Mathematical Surveys and Monographs Volume 98

> Moment Maps, Cobordisms, and Hamiltonian Group Actions

Victor Guillemin Viktor Ginzburg Yael Karshon

American Mathematical Society

Contents

Chap	ter 1. Introduction	1
1.	Topological aspects of Hamiltonian group actions	1
2.	Hamiltonian cobordism	4
3.	The linearization theorem and non-compact cobordisms	5
4.	Abstract moment maps and non-degeneracy	7
5.	The quantum linearization theorem and its applications	8
6.	Acknowledgements	10
Part	1. Cobordism	13
Chap	ter 2. Hamiltonian cobordism	15
1.	Hamiltonian group actions	15
2.	Hamiltonian geometry	21
3.	Compact Hamiltonian cobordisms	24
4.	Proper Hamiltonian cobordisms	27
5.	Hamiltonian complex cobordisms	29
Chap	ter 3. Abstract moment maps	31
1.	Abstract moment maps: definitions and examples	31
2.	Proper abstract moment maps	33
3.	Cobordism	34
4.	First examples of proper cobordisms	37
5.	Cobordisms of surfaces	39
6.	Cobordisms of linear actions	42
Chap	ter 4. The linearization theorem	45
1.	The simplest case of the linearization theorem	45
2.	The Hamiltonian linearization theorem	47
3.	The linearization theorem for abstract moment maps	51
4.	Linear torus actions	52
5.	The right-hand side of the linearization theorems	56
6.	The Duistermaat-Heckman and Guillemin-Lerman-Sternberg formulas	58
Chap	ter 5. Reduction and applications	63
1.	(Pre-)symplectic reduction	63
2.	Reduction for abstract moment maps	65
3.	The Duistermaat–Heckman theorem	69
4.	Kähler reduction	72
5.	The complex Delzant construction	73
6.	Cobordism of reduced spaces	81

vi CONTENTS

7.	Jeffrey–Kirwan localization	82
8.	Cutting	84
Part	2. Quantization	87
Chapter 6. Geometric quantization		
1.	Quantization and group actions	89
2.	Pre-quantization	90
3.	Pre-quantization of reduced spaces	96
4.	Kirillov-Kostant pre-quantization	99
5.	Polarizations, complex structures, and geometric quantization	102
6.	Dolbeault Quantization and the Riemann–Roch formula	110
7.	Stable complex quantization and Spin ^c quantization	113
8.	Geometric quantization as a push-forward	117
Chapt	er 7. The quantum version of the linearization theorem	119
1.	The quantization of $\mathbb{C}^{\mathbf{d}}$	119
2.	Partition functions	125
3.	- ()	130
4.	A quantum version of the linearization theorem	134
Chapt	er 8. Quantization commutes with reduction	139
1.	Quantization and reduction commute	139
2.	Quantization of stable complex toric varieties	141
3.	Linearization of [Q,R]=0	145
4.	Straightening the symplectic and complex structures	149
5.	Passing to holomorphic sheaf cohomology	150
6.	Computing global sections; the lit set	152
7.	The Čech complex	155
8.	The higher cohomology	157
9.	Singular $[Q,R]=0$ for non-symplectic Hamiltonian G -manifolds	159
10.	Overview of the literature	162
Part	3. Appendices	165
Apper	ndix A. Signs and normalization conventions	167
1.	The representation of G on $C^{\infty}(M)$	167
2.	The integral weight lattice	168
3.	Connection and curvature for principal torus bundles	169
4.	Curvature and Chern classes	171
5.	Equivariant curvature; integral equivariant cohomology	172
Apper	ndix B. Proper actions of Lie groups	173
1.	Basic definitions	173
2.	The slice theorem	178
3.	Corollaries of the slice theorem	182
4.	The Mostow–Palais embedding theorem	189
5.	Rigidity of compact group actions	191
Apper	ndix C. Equivariant cohomology	197
1.	The definition and basic properties of equivariant cohomology	197

CONTENTS vii

2.	Reduction and cohomology	201
3.	3. Additivity and localization	
4.	· · · · · · · · · · · · · · · · · · ·	
5.	The relation between $\mathbf{H}_{\mathbf{G}}^*$ and $\mathbf{H}_{\mathbf{T}}^*$	208
6.	Equivariant vector bundles and characteristic classes	211
7.	The Atiyah–Bott–Berline–Vergne localization formula	217
8.	Applications of the Atiyah–Bott–Berline–Vergne localization formula	222
9.	Equivariant homology	226
Appe	ndix D. Stable complex and Spin ^c -structures	229
1.	Stable complex structures	229
2.	Spin ^c -structures	238
3.	Spin ^c -structures and stable complex structures	248
Appe	ndix E. Assignments and abstract moment maps	257
1.	Existence of abstract moment maps	257
2.	Exact moment maps	263
3.	Hamiltonian moment maps	265
4.	Abstract moment maps on linear spaces are exact	269
5.	Formal cobordism of Hamiltonian spaces	273
Appe	ndix F. Assignment cohomology	279
1.	Construction of assignment cohomology	279
2.	Assignments with other coefficients	281
3.	Assignment cohomology for pairs	283
4.	Examples of calculations of assignment cohomology	285
5.	Generalizations of assignment cohomology	287
Appe	ndix G. Non-degenerate abstract moment maps	289
1.	Definitions and basic examples	289
2.	Global properties of non-degenerate abstract moment maps	290
3.	Existence of non-degenerate two-forms	294
Appe	ndix H. Characteristic numbers, non-degenerate cobordisms, and	
	non-virtual quantization	301
1.	The Hamiltonian cobordism ring and characteristic classes	301
2.	Characteristic numbers	304
3.	Characteristic numbers as a full system of invariants	305
4.	Non-degenerate cobordisms	308
5.	Geometric quantization	310
	ndix I. The Kawasaki Riemann–Roch formula	315
1.	Todd classes	315
2.	The Equivariant Riemann–Roch Theorem	316
3.	The Kawasaki Riemann-Roch formula I: finite abelian quotients	320
4.	The Kawasaki Riemann-Roch formula II: torus quotients	323
Appe	endix J. Cobordism invariance of the index of a transversally elliptic	00-
	operator by Maxim Braverman	327
1.	The Spin ^C -Dirac operator and the Spin ^C -quantization	327
2.	The summary of the results	329

viii	CONTENTS

3. Transversally elliptic operators and their indexes	331
4. Index of the operator \mathbf{B}_a	333
5. The model operator	335
6. Proof of Theorem 1	336
Bibliography	339
Index	349