Sp




≤ 2p · pp/2 · (h + (2cp)p)
tp ·Mp/2

.

Now, define c′ = max{c, 1}, and set

t =
4c′(2e/3)3/2 ln3/2(2h/δ)√

M
and p =

(
t

4c′e3/2/
√

M

)2/3

. (20)

Note that p = 2 ln(2h/δ)/3 ≥ 2, since δ ≤ 2he−3 by assumption. Moreover,
we have

2p · pp/2 · h
tp ·Mp/2

=
2p · pp/2 · h

(4c′)p · e3p/2 · p3p/2
≤ δ

2

and
2p · pp/2 · (2cp)p

tp ·Mp/2
=

cp

c′p · e3p/2
≤ δ

2h
≤ δ

2
.

It follows that

P

(∥∥∥∥∥
1
M

M∑

i=1

Qi

∥∥∥∥∥
∞

>
4c′(2e/3)3/2 ln3/2(2h/δ)√

M

)
≤ δ. (21)

Now, let λ1, . . . , λh be the eigenvalues of Σ̃′ = M−1
∑M

i=1 ζiζ
T
i . Then, (21)

implies that with probability at least 1 − δ, we will have |1 − λi| ≤ t for
i = 1, . . . , h, where t is given by (20). In particular, whenever

M > 16c′2(2e/3)3 ln3(2h/δ)
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so that t < 1, all the eigenvalues of Σ̃′ will lie between [1 − t, 1 + t] with
probability at least 1− δ. In other words, the linear matrix inequalities

(1− t)I ¹ Σ̃′ ¹ (1 + t)I

will hold with probability at least 1− δ. Upon noting that Σ̃ = Σ1/2Σ̃′Σ1/2,
the proof is completed. tu

Recall that our original goal is to prove that with high probability, the
true distribution P will belong to the distribution set D defined in (13). This
can now be achieved by combining the results of Propositions 4, 5 and the
arguments in [11]. Specifically, we prove the following theorem, which extends
the corresponding result in [11] (see Theorem 8 of this paper) to the case where
the true distribution P only satisifes the moment growth condition (G):

Theorem 9 Suppose that the true distribution P of the uncertain parameter
ω ∈ Rh satisfies Condition (G). Let

µ = EP[ω] ∈ Rh and Σ = EP
[
(ω − µ)(ω − µ)T

] ∈ Rh×h

be the true mean vector and covariance matrix of ω ∈ Rh, respectively, with
Σ Â 0. Let δ ∈ (0, 2e−3) be a confidence parameter, and let ω1, . . . , ωM ∈ Rh

be M independent samples generated according to P, where

M > 32c′2(2e/3)3 ln3(4h/δ)

and c′ = max{c, 1}. Let

µ0 =
1
M

M∑

i=1

ωi and Σ0 =
1
M

M∑

i=1

(ωi − µ0)(ωi − µ0)T

be the empirical estimates of the mean vector µ ∈ Rh and covariance matrix
Σ ∈ Rh×h, respectively, and define

tm =
4ce2 ln2(2/δ)

M
and tc =

4c′(2e/3)3/2 ln3/2(4h/δ)√
M

.

Then, with probability at least 1 − δ (over the choices of ω1, . . . , ωM ), the
following constraints will be satisfied:

(µ0 − µ)T Σ−1
0 (µ0 − µ) ≤ tm

1− tc − tm
≡ γm,

EP
[
(ω − µ0)(ω − µ0)T

] ¹ 1 + tm
1− tc − tm

Σ0 ≡ γcΣ0.

In particular, we have P ∈ D(Rh, µ0, Σ0, γm, γc).
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Proof Note that the condition on M ensures that tc + tm < 1. Now, by Propo-
sitions 4 and 5, with probability at least 1 − δ, the following constraints will
be satisfied:

(µ0 − µ)T Σ−1(µ0 − µ) ≤ tm, (22)

(1− tc)Σ ¹ Σ̃ ¹ (1 + tc)Σ. (23)

In particular, using the argument in the proof of [11, Theorem 2], one can
derive from (22) and (23) that

(1− tc)Σ ¹ Σ̃ ¹ Σ0 + tmΣ.

This implies that

(µ0−µ)T Σ−1
0 (µ0−µ) ≤ 1

1− tc − tm
(µ0−µ)T Σ−1(µ0−µ) ≤ tm

1− tc − tm
= γm.

(24)
Now, using (24) and the argument in the proof of [11, Corollary 4], we have

EP
[
(ω − µ0)(ω − µ0)T

]− γmΣ0 ¹ 1
1− tc − tm

Σ0,

which yields

EP
[
(ω − µ0)(ω − µ0)T

] ¹ 1 + tm
1− tc − tm

Σ0 = γcΣ0.

This completes the proof of Theorem 9. tu

4 Conclusion

In this paper, we explored the close connection between moment inequalities
for sums of certain random matrices and the performance analyses of several
problems in optimization. As a result, we obtained the best known performance
guarantees for several optimization problems. Given the power and wide ap-
plicability of the moment inequalities considered in this paper, it would be
interesting to find other problems for which they apply.
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19. Khintchine, A.: Über Dyadische Brüche. Mathematische Zeitschrift 23, 109–116 (1923)
20. Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of Economic

Activities. Econometrica 25(1), 53–76 (1957)
21. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern
Surveys in Mathematics, vol. 23. Springer–Verlag, Berlin Heidelberg (1991)

22. Li, W.L., Zhang, Y.J., So, A.M.C., Win, M.Z.: Slow Adaptive OFDMA through Chance
Constrained Programming (2009). Preprint

23. Luo, Z.Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation Bounds for
Quadratic Optimization with Homogeneous Quadratic Constraints. SIAM Journal on
Optimization 18(1), 1–28 (2007)
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