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MOMENT MAPS ON SYMPLECTIC CONES

Suzana Falcão B. de Moraes and Carlos Tomei

We analyze some convexity properties of the image maps
on symplectic cones, similar to the ones obtained by Guillemin-
Sternberg and Atiyah for compact symplectic manifolds in the
early 80’s. We prove the image of the moment map associated
to the symplectic action of an n-torus on a symplectic cone is a
polytopic convex cone in Rn. Then, we generalize these results
to symplectic manifolds obtained by special perturbations of
the symplectic structure of a cone: we obtain sufficient (and
essentially necessary) conditions for the image of the moment
map associated to the perturbed form to remain unchanged.

Hamiltonian actions of tori and the images of their moment maps have
been intensely studied in the eighties. According to the fundamental result,
obtained independently by Atiyah [2] and Guillemin and Sternberg [4], the
moment map of a Hamiltonian action of a torus on a compact symplectic
manifold has for its image a convex polytope, spanned by the images of
the fixed points of the action. More recently, Prato [10] proved a convexity
result concerning the image of moment maps of torus actions on non-compact
symplectic manifolds.

Theorem [10]. Let the torus T r act in a Hamiltonian fashion on the
symplectic manifold (X,ω) and denote by Φ : X → (LieT r)∗ = Rr the
corresponding moment map. Suppose that there exists a circle S1 = {etξ0} ⊆
T r for some ξ0 ∈ LieT r such that Φξ0 = 〈Φ, ξ0〉 is a proper function having
a minimum as its unique critical value. Then Φ(X) is the convex hull of a
finite number of rays in (LieT r)∗.

In this paper, we prove a different kind of result, closer in spirit to per-
turbation theory: We start with a special non-compact symplectic manifold,
described below, for which a similar convexity theorem holds, and consider
the changes of the underlying symplectic structure which keep the image of
the resulting moment maps unchanged.

Let (X,ω) be a symplectic cone with homothety group {ρt, t ∈ R+} so
that ρ∗tω = t · ω, for positive t, and compact base X/R+. Suppose that the
torus T r acts symplectically on (X,ω) and that this action commutes with
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the R+-action. Since (X,ω) is a symplectic cone, the torus action is Hamil-
tonian (Proposition 1.1), for some associated moment map Φ : (X,ω)→ Rr.
Assume finally that there exists ξ0 ∈ Rr such that Φ0 = 〈Φ, ξ0〉 > 0 (or,
equivalently, that the image of Φ lies in an open half-space of Rr). Then X is
diffeomorphic to M×R+ (again, from Proposition 1.1), where M = Φ0

−1(1)
is a compact submanifold of X.

We prove the following convexity theorem in Section 1.

Theorem 1 (Convexity). The image of the moment map, Φ(X), is a
polytopic convex cone.

We then consider in Section 2 symplectic forms Ω on X which do not
necessarily satisfy the homogeneity hypothesis, ρ∗tΩ = t · Ω, but for which
the same T r-action is still Hamiltonian, with moment map Ψ. We formulate
hypothesis that are essentially necessary and sufficient for the ranges of the
moment maps to coincide, i.e., so that Φ(X) = Ψ(X).

Theorem 2 (Rigidity). If limt→0 Ψ(t,m) = 0 uniformly in m ∈ M and
limt→∞Ψ0(t,m) = ∞ (where Ψ0 = 〈ξ0,Ψ〉) uniformly in m ∈ M , then the
images of Φ and Ψ coincide.

Notice that Theorem 2 only requires that the perturbed and unperturbed
moment maps have similar behavior at the extremes of the cone. The essen-
tial necessity of these hypothesis will be shown by examples in the Appendix.
The hypothesis at zero is equivalent to the integrability at zero of the one-
form defined by the contraction of the perturbation Ω − ω with the vector
fields induced by the torus action. The perturbation of the symplectic form
at infinity, on the other hand, is much more flexible.

An immediate consequence of the rigidity theorem is the result below,
previously obtained by Guillemin (private communication) using G-invariant
cohomology techniques.

Corollary. Let the torus T r act symplectically on a symplectic cone (X,ω),
so that the torus action and the R+-action commute. Let Φ : (X,ω) → Rr

be the associated moment map. Assume that there exists a ξ0 ∈ Rr such that
〈Φ, ξ0〉 > 0. Let Ω be a symplectic form on X, such that the same T r- action
is Hamiltonian with respect to it, with moment map Ψ : (X,Ω) → Rr. If
Ω− ω is compactly supported, then the images of Φ and Ψ coincide up to a
translation.

Theorem 1 can be obtained using techniques similar to those in the proof
of Prato’s theorem, but we prefer to provide the self-contained argument
in Section 1, which follows more closely the original proof of Guillemin-
Sternberg in [4]. More precisely, by homogeneity, the image of the moment
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map Φ on X is a cone over the image of its restriction to the compact
manifold M . It is sufficient then to show the convexity of the image of the
restriction, and this is accomplished by making use of the by now standard
ingredients: The local form of the moment map and Morse theory for clean
functions. The fact that M is odd dimensional does not introduce any
difficulty in this approach.

The proof of the rigidity theorem is by induction on the dimension of
the cells associated to the usual stratification of the symplectic manifold by
isotropy groups of the torus action. From the inductive hypothesis, the im-
ages of both unperturbed (Φ) and perturbed (Ψ) moment maps, restricted
to the closure of each cell up to a given dimension, agree (as sets, not point-
wise). The key point in the induction step is to combine the fact that the
images agree on the boundaries of the closures of the cells of higher dimen-
sion, with the fact that the images of the interiors of these cells ‘leave no
holes’ in the convex span of their boundaries. The second fact follows from
detailed study of the behavior of the moment map at interior faces (i.e.,
cells whose images are in the interior of the image of a larger cell). One of
the nice features of the argument is that, without additional hypothesis, the
perturbed moment map still omits the origin in its image.

In the Appendix we describe some examples and counter-examples. First,
for the natural action of T r on X = R2n − {0} with the usual symplectic
structure, we present all the symplectic structures for which the torus action
remains Hamiltonian — from the answer, we will see that the hypothesis
of the rigidity theorem are also necessary in this case. In the second exam-
ple, we show how the behavior of the moment map at the origin can alter
the image at infinity. The corollary above can be considered an additional
example of both theorems applied to the more general symplectic cone.

Acknowledgements. The authors would like to thank Victor Guillemin
for suggesting the study of moment maps on symplectic cones and Regina
Souza, Nicolau Saldanha and Eugene Lerman for fruitful conversations.This
work was partially supported by CNPq, SCT and FAPERJ, Brazil.

1. A Convexity theorem for symplectic cones.

Let (X,ω) be a symplectic cone with compact base. Explicitly, X is a
differentiable manifold with symplectic form ω, admitting a homothety group
{ ρt, t ∈ R+} of diffeomorphisms such that ρ∗tω = t·ω and such that the base
X/R+is a compact manifold. Suppose that the torus T r acts symplectically
on (X,ω) and that its action commutes with the R+-action.

Given ξ in the Lie algebra of T r = LieT r ' Rr, let ξ] be the symplectic
vector field on X associated to it. The conical structure of (X,ω) gives
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rise to a convenient description of the moment map of the torus action,
as we will see in Proposition 1.1: Define Φ : X → (LieT r)∗ ' Rr by
Φξ = 〈Φ, ξ〉 = ι(ξ])α, for ξ ∈ LieT r, where α = ι(Ξ)ω, the vector Ξ denotes
the infinitesimal generator of the R+-action and ι(η)β is the contraction
of the field η with the form β. From now on, we assume that for some
ξ0 ∈ LieT r, Φ0 = 〈Φ, ξ0〉 > 0: In particular, 0 /∈ Φ(X).

Under these assumptions, we have the main result of this section.

Theorem 1 (Convexity). The image of the moment map, Φ(X), is a
polytopic convex cone.

We make use of a number of simple properties of the moment map Φ.

Proposition 1.1.
(1) The T r-action on (X,ω) is Hamiltonian and Φ : X → Rr is indeed its

moment map.
(2) Φ ◦ ρt = t · Φ, i.e., Φ is homogeneous.
(3) X is diffeomorphic to the cartesian product M × R+, where M =

Φ−1
0 (1) is a compact submanifold of X. In these coordinates, ρt(m, s) =

(m, ts). In particular, the R+-action on X is free.
(4) Let τ : G × X → X be an action of a connected compact group G

on X that commutes with the R+-action. For each x ∈ X, let Gx be
the stabilizer group of x and [x] denote the corresponding element in
X/R+. Then Gx = G[x] for x ∈ X.

(5) Only a finite number of subgroups of T r occur as stabilizer groups of
points in X.

Proof. We first show that dΦξ = −ι(ξ])ω. By the Weyl identity, DΞω =
d(ι(Ξ)ω) + ι(Ξ)dω. But DΞω = ω and ω is closed, so ω = d(ι(Ξ)ω) = dα.
Hence, if we define Φξ = ι(ξ])α, dΦξ = d(ι(ξ])α) = Dξ]α − ι(ξ])dα =

0 − ι(ξ])ω = −ι(ξ])ω. The homogeneity of the moment map is immediate.
Now, consider the function Φ0 : X → R+ and let M = Φ−1

0 (1) ⊂ X.
Since Φ0 = ι(ξ]0)α, (ξ]0)x 6= 0, for all x ∈ X. Now, dΦ0 = −ι(ξ]0)ω, so Φ0

has no critical values and M is a manifold. Define F : X → M × R+ to
be F (x) = (ρ1/Φ0(x)(x),Φ0(x)) with inverse F−1(m, t) = ρt(m). Both are
smooth functions and so X and M × R+ are diffeomorphic and R+ acts
freely on X. Clearly, X/R+ ' M and so M is a compact manifold. The
proof of (4) splits in two parts.
i) Gx ⊆ G[x].
Let g ∈ Gx, i.e., τg(x) = x. Then τg([x]) = [τg(x)] = [x] and g ∈ G[x].
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ii) G[x] ⊆ Gx.
Let g ∈ G[x], i.e., τg([x]) = [x]. In particular, τg(x) = ρt(x), for some
t ∈ R+. We want to show that t = 1. If we let g vary in G[x], we get a
map A : G[x] → R+ where A(g) = t defined by τg(x) = ρt(x). The map A is
a group homomorphism since if A(g1) = t1 and A(g2) = t2 then τg1g2(x) =
τg1(τg2(x)) = τg1(ρt2(x)) = ρt2(τg1(x)) = ρt2(ρt1(x)) = ρt1(ρt2(x)) = ρt1t2(x).
Since G[x] is compact, the image of the map A is a compact subgroup of R+

and is therefore the identity. Hence A(g) = 1, for all g ∈ G[x] and t = 1. The
proof of (5) is a direct consequence of (4) and the standard analogous result
for compact group actions on compact manifolds (see, for example, [4] and
[8]).

From the proof of the last item, we conclude that the R+-orbits are
transversal to the torus orbits. Notice that the description given for Φ is
not invariant under translations, as is frequent for moment maps.

Let T1, . . . , TK be the subgroups of T r occurring as stabilizer groups of
points of the symplectic cone X. Let Xi = {x ∈ X | the isotropy group of
x is Ti}. By relabeling, we can assume the Xi ’s to be connected. Then X
can be written as

X = tNi=1Xi (disjoint union).

We now prove the analogous of Theorem 3.7 and 3.8 in [4].

Proposition 1.2. Each Xi in the decomposition X = tNi=1Xi is a T r-
invariant conic symplectic submanifold of X of strictly positive dimension
and Φ maps each Xi submersively onto an open subset of (Lie Ti)⊥, the
annihilator space of Lie Ti in (Lie Ti)∗. Moreover, Φ(Xi) is a union of a
finite number of polytopic convex cones.

Proof. Since T r is abelian, T r · Xi ⊆ Xi. Since the actions of R+ and T r

commute and R+ acts freely on X, R+ also acts freely on Xi and so Xi

is a conic manifold of non-zero dimension. By Theorem 3.5 in [4], Xi is
symplectic (and so even dimensional). The map Φi = Φ|Xi is the moment
map associated to the action of T r on Xi. Also as in [4], (dΦi)x maps TxXi

onto (LieTi)⊥for all x ∈ Xi and hence Φ maps Xi submersively onto an open
subset of pi+(LieTi)⊥ where pi = Φi(x). From the homogeneity of Φ, Φ(Xi)
is an open cone of the vector space (LieTi)⊥.

Since 0 /∈ Φ(X), Φ is homogeneous and Xi is conic, we have that 0 <
dim(Φ(Xi)) = dim((LieTi)⊥) — induction starts with k = 1.

If the codimension of Lie Ti is 1, Φ(Xi) is an open and conic subset in
the one-dimensional space (LieTi)⊥. Since 0 /∈ Φ(X), 0 /∈ Φ(Xi) and Φ(Xi)



362 SUZANA FALCÃO B. DE MORAES AND CARLOS TOMEI

is an open half-line starting at 0. Assume that the result is true when
codim (Lie Ti) < k. If codim (Lie Ti) = k, Φ(Xi) is a k-dimensional open
subset of the vector space (LieTi)⊥and its boundary components, if they ex-
ist, are the connected components of ∪jΦ(Xj) , Tj ⊃ Ti. By induction, each
Φ(Xj) is a finite union of polytopic convex cones. Therefore the boundary
of Φ(Xi) is a finite union of polytopic convex cones and so the same holds
for Φ(Xi) itself.

We continue using the same techniques as in [4], but instead of inspecting
the properties of the maps Φξ : X → R , ξ ∈ Lie T r , we consider the
restrictions Φξ|M : M → R, ξ ∈ LieT r , where M = Φ−1

0 (1), the compact
submanifold of X defined in Proposition 1.1.

Lemma 1.3. The function Φξ|M : M → R has a unique local maximum.

Before proving this lemma, we use it to prove Theorem 1.

Proof of Theorem 1. We want to show that Φ(X) is a polytopic convex
cone. By Proposition 1.2, it is enough to show that Φ(X) is convex.

Since X = ρt(M) and the moment map satisfies Φ(X) = Φ(ρt(M)) =
t · Φ(M) , t ∈ R+, we only need to show that Φ(M) is convex.

Let p be a point in the boundary of Φ(M) ⊂ Φ(X) and m ∈M a preimage
of p. From the local form of the moment map (again, as in [4]), there is an
open neighborhood U of m in X taken to the intersection U ′ of a convex
polytopic cone with vertex p with an open neighborhood of p in (LieT r)∗.
Consider now the affine hyperplane H1 = {v ∈ Rr | 〈v, ξ0〉 = 1}. Clearly,
the restricted neighborhoods V = U ∩M ⊂ M and V = V ′ ∩ H1 satisfy
Φ(V ) = V ′, where V ′ is also the intersection of a convex polytopic cone with
vertex p with a neighborhood of p in H1.

Let Si be a boundary component of V ′ containing p. We can choose
ξ ∈ LieT r such that 〈ξ, f〉 = 0, forf ∈ Si and 〈ξ, f〉 < 0 in the interior of V ′.

Then Φξ(y) = 〈ξ,Φ(y)〉 ≤ 0, for all y ∈ V . So, 0 is a local maximum of
Φξ|M and by Lemma 1.3, 0 is a global maximum of Φξ|M , i.e. Φξ(M) ≤ 0.

Mimicking again the argument in [4], Φ(M) behaves as a convex set rel-
ative to its boundary points and must then be convex.

Lemma 1.3 follows from Morse theory as expanded for clean functions by
Bott ([3], [4]). Let K be a compact connected manifold of dimension n.
Recall that, for a clean function f : K → R, the index (i.e., the number of
strictly negative eigenvalues of the Hessian of f at a point) is constant along
a connected component Ci of the critical set of f . Also, a clean function
f : K → R with indices on critical components different from 1 or n− 1 has
a unique local maximum. Lemma 1.3 is an immediate consequence of the
theorem below.
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Proposition 1.4. The function Φξ|M : M → R is clean. The indices of
the critical manifolds of Φξ|M and the number of positive eigenvalues of the
Hessian at a critical point are even.

The proof of this result requires some preparation.

Lemma 1.5. Φ(X) ∪ {0} is closed in Rr.

Proof. Suppose that there is a sequence {Φ(xn)} converging to v ∈ Rr.
We need to show that v ∈ Φ(X) ∪ {0}. It is enough to consider v 6=0.
Since Φ(xn) → v, there exists a sequence {(mn, tn)} ∈ M × R+ such that
Φ(mn, tn) → v. But Φ(mn, tn) = tnΦ(mn, 1), so | tn | ||Φ(mn, 1) || → ||v||.
Since 0 /∈ Φ(X) and Φ(mn, 1) is in a compact set, ||Φ(mn, 1)|| is bounded
away from zero and so tn is in a in a compact subset of R+. Then the
sequence {xn} = {(mn, tn)} has a convergent subsequence in X and 06=v =
limn→∞Φ(xn) ∈ Φ(X).

Because of Lemma 1.5, {x | 〈x, ξ0〉 > 0}\Φ(X) has a non-empty interior,
so we can assume (after a small perturbation if necessary) that ξ0 is in the
set 1

m
Zr for some integer m (here, Zr is the kernel of exp : LieT r → T r).

Thus ξ0 generates an action of the circle group S1 on X with moment map
Φ0 = 〈Φ, ξ0〉 : X → R+. Since 0 < 〈Φ, ξ0〉 = Φ0 = ι(ξ]0)α , the S1 - action is
locally free.

The proof of Proposition 1.4 makes use of a normal form for the moment
map of a torus action in a neighborhood of a point. This problem has
been solved by Guillemin and Sternberg in [5] and by Marle in [8]. We
now outline the construction in Lerman [7], from which the results in [5]
and [8] obtain the requested information. Let (X,ω) be a 2n-dimensional
symplectic manifold on which the torus T r acts in Hamiltonian fashion and
let ΦX : X → Rr be the associated moment mapping. Let Z be the action
orbit through x and consider the (symplectic) vector space V = TZ⊥x /TZx,
where the orthogonality sign is to be understood with respect to ω at the
point x. For x ∈ X, let Tx ⊆ T r be its isotropy group, and denote its
connected component containing the identity by T ox . Finally, let K be a
subtorus such that T r = K × T ox . (Since we are interested strictly in a local
normal form at x, the possible existence of other connected components of
the isotropy group is irrelevant, but both cases are treated in [7].) Consider
now the model symplectic manifold Y = T ∗K × V on which T r = K × T ox
acts as a product of a free (right) action of K in the cotangent bundle T ∗K
and a linear symplectic action of T ox in V . Denote by ΦY the moment map
of this action. From [5] or [8], in an appropriate T r-invariant neighborhood
of x in X, there is a symplectic change of coordinates φ to a neighborhood
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of the origin of T ∗K × V taking one torus action to another. In particular,
the moment maps ΦX and ΦY are related by ΦX = ΦY ◦φ. Also, it is simple
to obtain variables so that

Φ(x1, y1, . . . , xk, yk, xk+1, yk+1, . . . , xn, yn)

= e1y1 . . .+ ek(yk + 1) + αk+1(x2
k+1 + y2

k+1)/2 + . . .+ αn(x2
n + y2

n)/2,

where the ei’s are canonical vectors and the αj’s are weights of the lineariza-
tion of the action of the isotropy Tx on V , following the usual procedures for
normal forms as in [6] (also [5]). The subspaces spanned by {α1, . . . , αk}
and {ek+1, . . . , en} have trivial intersection. Notice that the coordinate sys-
tem can be taken so that the moment map Φ0 corresponding to the locally
free S1-action is Φ0 = yk + 1.

Proof of Proposition 1.4. Let CM be the critical set of Φξ|M . It suffices to
show that the Hessian of Φξ|M at x ∈ CM has an even number of positive
(negative) eigenvalues and that its kernel at x is the tangent space of CM at
x. Clearly, it suffices to check both statements for a convenient coordinate
system — we consider Φ in the local normal form described above on a
neighborhood {x1, y1, . . . , xn, yn} of the origin. For points in M near the
origin, we must have yk = 0. A simple computation shows that, locally,
the critical component containing zero is a subspace. Also, for the non-
degenerate part of the Hessian, the double partial derivatives in variables xj
and yj, for j = k, . . . , n, give rise to eigenvalues of the same sign.

2. A Rigidity theorem.

Let (X,ω) be a symplectic cone with compact base, admitting a symplectic
T raction which commutes with the R+-action. We can assume, without
loss, that T r acts locally freely on a conic open subset X ′ of X and that the
complement of X ′ is of codimension 2 in X.

Let Φ : (X,ω) → Rr be the moment map associated to the T r-action.
Assume that 〈Φ, ξ0〉 > 0 for some ξ0 ∈ 1

m
Zr, for some integer m, as remarked

after Lemma 1.5. By Theorem 1, Φ(X) is a polytopic convex cone.
Consider now a symplectic form Ω on X, not necessarily satisfying ρ∗tΩ =

t ·Ω, but such that the same T r-action on X admits a moment map Ψ with
respect to Ω.

We make the following assumptions about Ψ.
1. limt→0 Ψ(t,m) = 0 uniformly in m ∈M . (This is equivalent to saying

that the contraction of Ω−ω with any vector field induced by the torus
action is integrable close to the vertex of X, t = 0.)

2. limt→∞Ψ0(t,m) =∞, where Ψ0 = 〈Ψ, ξ0〉, uniformly in m ∈M .
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We will show that under these assumptions, the following rigidity theorem
holds.

Theorem 2. The images of Φ and Ψ coincide.

Corollary. Let Φ : (X,ω) → Rr and Ψ : (X,Ω) → Rr be moment maps
as above. Suppose also that 0 /∈ Φ(X) and that there exists a ξ0 ∈ Rr such
that 〈Φ, ξ0〉 > 0 on X. If Ω − ω is compactly supported, then the images of
Φ and Ψ coincide up to a translation.

In the notation of Section 1, X can be written as a disjoint union X =
tNi=1Xi, where Xi = {x ∈ X | the stabilizer ofx is Ti} is connected and
Φ(X) = ∪Ni=1Φ(Xi), Ψ(X) = ∪Ni=1Ψ(Xi). The boundaries of both moment
maps are formed by faces of the form Φ(Xk) or Ψ(Xk), with Tk different
from the identity. On the other hand, some (interior) faces do not lie on
the boundaries of the images, but in the interiors of the images — they will
receive special attention in the proof of Theorem 2.

We will need some preparatory lemmas.

Lemma 2.1. 0 /∈ Ψ(X).

Proof. Consider Ψ0(x) = 〈ξ0,Ψ(x)〉, x ∈ X. We first show that Ψ0 has
an open image. This follows from the simple fact below, together with the
openness of Ψ|Xi in (LieTi)⊥.

Fact: 〈ξ0, ·〉|(LieTi)⊥
is not identically zero for any (LieTi)⊥.

Proof of fact.
If 〈ξ0, ·〉|(LieTi)⊥

were identically zero, (LieTi)⊥would be contained in the

hyperplane H0 = {v ∈ (LieT r)∗ | 〈ξ0, v〉 = 0} (since the fact that Φ(X) has
no vertices implies that dim (LieTi)⊥ ≥ 1). But Φ(Xi) ⊂ (LieTi)⊥ and,
by hypothesis, Φ(X) and so Φ(Xi) are contained in the interior of H+ =
{v ∈ (LieT r)∗ | 〈ξ0, v〉 > 0}. Hence 〈ξ0, ·〉|(LieTi)⊥

cannot be identically

zero.

Now, notice that Ψ0 is bounded from below. Indeed, suppose it is not.
Then there would be a sequence {xn} in X such that limn→∞Ψ0(xn) =
−∞. The sequence would not converge in X, for if it did, {Ψ0(xn)} would
converge too. Since we can write xn = (mn, tn), with mn ∈ M , we have
two possibilities: For a subsequence, either tn → ∞ and Ψ0(xn) → ∞ (by
hypothesis) or tn → 0 and Ψ0(xn) → 0 (by hypothesis). Hence we never
have Ψ0(xn)→ −∞ and Ψ0 is bounded from below.

If 0 ∈ Ψ(X), Ψ0 attains a negative value −ε by the openness of its im-
age and by using the hypothesis at the extremes of the cone again, the set



366 SUZANA FALCÃO B. DE MORAES AND CARLOS TOMEI

Ψ−1
0 (−∞,−ε/2] is contained in a compact set of the form M × [a, b], 0 <

a < b < ∞. Then Ψ0 attains its infimum, contradicting the openness of its
image.

In the next lemma we will show that the map Φ is open at points that
are taken into the interior faces. In Lemma 2.3 we will show an analogous
result for Ψ.

Lemma 2.2. Assume that there exists xk in Xk such that Φ(xk) ∈
Interior(Φ(X)). Then Φ is an open map at the point xk — i.e., there is
an open neighborhood of xk in X taken to an open neighborhood of Φ(xk) in
(LieT r)∗. Similarly, Ψ is also open at xk.

Proof. By the usual local convexity of the moment map as in [4], the image of
a sufficiently small neighborhood U of xk is taken to an intersection of half-
spaces whose bounding hyperplanes contain Φ(xk), which without loss in this
argument we assume to be the origin of (LieT r)∗. Let one such bounding
hyperplane be the annihilator of some ξ ∈ LieT r and orient ξ so that the
half-space containing Π(U) is of the form 〈ξ, f〉 ≤ 0, for f ∈ (LieT r)∗. By
Lemma 1.3, the local maximum xk of the function Φξ|M is a point in which
Φξ|M attains its maximum, contradicting the fact that Φ(xk) is an interior
point of Φ(X). Thus, there can be no such bounding hyperplanes and Φ
is open at xk. Moreover, from the local form of Φ at xk, we have that the
weights α1, . . . , αn of the linear isotropy action of Tk on (TxX,ωxk) span
(LieT r)∗. Now, Tk induces the same (linear) action on the vector space
TxX, which can be interpreted in two different ways as a symplectic action,
depending if the bilinear form considered in TxX is ωxk or Ωxk . By Darboux
theorem, both actions are conjugate by a symplectic transformation and
since the weights of the first action span (LieT r)∗, the same must hold for
the weights of the second action, implying the openness of Ψ at xk.

We now start the proof of Theorem 2.
We first prove that Ψ(Xi) ⊆ Φ(Xi) (where Xi is the closure of Xi in X

and so Φ(Xi) does not contain 0) and conclude that Ψ(X) ⊆ Φ(X). Then
we prove that Ψ(X) covers an open dense set of Φ(X) and by taking closures
we conclude that both images are equal.

Step 1. Ψ(Xi) ⊆ Φ(Xi).
Proof. The proof will be by induction on k = dim (LieTi)⊥, which is the
dimension of the interior of either Ψ(Xi) or Φ(Xi) .

As in the proof of Proposition 1.2, k ≥ 1. From Theorem 1, for Φ(X),
there exists Xi such that the interior of Φ(Xi) has dimension equal to 1.

If k = 1, then Φ(Xi) is an open half-line starting at 0, contained in the
straight line (LieTi)⊥, and Ψ(Xi) is an open subset in (LieTi)⊥+p, for some
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p ∈ Rr. Now, Xi is a conic manifold, so Ψ(ρt(x)) ∈ Ψ(Xi), for positive t
and x ∈ Xi. By hypothesis, limt→0 Ψ(ρt(x)) = 0, so Ψ(Xi) is also a subset
of (LieTi)⊥. Moreover, 0 /∈ Ψ(X) by Lemma 2.1, (hence 0 /∈Ψ(Xi)), and
the limits along the fiber ρt(x) are equal to 0 and ∞ by hypothesis. So we
must have that the connected set Ψ(Xi), which is open in (LieTi)⊥, is also
an open half-line beginning at 0 contained in (LieTi)⊥. The case k = 1 is
proved.

Suppose now that Ψ(Xi) ⊆ Φ(Xi) for all Xi such that dim (LieTi)⊥ < k.
We will show that the same is true for all Xi such that dim (LieTi)⊥ = k.

As shown in Section 27 of [6], Xi is a symplectic manifold, hence a sym-
plectic cone with compact base and Φ(Xi) is a polytopic convex cone in
(LieTi)⊥ (Theorem 1).

Set A = Φ(Xi)∪{0} and B = Ac, the complement of A in (LieTi)⊥which
is open by Lemma 1.5. We first show that Ψ(Xi)∩B = B or the empty set,
using a connectedness argument.
i) Ψ(Xi) ∩B is open in B.

Ψ(Xi) = Ψ(Xi) ∪ (∪jΨ(Xj)), where Tj ⊃ Ti, and by induction Ψ(Xj) ⊆
Φ(Xj) ⊂ A. So Ψ(Xi) ∩ B = Ψ(Xi) ∩ B and Ψ(Xi) ∩ B is open since both
Ψ(Xi) and B are.
ii) Ψ(Xi) ∩B is closed in B.

Consider a sequence {yn = Ψ(xn)} in Ψ(Xi) ∩ B converging to y ∈ B.
Since X ' M ×R+, we can write xn = (mn, tn). Since {yn} converges to
y ∈ B and 0 /∈ B, tn is far from zero and from ∞. Hence the sequence {xn}
is in a compact set in X and admits a subsequence converging to a point
x ∈ Xi. Therefore {yn} converges to y = Ψ(x) ∈ Ψ(Xi) and Ψ(Xi) ∩ B is
closed in B.

Since B is connected, Ψ(Xi) ∩ B = B or Ψ(Xi) ∩ B = ∅. But Ψ0(X)
is bounded from below (by the proof of Lemma 2.1) so we cannot have
Ψ(Xi) ∩B = B. Therefore Ψ(Xi) ⊆ A = Φ(Xi) ∪ {0}. Since 0 /∈ Ψ(X) , 0 /∈
Ψ(Xi) and then Ψ(Xi) ⊆ Φ(Xi), completing the proof of Step 1.

In particular, Ψ(X) ⊆ Φ(X).
We now show that Ψ(X) covers an open dense set of Φ(X).
Let Xm = {x ∈ X | the isotropy group of x is the identity}. By Section 3

of [4], Xm is a connected open set in X.
Consider the set

C = {Ψ(Xi) for Xi 6=Xm |Ψ(Xi) ⊂ Int(Φ(X))}.
Recall that for all Xi in the stratification X = tNi=1Xi, Ψ(Xi) ⊆ Φ(Xi) ⊂
Φ(X).
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Let C̃ = Int(Φ(X))− C, which is clearly an open set, and A1, . . . , As be
the open connected components of C̃ .

Step 2. Ψ(X) ∩Aj 6=∅ j = 1, . . . , s.
Proof. If s = 1, C̃ has only one connected component A1. Since Ψ(X) ⊆
Φ(X), the result follows in this case. Consider now s > 1. For each Aj,
there exists at least one Ψ(Xi) ∈ C such that Ψ(Xi) is in the boundary of
Aj. By Lemma 2.2, given x ∈ Xi such that Φ(x) ∈ Int(Φ(X)), there exists
an open set V ′w of Ψ(X) around w = Ψ(x) in (LieT r)∗. So V ′w intersects all
the Aj’s that have Ψ(Xi) as a boundary component and then V ′w∩Aj 6=∅ and
Ψ(X) ∩ Aj 6=∅. We conclude that for any Aj, there is an open set in Ψ(X)
that intersects it. Hence Ψ(X) ∩Aj 6=∅ for j = 1, . . . , s.

Step 3. Ψ(X) ∩Aj = Aj, j = 1, . . . , s.
Proof. This is connectedness again.

i) Ψ(X) ∩Aj is open in Aj.
Since Ψ(X) = Ψ(Xm)∪ (∪iΨ(Xi)), Ψ(X)∩Aj = Ψ(Xm)∩Aj. Therefore,

Ψ(X) ∩Aj is open, since both Ψ(Xm) and Aj are.

ii) Ψ(X) ∩Aj is closed in Aj.
Let {yn = Φ(xn)} be a sequence in Ψ(X) ∩ Aj converging to y ∈ Aj. We

want to show that y ∈ Ψ(X) ∩ Aj, i.e., that y ∈ Ψ(X). We now make use
of compactness as above. Again, since y 6=0, {xn} has a subsequence that
converges in X. Then {yn} converges to y ∈ Ψ(X).

Therefore Ψ(X) ∩ Aj is not empty (from Step 2), open and closed in the
connected set Aj, and so Ψ(X) ∩ Aj = Aj and Aj ⊆ Ψ(X). We conclude
then that Ψ(X) covers an open dense subset of Φ(X) since Int(Φ(X)) −
C = ∪jAj ⊆ Ψ(X). The closure of Int(Φ(X)) − C is Φ(X) ∪ {0} and
from a by now standard compactness argument the closure of Ψ(X) is also
its union with {0}. So, taking closures, Φ(X) ∪ {0} ⊆ Ψ(X) ∪ {0}. Since
0 /∈ Φ(X) and 0 /∈ Ψ(X) we conclude that Φ(X) ⊂ Ψ(X). By Step 1,
Ψ(X) = Φ(X).
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3. Appendix.

Example 1. Let X = R2n − {0} with symplectic form ω =
∑n
i=1 dxi ∧ dyi

and

ρt(x1, y1, . . . , xn, yn) = (
√
tx1,
√
ty1, . . . ,

√
txn,
√
tyn) t ∈ R+

an action of R+ on X. It is easy to see that X/R+= S2n−1 and that (ρt)∗ω =
t · ω. Hence (X,ω) with this R+-action is a symplectic cone.

Consider the following T n-action on X:

τ(α1,... ,αn)(x1, y1, . . . , xn, yn)=


cosα1 − senα1

senα1 cosα1

. . .
cosαn − senαn
senαn cosαn




x1

y1

...
xn
yn

 .

It is clear that τ ◦ρ = ρ◦ τ . Moreover, this T n-action is Hamiltonian with
moment map Φ : X → Rn , where

Φ(x1, y1, . . . , xn, yn) =
(
x2

1 + y2
1

2
, . . . ,

x2
n + y2

n

2

)
and Im Φ = {(r1, . . . , rn) ∈ Rn − {0} | ri ≥ 0 i = 1, . . . , n}.

Let Ω be a T n-invariant symplectic form in X obtained by a perturbation
of ω, i.e., Ω = ω + µ where µ is a closed 2-form and Ω is non-degenerate.
It is possible to show that the most general Ω satisfying these properties is
given by

Ω = ω +
∑
i

ciidxi ∧ dyi

+
∑
i<j

(
aijxixj − cij xiyj

x2
j + y2

j

+ cji
xjyi

x2
i + y2

i

)
dxi ∧ dxj

+
∑
i<j

(
aijxiyj + cij

xixj
x2
j + y2

j

+ cji
yiyj

x2
i + y2

i

)
dxi ∧ dyj

+
∑
i<j

(
−aijxjyi + cij

yiyj
x2
j + y2

j

+ cji
xixj

x2
i + y2

i

)
dxj ∧ dyi

+
∑
i<j

(
aijyiyj + cij

xjyi
x2
j + y2

j

− cji xiyj
x2
i + y2

i

)
dyi ∧ dyj

where, if ui = x2
i+y

2
i

2
,
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1) cij = ujγij(u1, . . . , un) with γij ∈ C∞(Rn − {0}) and (cij)uk = (ckj)ui
∀i6=k, i6=j
2) aij is a function of u1, . . . , un and (aij)uk − (akj)ui + (aik)uj 6=0 ∀i6=j 6=k
with Ω being non-degenerate.
The formulae in (1) and (2) must be interpreted in the variables xi, yi.

It is easy to see that Ω does not necessarily satisfy (ρt)∗Ω = t · Ω. Let us
check that Ω satisfies the properties above, i.e., it is T n-invariant and closed.
First, we will write Ω in a simpler form in Y , an open and dense subset of
X, to be defined below.

Let ui = x2
i+y

2
i

2
, θi = arctg yi

xi
and Y = {(ui, θi) i = 1, . . . , n, ui > 0}.

Notice that, by the inclusion of Y in X, every Ω in X gives rise to a form
Ω∗ in Y but a form Ω∗ in Y is not naturally associated to an extension Ω in
X. For this, it is necessary (and sufficient) that the coefficients cij and aij
when written in the coordinates (xi, yi) have a smooth extension from Y to
X.

Rewriting Ω in polar coordinates (in Y ) we get:

Ω∗ =
∑
i

dui ∧ dθi +
∑
i

ciidui ∧ dθi +
∑
i 6=j

cijdui ∧ dθj +
∑
i<j

aijdui ∧ duj.

The action of T n on Y is given by:

τ(α1,... ,αn)(u1, . . . , un, θ1, . . . , θn) = (u1, . . . , un, θ1 + α1, . . . , θn + αn).

Since cij and aij are functions of the ui’s only, Ω∗ is T n-invariant in Y .
Moreover, by the relations (1) and (2), we get that Ω∗ is closed in Y .

The fact that Ω∗ is closed and invariant by τ in Y implies in closure and
τ -invariance of Ω in X if the coefficients of Ω∗ have a smooth continuation
in X, and this is assured by (1) and (2). Now, writing Ω∗ in matrix form we
get:

AΩ∗ =
1
2



0 a12 . . . a1n 1 + c11 c12 . . . c1n

−a12 0 . . . a2n c21 1 + c22 . . . c2n

...
...

...
...

...
...

−a1n −a2n . . . 0 cn1 cn2 . . . 1 + cnn

−1− c11 −c21 . . . −cn1 0 0 . . . 0
−c12 −1− c22 . . . −cn2 0 0 . . . 0

...
...

...
...

...
...

−c1n −c2n . . . −1− cnn 0 0 . . . 0


.

We have that Ω∗ is non-degenerate ⇐⇒ det(AΩ∗)6=0. Therefore, in order
for Ω to be non-degenerate, the coefficients cij’s must satisfy some relations
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that must also hold in the limit when the ui’s go to 0 (not all of them
simultaneously).

Let Ψ : X → Rn be the moment map associated to the action of τ of T n

on (X,Ω). It is easy to see that if Ψ = (Ψ1, . . . ,Ψn) then

dΨk = (1 + ckk)duk +
∑
j 6=k

cjkduj k = 1, . . . , n.

Let us look at some examples of Ω and Ψ for X = R4−{0} and compare
the images of Φ and Ψ.

In this case, the non-degeneracy of Ω is equivalent to

det


0 a12 1 + c11 c12

−a12 0 c21 1 + c22

−1− c11 −c21 0 0
−c12 −1− c22 0 0

 6=0 in R4 − {0}

that is, 1 + c11 + c22 + c11c22 − c12c21 6=0, ∀u1, u2 6=0 and

lim
u1→0

(1 + c11 + c22 + c11c22 − c12c21)6=0,

lim
u2→0

(1 + c11 + c22 + c11c22 − c12c21)6=0.

Example 1.1. Let X = R4−{0} and Ω = ω+ (x2
1+y2

1)

2
dx1∧dy1 + (x2

2+y2
2)

2
dx2∧

dy2. The 2-form Ω is non-degenerate in X since 1+c11+c22+c11c22−c12c21 =
1 + u1 + u2 + u1u2 6=0. Let Ψ =

(
u1 + u2

1
2
, u2 + u2

2
2

)
. It is easy to see that

Image(Ψ) = Image(Φ) = {(x, y) ∈ R2 − {0} |x, y ≥ 0}.
Note that the perturbation µ = Ω− ω satisfies (ρt)∗µ = t2µ and limt→0 Ψ ◦
ρt(u1, u2) = (0, 0).

Example 1.2. Let X = R4 − {0} and

Ω = ω + 2
(x2

2 + y2
2)

(x2
1 + y2

1 + x2
2 + y2

2)2
dx1 ∧ dy1 + 2

(x2
1 + y2

1)
(x2

1 + y2
1 + x2

2 + y2
2)2

dx2 ∧ dy2

+ 2
x1y2 − x2y1

(x2
1 + y2

1 + x2
2 + y2

2)2
dx1 ∧ dx2 − 2

x1x2 + y1y2

(x2
1 + y2

1 + x2
2 + y2

2)2
dx1 ∧ dy2

− 2
x1x2 + y1y2

(x2
1 + y2

1 + x2
2 + y2

2)2
dx2 ∧ dy1 + 2

x1y2 − x2y1

(x2
1 + y2

1 + x2
2 + y2

2)2
dy1 ∧ dy2

i.e., c11 = u2
(u1+u2)2 , c22 = u1

(u1+u2)2 , c12 = −u2
(u1+u2)2 , c21 = −u1

(u1+u2)2 and

1 + c11 + c22 + c11c22 − c12c21 = 1 +
u1 + u2

(u1 + u2)2
6=0 in R4 − {0}.
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Consider Ψ = (Ψ1,Ψ2) given by Ψ1 = u1 + u1
u1+u2

,Ψ2 = u2 + u2
u1+u2

. The
perturbation µ = Ω − ω is homogeneous of degree zero, that is, (ρt)∗µ =
µ. Moreover, Ψ ◦ ρt(u1, u2) =

(
tu1 + u1

u1+u2
, tu2 + u2

u1+u2

)
and limt→0 Ψ ◦

ρt(u1, u2) =
(

u1
u1+u2

, u2
u1+u2

)
= (f1, f2) where (f1, f2) are points on the line

f1 + f2 = 1 with f1, f2 ≥ 0.
Hence, the image of Ψ is the convex region in R2 shown in Figure 1 and

the images of Φ and Ψ are different.

Example 1.3. Let X = R4 − {0} and

Ω = ω + 2
(x2

2 + y2
2)2

(x2
1 + y2

1 + x2
2 + y2

2) 3
2
dx1 ∧ dy1 + 2

(x2
1 + y2

1)2

(x2
1 + y2

1 + x2
2 + y2

2) 3
2
dx2 ∧ dy2

+

(
2

x1y2(x2
1 + y2

1)
(x2

1 + y2
1 + x2

2 + y2
2) 3

2
− 2

x2y1(x2
2 + y2

2)
(x2

1 + y2
1 + x2

2 + y2
2) 3

2

)
dx1 ∧ dx2

−
(

2
x1x2(x2

1 + y2
1)

(x2
1 + y2

1 + x2
2 + y2

2) 3
2

+ 2
y1y2(x2

2 + y2
2)

(x2
1 + y2

1 + x2
2 + y2

2) 3
2

)
dx1 ∧ dy2

−
(

2
y1y2(x2

1 + y2
1)

(x2
1 + y2

1 + x2
2 + y2

2) 3
2

+ 2
x1x2(x2

2 + y2
2)

(x2
1 + y2

1 + x2
2 + y2

2) 3
2

)
dx2 ∧ dy1

+

(
−2

x2y1(x2
1 + y2

1)
(x2

1 + y2
1 + x2

2 + y2
2) 3

2
+ 2

x1y2(x2
2 + y2

2)
(x2

1 + y2
1 + x2

2 + y2
2) 3

2

)
dy1 ∧ dy2

i.e. c11 = u2
2

(u2
1+u2

2)
3
2
, c22 = u2

1

(u2
1+u2

2)
3
2
, c12 = c21 = − u1u2

(u2
1+u2

2)
3
2
. The form Ω is

non-degenerate since 1+c11+c22+c11c22−c12c21 = 1+ u2
1+u2

2

(u2
1+u2

2)
3
2
6=0 in R4−{0}

Let Ψ = (Ψ1,Ψ2) where Ψ1 = u1 + u1√
u2

1+u2
2

and Ψ2 = u2 + u2√
u2

1+u2
2

.

The perturbation µ = Ω − ω is such that (ρt)∗µ = µ and the moment

map Ψ satisfies Ψ ◦ ρt(u1, u2) =
(
tu1 + u1√

u2
1+u2

2

, tu2 + u2√
u2

1+u2
2

)
. Therefore,

limt→0 Ψ◦ρt(u1, u2) =
(

u1√
u2

1+u2
2

, u2√
u2

1+u2
2

)
= (g1, g2) where (g1, g2) are points

on the circle g2
1 + g2

2 = 1 with g1, g2 ≥ 0.
It follows then that the image of Ψ is the non-convex region in R2 indicated

in Figure 2 and the images of Ψ and Φ are different.
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Figure 1. Figure 2.

In the next example, the images of the moment maps close to infinity
are different polytopic cones. This is a consequence of the behaviour of the
perturbation close to the origin.

Example 2. Consider C4 − {0} with symplectic form

ω =
√−1

2
(dz1 ∧ dz1 + dz2 ∧ dz2 − dz3 ∧ dz3 − dz4 ∧ dz4).

The Hamiltonian action of S1 on (C4 − {0}, ω) given by

eiθ · (z1, z2, z3, z3, z4) = (eiθ · z1, e
iθ · z2, e

iθ · z3, e
iθ · z4)

admits H(z1, z2, z3, z4) = 1
2
(|z1|2 + |z2|2 − |z3|2 − |z4|2) as a moment map

and H−1(0) = {(z1, z2, z3, z4) ∈ C4 − {0} | |z1|2 + |z2|2 = |z3|2 + |z4|2 } is a
manifold.

Let ρt(z1, z2, z3, z4) = (
√
t · z1,

√
t · z2,

√
t · z3,

√
t · z4) for t ∈ R+ be an

action of R+ on C4 − {0}.
It is easy to see that R+ and S1 act on H−1(0), that these actions commute

and that (ρt)∗ω = t ·ω. Therefore, if X is the reduced space H−1(0)/S1, R+

also acts on X.
If ω0 is the symplectic form on X induced by ω, then (ρt)∗ω0 = t · ω0 and

X/R+' H−1(0)/C∗ is a compact manifold. Hence, (X,ω0) is a symplectic
cone with base H−1(0)/C∗.

Consider the Hamiltonian action of the torus T 3 on (X,ω0) given by

(eiθ1 , eiθ2 , eiθ3) · [z1, z2, z3, z4] = [eiθ1 · z1, e
iθ2 · z2, e

iθ3 · z3, z4]

where (z1, z2, z3, z4) is a point in H−1(0) and [z1, z2, z3, z4] is the correspond-
ing point in X.
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Let Φ : X → R3 be the associated moment map (normalized in zero).
Then

Φ([z1, z2, z3, z4]) =
( |z1|2

2
,
|z2|2

2
,−|z3|2

2

)
with image

Im Φ = { (x, y,−z) ∈ R3 − {0} |x+ y ≥ z, x, y, z ≥ 0 }
a polytopic convex cone with vertex at the origin, bounded by the planes
x = 0, y = 0, x + y = −z. Notice that the intersection of Im(Φ) with the
family of planes x + y = c (c real and greater than zero) is a family of
rectangles with sides c and c

√
2.

Define now in C4 − {(z1, z2, z3, z4) such that z1 = z2 = 0 or z3 = z4 = 0}
the symplectic form

Ω = ω +
√−1

2

( |z2|2
(|z1|2 + |z2|2)2

dz1 ∧ dz1 +
|z1|2

(|z1|2 + |z2|2)2
dz2 ∧ dz2

− 2|z4|2
(|z3|2 + |z4|2)2

dz3 ∧ dz3 − 2|z3|2
(|z3|2 + |z4|2)2

dz4 ∧ dz4

− z1z2

(|z1|2 + |z2|2)2
dz1 ∧ dz2 − z1z2

(|z1|2 + |z2|2)2
dz2 ∧ dz1

+
2z3z4

(|z3|2 + |z4|2)2
dz3 ∧ dz4 +

2z3z4

(|z3|2 + |z4|2)2
dz4 ∧ dz3

)
.

Let Ω0 be the symplectic form induced by Ω in X. It is easy to see that
the action of T 3 on (X,Ω0) is still Hamiltonian with associated moment map
Ψ : X → R3 where

Ψ([z1, z2, z3, z4])

=
1
2

(
|z1|2 +

|z1|2
|z1|2 + |z2|2 , |z2|2 +

|z2|2
|z1|2 + |z2|2 ,−|z3|2 − 2|z3|2

|z3|2 + |z4|2
)

with image

Im Ψ = {(x, y,−z) ∈ R3 |x, y, z ≥ 0, x+ y > 1, x+ y + 1 ≥ z}
a truncated cone (still polytopic and convex) in R3 bounded by the planes
x = 0, y = 0, x + y = z + 1, x + y = 1. The intersection of Im(Ψ) with the
family of planes x+y = c (c real and greater than 1) is a family of rectangles
with sides c

√
2 and c+ 1.

In this example, the two images are different and it is not possible to
include by translation one into the other. The images are shown in Figure
3.
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-z -z

the original image at infinity the perturbed image at infinity

Figure 3.
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