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MOMENT MEASURES OF HEAVY-TAILED RENEWAL POINT
PROCESSES: ASYMPTOTICS AND APPLICATIONS
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Abstract. We study higher-order moment measures of heavy-tailed renewal models, including a re-
newal point process with heavy-tailed inter-renewal distribution and its continuous analog, the occupa-
tion measure of a heavy-tailed Lévy subordinator. Our results reveal that the asymptotic structure of
such moment measures are given by explicit power-law density functions. The same power-law densities
appear naturally as cumulant measures of certain Poisson and Gaussian stochastic integrals. This cor-
respondence provides new and extended results regarding the asymptotic fluctuations of heavy-tailed
sources under aggregation, and clarifies existing links between renewal models and fractional random
processes.
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1. Introduction and main results

The topic of study in this work is heavy-tailed renewal models, starting from a renewal point process on
the line with an inter-renewal time distribution which is heavy-tailed at infinity. The occupation measure of
a Lévy subordinator with heavy-tailed Lévy measure provides a continuous analog. Our analysis shows that
the discrete and the continuous models are closely related with respect to the structure of their higher-order
moment measures. We show that the moment measures in both cases have the same asymptotic structure and
that the limit measures are given by specific density functions with a power-law behavior governed by the
inter-renewal tail index. As customary, our approach to the discrete renewal model begins with properties of
factorial measures.

The power-law density functions which are recognized to determine the asymptotic behavior of moments
in the renewal models also appear naturally as cumulant measures of certain Poisson and Gaussian stochastic
integrals. This correspondence helps us to unify and extend results on asymptotic fluctuations of heavy-tailed
sources under aggregation, and to clarify the role in this context of fractional Poisson motion [2, 5] and of
fractional Brownian motion as rescaling limit processes.

Hence we believe that the present paper sheds some new light on the rich literature on traffic models and
aggregation of heavy-tailed sources. Popular models include the infinite source Poisson model [10, 13], the
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aggregation of ON/OFF sources [5, 13, 19], renewal processes [7] or renewal/reward processes [12, 14, 15]. The
interested reader should also refer to the monography on heavy-tailed phenomena [17].

We begin this first section of the paper by introducing a renewal point process on the positive half line
with heavy-tailed inter-renewal distribution at infinity. Then we introduce the relevant families of power-law
density functions, defined on [0,∞)k for each k ≥ 1, and recognize the role of these families of functions within
two separate frameworks. Firstly they arise as asymptotic limits of the higher-order moment measures for the
renewal model. Secondly, the same families of power-law measures express the cumulants for a class of Poisson
stochastic integrals with power-law intensity measure. Closely related are Gaussian stochastic integrals defined
by a power-law control measure. Based on these links we establish a limit theorem for renewal point processes
under aggregation and scaling, and show that the asymptotic fluctuations are given by Poisson or Gaussian
stochastic integrals. These are natural extensions of fractional Poisson motion and fractional Brownian motion,
which explains and extends earlier results on scaling limits of heavy-tailed renewal counting processes.

All results relating to higher order moment measures of the renewal model have been collected in Section 2. We
investigate systematically the asymptotic behavior of factorial moment measures, moment measures and centered
moment measures, leading up to identifying the limiting centered moments in terms of power-law density
functions. In Section 3 we apply these findings in order to present the proof of our main result Theorem 1.4,
which gives the fluctuation limits for renewal systems under simultaneous aggregation and time scaling.

In Section 4 these results are extended to a continuous version of the discrete renewal model based on
the occupation measure of a heavy-tailed Lévy subordinator. We establish that the same power-law density
measures as for the discrete renewal model provide the higher-order moment asymptotics and the same Poisson
and Gaussian integrals yield the scaling limits under aggregation.

1.1. A discrete renewal model

Consider the renewal sequence (Sn)n≥0 generated by a sequence of independent non-negative random variables
(Xk)k≥1, i.e. Sn = S0 +

∑n
i=1 Xi for n ≥ 1. The inter-renewal times (Xk)k≥1 are identically distributed with

probability measure F and independent of S0. We write x ∈ R
+ �→ F ([0, x]) for the distribution function and

assume that the inter-renewal distribution has finite mean μ =
∫∞
0 F ([x,∞)) dx > 0. The initial distribution,

i.e. the distribution of S0, is denoted by π. We will use the notation Pπ, Eπ for the probability measure and
expectation of the renewal model with initial distribution π. Two main cases appear naturally: the pure renewal
case where S0 ≡ 0, i.e. π = δ0, and the stationary renewal case where S0 follows the equilibrium distribution

πeq(x) =
1
μ

∫ x

0

F ([s,∞)) ds, x ≥ 0. (1.1)

Probability and expectation are denoted by P0 and E0 in the pure case π = δ0 and by Peq and Eeq in the
stationary case π = πeq.

Recall that a function � : (0,∞) → (0,∞) is said to be slowly varying at infinity if for all t > 0, �(tx)/�(x) → 1,
x → ∞. Our basic assumption is that the inter-renewal distribution F , in addition to finite expected value μ,
has a regularly varying tail with exponent 1 + β, β ∈ (0, 1), i.e. there exists a slowly varying function � such
that

F ([x,∞)) ∼ x−(1+β)�(x) as x → ∞. (1.2)

Thus, Xk, k ≥ 1, have infinite variance. To study the renewal model (Sn) we will use general ideas of renewal
point processes and moment measures, see [4] for a full account of such methods.

The renewal point process ξ =
∑

n≥0 δSn on [0, +∞) is locally finite under Pπ. For k ≥ 1, the k-fold tensorial
product of ξ with itself is the random point measure on [0, +∞)k given by

ξ⊗k =
∑

n1,...,nk≥0

δ(Sn1 ,...,Snk
).
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For k ≥ 1, we consider [0, +∞)k endowed with the Borel σ-algebra Bk. The kth moment measure Mπ
k of ξ is

the measure on [0, +∞)k defined by

Mπ
k (A) = Eπ[ξ⊗k(A)], A ∈ Bk.

We also define a centered version of the kth moment measure by

M̃π
k (A) = Eπ[(ξ − λ1/μ)⊗k(A)], A ∈ Bk bounded,

where λ1 is Lebesgue measure on the real line. In particular, for k = 1,

M0
1 (A) = E0[ξ(A)], M eq

1 (A) =
1
μ

λ1(A), M̃0
1 (A) = E0[ξ(A)] − 1

μ
λ1(A), M̃ eq

1 (A) = 0.

For the special case of cylinder sets in [0, +∞)k we have

ξ⊗k(
k
⊗

i=1
Ai) =

k∏
i=1

ξ(Ai), A1, . . . Ak ∈ B1.

For closed intervals Ai = [0, xi], this is ξ⊗k(
k
⊗

i=1
[0, xi]) =

∏k
i=1 ξ([0, xi]), which evaluates tensorial products in

terms of the renewal counting process

ξ([0, x]) = Card{n ≥ 0; Sn ≤ x}, x ≥ 0. (1.3)

Similarly, our detailed analysis of higher order moment measures will reveal representations in terms of first
order moments, that is the familiar renewal measures

U =
∞∑

n=1

F ∗n, U + δ0 =
∞∑

n=0

F ∗n,

where F ∗n is the n-fold convolution of F and F ∗0 = δ0 is Dirac mass at 0. Here, x �→ U([0, x]) is the associated
renewal function.

1.2. A collection of measures

To prepare for our analysis of renewal moment measures we introduce four families of measures defined on
[0, +∞)k, k ≥ 1. They are parameterized by the tail index β, 0 < β < 1 introduced in (1.2) and defined by
their densities with respect to the Lebesgue measure λk, λk(dx) = dx, x = (x1, . . . , xk). The measures will be
denoted P π

k and P̃ π
k , k ≥ 1, with the tilde-mark indicating a centered measure and the upper index π an initial

distribution. Whenever it is suitable to distinguish the two choices of initial distributions we use upper index 0
for the case π = δ0 and eq for the equilibrium distribution π = πeq in (1.1). For k = 1, define

dP 0
1

dλ1
(x) = |x|−β ,

dP̃ 0
1

dλ1
(x) = −|x|−β and

dP eq
1

dλ1
(x) =

dP̃ eq
1

dλ1
(x) = 0.

We use here the convention 0−β = ∞ so that the densities may be infinite on a set of zero Lebesgue measure.
For k ≥ 2, let x(1) ≤ . . . ≤ x(k) be the order statistic of the vector x = (x1, . . . , xk) ∈ [0, +∞)k and put

dP 0
k

dλk
(x) = |x(1)|−β +

k∑
i=2

|x(i) − x(i−1)|−β ,
dP̃ 0

k

dλk
(x) = |x(k) − x(1)|−β − |x(k)|−β (1.4)
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and
dPeq

k

dλk
(x) =

k∑
i=2

|x(i) − x(i−1)|−β ,
dP̃eq

k

dλk
(x) = |x(k) − x(1)|−β . (1.5)

These measures will play a key role in this work as they provide non-obvious links between the renewal models
on one hand and Poisson integrals on the other. It is worth noting that they enjoy interesting scaling properties:
for all a > 0 and A ∈ Bk,

P π
k (aA) = ak−βP π

k (A), P̃ π
k (aA) = ak−βP̃ π

k (A),

valid for either initial condition δ0 or πeq. Also, in the stationary case, the limit measures are invariant by
translation: for all h ≥ 0 and A ∈ Bk

P eq
k (A + h) = P eq

k (A), P̃ eq
k (A + h) = P̃ eq

k (A).

In the pure case, for all bounded A ∈ Bk,

lim
h→+∞

P 0
k (A + h) = P eq

k (A), lim
h→+∞

P̃ 0
k (A + h) = P̃ eq

k (A).

1.3. Scaling limits for moment measures

We are interested in the asymptotic behavior of the moment measures under rescaling of the space [0, +∞).
For a > 0 and k ≥ 1, let sa = sk

a denote the component wise defined scaling map x �→ x/a from [0, +∞)k onto
itself. We define the rescaled point process ξs−1

a by

ξs−1
a (A) = ξ(aA), A ∈ Bk,

and notice ξs−1
a =

∑
n≥0 δSn/a. The kth moment measure Mπ

k s−1
a and the kth centered moment measure M̃π

k s−1
a

of ξs−1
a , are given by

Mπ
k s−1

a (A) = Mπ
k (aA), M̃π

k s−1
a (A) = M̃π

k (aA), A ∈ Bk.

The asymptotic behavior of the rescaled moment measures as a → ∞ will be given in terms of weak convergence
as follows. If m is a signed Radon measure and f a bounded and compactly supported function both defined
on [0,∞)+ we write m[f ] =

∫
f dm, for the corresponding integral. Let

Fk =

{
f : [0, +∞)k → R; compact support ,

∂kf

∂x1 . . . ∂xk
exists and is continuous

}
, k ≥ 1. (1.6)

The technical reason for this choice of test functions is the use of an integration by parts formula (see Lem. 2.1
below) and the fact that f⊗k ∈ Fk when f ∈ F1. If (mn)n≥1 and m are signed Radon measures on [0, +∞)k,

we say that (mn)n≥1 Fk-converges to m, denoted mn
Fk−→ m, if and only if

mn[f ] → m[f ], n → ∞, f ∈ Fk. (1.7)

Our main result for the discrete renewal model is the following limit theorem, which identifies the asymptotic
form of k-moment measures expressed in terms of the power law measures P π

k and P̃ π
k .

Theorem 1.1. Suppose that assumption (1.2) is satisfied. For π = δ0 or π = πeq and k ≥ 1,

Mπ
k s−1

a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
P π

k and
M̃π

k s−1
a

ak−β�(a)
Fk−→ (−1)k

βμk+1
P̃ π

k as a → +∞.
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1.4. A class of Poisson and Gaussian integrals

We relate the measures P̃ eq
k and P̃ 0

k introduced in (1.4) to the cumulants of Poisson and Gaussian integrals.
Recall that we have fixed a parameter β ∈ (0, 1) and let N(dx, du) be a Poisson random measure on R× [0, +∞)
with intensity measure

n(dx, du) = dx (β + 1)u−β−2du

and let Ñ(dx, du) = N(dx, du) − n(dx, du) denote the corresponding compensated Poisson measure. Once
again, we use the convention 0−β−2 = ∞ and the intensity measure density may be infinite on a set with zero
Lebesgue measure. Similarly, let N+(dx, du) be the Poisson random measure on [0, +∞)×[0, +∞) with intensity
n+(dx, du) = 1x≥0 n(dx, du) and put Ñ+ = N+ − n+.

It is convenient for our purpose to view each Poisson point (x, u) as an interval [x, x +u] on the real line and
the Poisson measure N(dx, du) as a collection of overlapping sessions formed by these intervals. With this in
mind we will restrict attention to integrands obtained as the weighted occupation times

g(x, u) =
∫

[0,+∞)

1[x,x+u](y)f(y) dy.

For f : [0, +∞) → R and k ≥ 1, we define the tensor product f⊗k : [0, +∞)k → R by

f⊗k(x1, . . . , xk) =
k∏

i=1

f(xi).

Proposition 1.2. For any measurable and bounded function f : [0, +∞) → R with compact support, the
Poisson integrals

Jeq
β [f ] =

∫
R×[0,+∞)

∫
[0,+∞)

1[x,x+u](y)f(y) dy Ñ(dx, du),

J0
β [f ] =

∫
[0,+∞)×[0,+∞)

∫
[0,+∞)

1[x,x+u](y)f(y) dy Ñ+(dx, du),

are well defined and have finite cumulants of any order given by

Ck(Jeq
β [f ]) =

1
β

P̃ eq
k [f⊗k] , Ck(J0

β [f ]) =
1
β

P̃ 0
k [f⊗k] , k ≥ 2, (1.8)

and C1(J
eq
β [f ]) = C1(J0

β [f ]) = 0. Furthermore, the distributions of Jeq
β [f ] and J0

β [f ] are uniquely determined by
their sequence of cumulants.

We now define the Gaussian counterpart of these Poisson integrals, see e.g. [18] for background and details.
Let W (dx, du) be a Gaussian random measure on R × [0, +∞) with control measure n(dx, du). Similarly, let
W+(dx, du) be a Gaussian random measure on [0, +∞)× [0, +∞) with control measure n+(dx, du).

Proposition 1.3. For any measurable and bounded function f : [0, +∞) → R with compact support, the
Gaussian integrals

Geq
β [f ] =

∫
R×[0,+∞)

∫
[0,+∞)

1[x,x+u](y)f(y) dy W (dx, du),

G0
β [f ] =

∫
[0,+∞)×[0,+∞)

∫
[0,+∞)

1[x,x+u](y)f(y) dy W+(dx, du),

are well defined and have finite cumulants of any order given by

C2(G
eq
β [f ]) =

1
β

P̃ eq
2 [f⊗2] , C2(G0

β [f ]) =
1
β

P̃ 0
2 [f⊗2] (1.9)
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and for k = 1 or k ≥ 3,
Ck(Geq

β [f ]) = 0 , Ck(G0
β [f ]) = 0.

1.5. Scaling limits for superposition of sources

Let ξi, i ≥ 1 be i.i.d. copies of the random measure ξ. We will consider

ξ̃a,m =
1

b(a, m)

m∑
i=1

(ξis−1
a − Mπ

1 s−1
a ),

obtained by aggregation of m centered copies of ξ under spatial scaling by sa, with a suitable normalization
sequence b(a, m), and study the asymptotic behavior of ξ̃a,m as a → ∞ and m → ∞. To deal with the
simultaneous limit, we consider a = am → +∞ as m → +∞.

The two limit regimes of interest to us are known in some applications as regimes of intermediate connection
rate and of fast connection rate, respectively, and are hence labeled in the following (ICR) and (FCR). The
intermediate scaling condition is given by

m�(a)
aβ

→ μ cβ , 0 < c < ∞, (ICR)

whereas the fast scaling condition entails
m�(a)

aβ
→ +∞. (FCR)

We consider the random fields {ξ̃a,m[f ] : f ∈ F1} and prove convergence of the finite dimensional distributions,

which we denote by
fidi−→. For f ∈ F1, we define fc by fc(x) = cf(cx).

Theorem 1.4.

(1) Consider the rescaling assumption (ICR) with normalization b(a, m) = a.
In the pure case π = δ0,

ξ̃a,m[f ]
fidi−→ − 1

μ
J0

β [fc], f ∈ F1;

in the stationary case π = πeq,

ξ̃a,m[f ]
fidi−→ − 1

μ
Jeq

β [fc], f ∈ F1.

(2) Under the scaling assumption (FCR) with normalization b(a, m) = (ma2−β�(a))1/2,
in the pure case π = δ0

ξ̃a,m[f ]
fidi−→ G0

β [f ], f ∈ F1;

in the stationary case π = πeq,

ξ̃a,m[f ]
fidi−→ Geq

β [f ], f ∈ F1.

Remark 1.5. The above theorem is related to a limit theorem for renewal counting processes which is the
main result in [7]. Indeed, considering the parameterized class of functions ft = 1[0,t], t ≥ 0, we have ξs−1

a [ft] =
ξ([0, at]). Applied to the equilibrium renewal model for which Eeqξ

i([0, t])) = t/μ, this yields

ξ̃a,m[f ] =
1

b(a, m)

m∑
i=1

(ξi([0, at]) − at/μ).
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While 1[0,t] /∈ F1 the Poisson integrals Jeq
β [1[0,t]] and J0

β [1[0,t]] are still well-defined. Put Jeq
β (t) = Jeq

β [1[0,t]] and
Geq

β (t) = Geq
β [1[0,t]], t ≥ 0, that is

Jeq
β (t) =

∫
R×[0,+∞)

∫ t

0

1[x,x+u](y) dy Ñ(dx, du),

and

Geq
β (t) =

∫
R×[0,+∞)

∫ t

0

1[x,x+u](y) dy W̃ (dx, du), t ≥ 0.

According to [7], under assumption (ICR),

1
a

m∑
i=1

(ξi([0, at]) − at/μ)
fidi−→ − 1

μ
cJeq

β (t/c),

whereas under assumption (FCR),

1
(m�(a)a2−β)1/2

m∑
i=1

(ξi([0, at]) − at/μ) fidi−→ Geq
β (t), t ≥ 0.

By construction, Geq
β (t), t ≥ 0, is a Gaussian mean zero process with stationary increments and variance given

by ∫
R×[0,+∞)

(∫ t

0

1[x,x+u](y) dy

)2

n(dx, du) =
1

β(1 − β)
t2−β .

The normalized processes BH(t) =
√

β(1 − β)Geq
β (t) and PH(t) =

√
β(1 − β)Jeq

β (t) have stationary increments
and covariance function

Cov(BH(t), BH(s)) = Cov(PH(t), PH(s)) =
1
2
(t2H + s2H − |t − s|2H).

The relation
E|BH(t) − BH(s)|2 = E|PH(t) − PH(s)|2 = |t − s|2−β

with β < 1 together with the Kolmogorov-Centsov criterion implies that there exists a modification of these
processes with continuous sample paths. Thus, BH is a fractional Brownian motion with Hurst index H =
1 − β/2 ∈ (1/2, 1). By analogy, the mean zero non-Gaussian process PH has been called fractional Poisson
motion, cf. [2, 5]. By a refined analysis of higher-order moments it can be shown moreover that PH and BH

share the same Hölder-regularity: in both cases the paths are γ-Hölder continuous of any order γ < H , [6].

2. Asymptotics of moment measures

This section is devoted to the proof of Theorem 1.1. We begin with some preliminaries.

2.1. Preliminaries

We give a simple criterion for the convergence Fk−→ of signed Radon measures defined in (1.7). For x =
(x1, . . . , xk) ∈ [0, +∞)k, we denote [0, x] = [0, x1] × . . . × [0, xk].

Lemma 2.1. Let (mn)n≥1 and m be signed Radon measures. Suppose that the following conditions holds: for
all x ∈ [0, +∞)k,

(i) mn([0, x]) → m([0, x]) as n → ∞;
(ii) supu∈[0,x] supn≥n0

|mn([0, u])| < ∞ for some n0 ≥ 1.

Then, mn
Fk−→ m as n → ∞.
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Proof. The proof is based on the following standard integration by part formula: for any signed Radon measure
m and f ∈ Fk with support included in [0, x],

m[f ] =
∫

[0,+∞)k

f dm = (−1)k

∫
[0,x]

∂kf

∂x1 . . . ∂xk
(u)m([0, u])du.

Using this, we have, as n → ∞,

mn[f ] = (−1)k

∫
[0,x]

∂kf

∂x1 . . . ∂xk
(u)mn([0, u])du

−→ (−1)k

∫
[0,x]

∂kf

∂x1 . . . ∂xk
(u)m([0, u])du = m[f ].

The convergence is ensured by Lebesgue’s dominated convergence theorem: condition (i) entails the pointwise
convergence and (ii) the domination condition. �

The following simple properties will be useful. A mapping h : [0, +∞)r → [0, +∞)l is said to be proper if any
compact K ⊂ [0, +∞)l has a compact preimage h−1(K) ⊂ [0, +∞)r.

Lemma 2.2. Suppose that (mn)n≥1 and m are signed Radon measure on [0, +∞)r such that mn
Fr−→ m as

n → ∞. Then

(1) for all smooth and proper functions h : [0, +∞)r → [0, +∞)l, mnh−1 Fl−→ mh−1 as n → ∞;

(2) for all l ≥ 1, mn ⊗ λl
Fr+l−→ m ⊗ λl as n → ∞;

Proof. For the first point, it is enough to remark that if f ∈ Fl and h is smooth and proper, then fh ∈ Fr so
that

(mnh−1)[f ] = mn[fh] −→ m[fh] = (mh−1)[f ] as n → ∞.

For the second point, let f ∈ Fr+l and define the function f̃ by

f̃(x1, . . . , xr) =
∫

[0,+∞)l

f(x1, . . . , xr, xr+1, . . . , xr+l) dxr+1 . . .dxr+l.

It is easy to show that f̃ ∈ Fr so that

(mn ⊗ λl)[f ] = mn[f̃ ] −→ m[f̃ ] = (m ⊗ λl)[f ] as n → ∞. �

2.2. Asymptotics of factorial moment measures

Before considering moment and centered moment measures, we need to consider factorial moment measures
that have a simpler structure. The kth factorial moment measure Mπ

[k], k ≥ 1, is defined by

Mπ
[k](A) = Eπ

[∑
δ(Sn1 ,...,Snk

)(A)
]
, A ∈ Bk, (2.1)

where the sum runs over the set of k-tuple’s (n1, . . . , nk) of pairwise distinct non-negative integers, see [4].
To clarify the structure of factorial moment measures for the renewal point process ξ, we introduce the

following additional notation. Let θk : [0, +∞)k → [0, +∞)k be the injective mapping

θk(x1, . . . , xk) = (x1, x1 + x2, . . . , x1 + . . . + xk),

and let Σk denote the set of permutations of {1, . . . , k}. A permutation σ operates on [0, +∞)k by permutation
of the coordinates:

σ(x1, . . . , xk) = (xσ(1), . . . , xσ(k)), (x1, . . . , xk) ∈ [0, +∞)k.
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Lemma 2.3. For any k ≥ 1, the kth factorial moment measure Mπ
[k] satisfies

Mπ
[k] =

∑
σ∈Σk

[
(π + π ∗ U) ⊗ U⊗(k−1)

]
θ−1

k σ−1,

with U =
∑∞

n=1 F ∗n.

Proof. By reindexing the terms in the sum (2.1),

Mπ
[k](A) = Eπ

∑
σ∈Σk

∑
0≤n1<...<nk

δ(Snσ(1) ,...,Snσ(k) )
(A)

= Eπ

∑
σ∈Σk

∑
0≤n1<...<nk

δ(Sn1 ,...,Snk
)(σ−1(A))

=
∑

σ∈Σk

∑
0≤n1<...<nk

Pπ[(Sn1 , . . . , Snk
) ∈ σ−1(A)].

Then, for all σ ∈ Σk, by changing the summation indices according to i1 = n1 ≥ 0, i2 = n2 − n1 ≥ 1, . . . , ik =
nk − nk−1 ≥ 1,∑
0≤n1<...<nk

Pπ[(Sn1 , . . . , Snk
) ∈ σ−1(A)] =

∑
i1≥0

∑
i2>0,...,ik>0

Pπ[(Sn1 , Sn2 − Sn1 , . . . , Snk
− Snk−1) ∈ θ−1

k σ−1(A)].

Since the law of (Sn1 , Sn2 − Sn1 , . . . , Snk
− Snk−1) is equal to (π ∗ F ∗i1) ⊗ F ∗i2 ⊗ . . . ⊗ F ∗ik with F ∗0 = δ0, we

get ∑
0≤n1<...<nk

Pπ[(Sn1 , . . . , Snk
) ∈ σ−1(A)] =

∑
i1≥0

∑
i2>0,...,ik>0

[(π ∗ F ∗i1) ⊗ F ∗i2 ⊗ . . . ⊗ F ∗ik ](θ−1
k σ−1A)

= [(π + π ∗ U) ⊗ U⊗(k−1)](θ−1
k σ−1A)

and this proves the desired result. �

We are now in position to consider scaled factorial moment measures. At this stage we recall the basic
assumption (1.2) that the inter-renewal distribution has a regularly varying decay with tail parameter 1 + β as
well as the notion of Fk-convergence introduced in (1.7).

Lemma 2.4.

In the pure case when π = δ0, we have as a → ∞,

M0
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
P 0

k , k ≥ 1.

In the stationary case when π = πeq, as a → ∞,

M eq
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
P eq

k , k ≥ 1.

Proof. Since the measure λkθ−1
k is absolutely continuous with respect to λk with density 1{y1≤...≤yk}, we have∑

σ∈Σk

λkθ−1
k σ−1 = λk.
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By Lemma 2.3,

Mπ
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
=

1
ak−β�(a)

(Mπ
[k] − μ−kλk)s−1

a

=
1

ak−β�(a)

∑
σ∈Σk

(
(π + π ∗ U) ⊗ U⊗k−1 − μ−kλk

)
θ−1

k σ−1s−1
a .

Using the commutation relations saσ = σsa and saθk = θksa, this implies

Mπ
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
=

∑
σ∈Σk

(
((π + π ∗ U) ⊗ U⊗(k−1))s−1

a − (a/μ)kλk

ak−β�(a)

)
θ−1

k σ−1. (2.2)

The further analysis of (2.2) will be carried out separately for the pure and the stationary cases.
We first consider the pure case. For k = 1, we use the classical result for the renewal function U([0, x]) =

E0ξ([0, x]) with heavy-tailed inter-renewal distribution that satisfies assumption (1.2) (see Thm. 4 in [20]):

U([0, x]) − x

μ
∼ �(x)x1−β

μ2β(1 − β)
as x → ∞. (2.3)

For k = 1 we have M0
[1] = δ0 +U and, for x > 0, P 0

1 ([0, x]) = 1
1−β x1−β . This entails condition (i) of Lemma 2.1:

for x > 0 and as a → ∞,(
M0

[1]s
−1
a − a/μλ1

a1−β�(a)

)
([0, x]) =

U([0, ax]) + 1 − ax/μ

a1−β�(a)
−→ x1−β

μ2β(1 − β)
=

1
βμ2

P 0
1 ([0, x]).

Condition (ii) of Lemma 2.1 is the property that there exists a0 > 0 such that

sup
u∈[0,x]

sup
a≥a0

U([0, au])− au/μ

a1−β�(a)
< ∞. (2.4)

The proof of (2.4) relies on the theory of regularly varying functions and is more technical; it is postponed to
Appendix A.

Turning to the case k ≥ 2 and considering (2.2) with π = δ0, we will prove the Fk-convergence of measures(
(δ0 + U) ⊗ U⊗(k−1)

)
s−1

a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
Q0

k, as a → ∞, (2.5)

where (dQ0
k/dλk)(x) =

∑k
i=1 x−β

i . To this end, we note that for x = (x1, . . . , xk) ∈ [0, +∞)k,

Q0
k([0, x]) =

1
1 − β

(
k∏

i=1

xj

)(
k∑

i=1

x−β
i

)
and, using (2.3),

((δ0 + U) ⊗ U⊗(k−1))([0, ax]) = (1 + U([0, ax1])
k∏

i=2

U([0, axi]) (2.6)

=
k∏

i=1

(
axi/μ +

�(axi)(axi)1−β

μ2β(1 − β)
+ o(�(a)a1−β)

)

= (a/μ)k

(
k∏

i=1

xi

)(
1 +

�(a)a−β

μβ(1 − β)

k∑
i=1

x−β
i + o(�(a)a−β)

)

=
ak

μk
λk([0, x]) +

ak−β�(a)
βμk+1

Q0
k([0, x]) + o(�(a)ak−β),
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which proves condition (i) of Lemma 2.1. Equations (2.4) and (2.6) together imply condition (ii), i.e.,

sup
u∈[0,x]

sup
a≥a0

((δ0 + U) ⊗ U⊗(k−1))([0, ax]) − (a/μ)kλk([0, x])
ak−β�(a)

< ∞

and hence the Fk-convergence (2.5) follows from Lemma 2.1. The mapping σθk is smooth and proper and
so (2.2) and (2.5) together with Lemma 2.2 entail

M0
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1

∑
σ∈Σk

Q0
kθ−1

k σ−1.

It remains to verify that the measure
∑

σ∈Σk
Q0

kθ−1
k σ−1 equals P 0

k . For this we observe that Q0
kθ−1

k is absolutely
continuous with respect to λk, with density

d(Q0
kθ−1

k )
dλk

(y) =

(
|y1|−β +

k∑
i=2

|yi − yi−1|−β

)
1{y1≤...≤yk}.

Hence the measure
∑

σ∈Σk
Q0

kθ−1
k σ−1 has the density function

∑
σ∈Σk

(
|yσ(1)|−β +

k∑
i=2

|yσ(i) − yσ(i−1)|−β

)
1{yσ(1)≤...≤yσ(k)} = |y(1)|−β +

k∑
i=2

|y(i) − y(i−1)|−β =
dP 0

k

dλk
(y).

Taking into account the property (2.4) of regularly varying functions in Appendix A, this completes the proof
of the lemma for the pure case.

The proof in the stationary case is quite similar and is only given in brief. For k = 1,

M eq
[1] = πeq + πeq ∗ U = λ1/μ,

hence

M eq
[1] − λ1/μ = P eq

1 = 0.

For k ≥ 2, equation (2.2) yields

M eq
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
=

∑
σ∈Σk

(
(μ−1λ1 ⊗ U⊗(k−1))s−1

a − (a/μ)kλk

ak−β�(a)

)
θ−1

k σ−1.

Similarly as in (2.5), we then prove

(μ−1λ1 ⊗ U⊗(k−1))s−1
a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
Qeq

k

with (dQeq
k /dλk)(x) =

∑k
i=2 x−β

i . The desired result now follows from the fact that∑
σ∈Σk

Qeq
k θ−1

k σ−1 = P eq
k . �
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2.3. Asymptotics of moment measures

Moment measures can be expressed in terms of factorial moment measures. Trivially, for k = 1, Mπ
1 = Mπ

[1].
For k = 2 and A1, A2 ∈ B1:

Mπ
2 (A1 × A2) = Eπ

⎡⎣ ∑
n1,n2≥0

δ(Sn1 ,Sn2)(A1 × A2)

⎤⎦
= Eπ

⎡⎣ ∑
n1 	=n2

δ(Sn1 ,Sn2)(A1 × A2)

⎤⎦ + Eπ

⎡⎣∑
n≥0

δ(Sn,Sn)(A1 × A2)

⎤⎦
= Mπ

[2](A1 × A2) + Mπ
[1](A1 ∩ A2).

Define i12 : [0, +∞) → [0, +∞)2 given by i12(x) = (x, x). We have i−1
12 (A1 × A2) = A1 ∩ A2 so that

Mπ
2 = Mπ

[2] + Mπ
[1]i

−1
1,2.

When k = 3, a similar computation yields

Mπ
3 (A1 × A2 × A3) =Mπ

[3](A1 × A2 × A3) + Mπ
[2]((A1 ∩ A2) × A3) + Mπ

[2]((A1 ∩ A3) × A2)

+ Mπ
[2]((A2 ∩ A3) × A1) + Mπ

[1](A1 ∩ A2 ∩ A3).

Define the mappings i12,3(x, y) = (x, x, y), i13,2(x, y) = (x, y, x), i23,1(x, y) = (y, x, x) and i123(x) = (x, x, x).
Then,

Mπ
3 = Mπ

[3] + Mπ
[2]i

−1
12,3 + Mπ

[2]i
−1
13,2 + Mπ

[2]i
−1
23,1 + Mπ

[1]i
−1
123.

In the general case k ≥ 1, the combinatorial relation between moment measures and factorial moment measures
can be found in [4], Exercise 5.4.5, page 143. For 1 ≤ j ≤ k, let Pjk be the set of all partitions of {1, . . . , k} into j
nonempty subsets. An element T = {S1(T ), . . . , Sj(T )} ∈ Pjk formed by j disjoint subsets labelled in arbitrary
order is called a j-partition. The cardinality of the subset Si(T ) is denoted by |Si(T )| so that

∑j
i=1 |Si(T )| = k.

For any j-partition T ∈ Pjk, the injection iT : [0, +∞)j → [0, +∞)k is defined by iT (x1, . . . , xj) = (y1, . . . , yk)
where yp = xi if p ∈ Si(T ). Then

Mπ
k =

k∑
j=1

∑
T ∈Pjk

Mπ
[j]i

−1
T . (2.7)

Proof of Theorem 1.1. Moment measures.
To prove Theorem 1.1 as regards properties of the moment measures M0

k and M eq
k , we will show that factorial

moment measures and moment measures share the same asymptotic behavior. More precisely, using (2.7),

Mπ
k s−1

a − (a/μ)kλk

ak−β�(a)
=

Mπ
[k]s

−1
a − (a/μ)kλk

ak−β�(a)
+

k−1∑
j=1

∑
T ∈Pjk

Mπ
[j]i

−1
T s−1

a

ak−β�(a)
·

We have shown in Lemma 2.4 that the factorial moments in the first term on the right hand side Fk-converge to
the desired limit measures. To complete the proof it suffices to verify that the second summation term vanishes
in the limit:

k−1∑
j=1

∑
T ∈Pjk

Mπ
[j]i

−1
T s−1

a

ak−β�(a)
Fk−→ 0. (2.8)

We will establish (2.8) for the pure case π = δ0. A straightforward adaptation yields the stationary case. By
Lemma 2.4, for 1 ≤ j ≤ k − 1,

M0
[j]s

−1
a

(a/μ)j

Fj−→ λj
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and hence
M0

[j]s
−1
a

ak−β�(a)
Fj−→ 0.

For T ∈ Pjk, the mapping iT is smooth and proper and such that saiT = iT sa. Hence, Lemma 2.2 (1) implies

M0
[j]i

−1
T s−1

a

ak−β�(a)
Fk−→ 0. �

2.4. Asymptotics of centered moment measures

To prove the results in Theorem 1.1 related to centered moment measures we will apply a formula for centered
k-moment measures in terms of m-moment measures of order m ≤ k. First of all, we have M̃π

1 = Mπ
1 − λ1/μ.

Lemma 2.5. For k ≥ 2, consider cylinder sets A = ⊗k
i=1Ai, where A1, . . . , Ak ∈ B1. For any subset I of

indices, I ⊂ {1, . . . , k}, denote AI = ⊗
i∈I

Ai and AIc = ⊗
i/∈I

Ai. Then

M̃π
k (A) =

k∑
r=1

∑
|I|=r

(−1)k−r
(
Mπ

r − λr

μr

)
(AI)

λk−r(AIc)
μk−r

·

Proof. We compute

M̃π
k (A) = Eπ

[
k∏

i=1

(ξ(Ai) − λ1(Ai)/μ)

]

= Eπ

⎡⎣ ∑
I⊂{1,...,k}

(−1)k−|I|

(∏
i∈I

ξ(Ai)

)(∏
i/∈I

λ1(Ai)/μ

)⎤⎦
=

∑
I⊂{1,...,k}

(−1)k−|I|Mπ
|I|

(
⊗i∈I Ai

)λk−|I|

(
⊗i/∈I Ai

)
μk−|I| ,

which may be written

M̃π
k (A) =

k∑
r=0

∑
|I|=r

(−1)k−rMπ
r (AI)

λk−r(AIc)
μk−r

· (2.9)

Observe that
k∑

r=0

∑
|I|=r

(−1)k−r =
k∑

r=0

(−1)k−r

(
k

r

)
= (1 − 1)k = 0.

This implies
k∑

r=0

∑
|I|=r

(−1)k−r λr(AI)
μr

λk−r(AIc)
μk−r

=
λk(A)

μk

k∑
r=0

∑
|I|=r

(−1)k−r = 0. (2.10)

Taking the difference between (2.9) and (2.10), the term with r = 0 cancels out and the result follows. �

Proof of Theorem 1.1. Centered moment measures.
To prove the remaining statements of Theorem 1.1 devoted to centered moment measures M̃0

k and M̃ eq
k , we

apply Lemma 2.5 to obtain

M̃π
k s−1

a (A)
ak−β�(a)

= (−1)k
∑
r≥1

∑
|I|=r

(−1)r (Mπ
r s−1

a − (a/μ)rλr)(AI)
ar−β�(a)

λk−r(AIc)
μk−r

· (2.11)
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Hence, with the notation x = (x1, . . . , xk), xI = (xi)i∈I and xIc = (xi)i∈I ,(
M̃π

k s−1
a

ak−β�(a)

)
(dx) = (−1)k

∑
r≥1

∑
|I|=r

(−1)r

(
(Mπ

r s−1
a − (a/μ)rλr)
ar−β�(a)

)
(dxI)

(
λk−r(AIc)

μk−r

)
(dxIc).

This brings us in position to apply the already established part of Theorem 1.1. For π = δ0 we have shown, for
all r ≥ 1,

M0
r − (a/μ)rλr

ar−β�(a)
Fr−→ 1

βμr+1
P 0

r , as a → ∞.

In view of Lemma 2.2 (2) with � = k − r,(
M0

r − (a/μ)rλr

ar−β�(a)

)
(dxI)λk−r(dxIc) Fk−→

(
1

βμr+1
P 0

r

)
(dxI)λk−r(dxIc), as a → ∞,

and equation (2.11) entails(
M̃0

ks−1
a

ak−β�(a)

)
(dx) Fk−→ (−1)k

βμk+1

k∑
r=1

∑
|I|=r

(−1)r

(
1

βμr+1
P 0

r

)
(dxI)λk−r(dxIc), as a → ∞.

When π = πeq, all terms in (2.11) with r = 1 vanish. For this case, similar computations show(
M̃ eq

k s−1
a

ak−β�(a)

)
(dx) Fk−→ (−1)k

βμk+1

k∑
r=2

∑
|I|=r

(−1)r

(
1

βμr+1
P eq

r

)
(dxI)λk−r(dxIc), a → ∞.

It remains to identify the limiting centered measures as P̃ 0
k and P̃ eq

k introduced in (1.4) and (1.5), i.e. we must
prove

k∑
r=1

∑
|I|=r

(−1)rP 0
r (dxI)λk−r(dxIc) = P̃ 0

k (dx) (2.12)

and
k∑

r=2

∑
|I|=r

(−1)rP eq
r (dxI)λk−r(dxIc) = P̃ eq

k (dx). (2.13)

We begin with (2.13), which is the same as

k∑
r=2

∑
|I|=r

(−1)r dP eq
r

dλr
(xI) =

dP̃ eq
k

dλk
(x), (2.14)

since P eq
r is absolutely continuous with respect to Lebesgue measure λr with density (1.4). As both sides of the

equality are symmetric functions of x = (x1, . . . , xk), it is enough to prove (2.14) for the case x1 ≤ . . . ≤ xk.
Then, if I = {i1, . . . , ir} with i1 < . . . < ir,

dP eq
r

dλr
(xI) =

r∑
j=2

|xij − xij−1 |−β

and

k∑
r=2

∑
|I|=r

(−1)r dP eq
r

dλr
(xI) =

k∑
r=2

∑
1≤i1<...<ir≤k

(−1)r
r∑

j=2

|xij − xij−1 |−β =
∑

1≤l1<l2≤k

cl1,l2 |xl2 − xl1 |−β ,
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for suitable coefficients cl1,l2 obtained by reordering terms. We claim that c1,k = 1 and cl1,l2 = 0 if (l1, l2) �= (1, k),
so that ∑

1≤l1<l2≤k

cl1,l2 |xl2 − xl1 |−β = |xk − x1|−β ,

which is the desired representation (2.14). To compute the coefficients cl1,l2 , we write cl1,l2 =
∑

(−1)r, with the
sum running over all r-tuplets i1 < . . . < ir, 2 ≤ r ≤ k, such that l2 = ij and l1 = ij−1 for some j ∈ {2, . . . , r}.
Such r-tuplets are exactly those containing l1 and l2 but no elements inbetween. They are hence obtained by

choosing r − 2 indices in {1, . . . , k} \ {l1, . . . , l2}, which can be done in exactly
(

k − l2 + l1 − 1
r − 2

)
ways. By

convention, the binomial coefficient is 0 if r − 2 > k − l2 + l1 − 1. Finally, using the binomial formula,

cl1,l2 =
k∑

r=2

(
k − l2 + l1 − 1

r − 2

)
(−1)r = (1 − 1)k−l2+l1−1,

which verifies that we have indeed c1,k = 1 and cl1,l2 = 0 if (l1, l2) �= (1, k).
We now consider (2.12) which is equivalent to

k∑
r=1

∑
|I|=r

(−1)r dP 0
r

dλr
(xI) =

dP̃ 0
k

dλk
(x). (2.15)

It is enough to consider the case x1 ≤ . . . ≤ xk. If we take I = {i1, . . . , ir} with i1 < . . . < ir and use for
convenience i0 = 0 and x0 = 0, then

k∑
r=1

∑
|I|=r

(−1)r dP 0
r

dλr
(xI) =

k∑
r=1

∑
1≤i1<...<ir≤k

(−1)r
r∑

j=1

|xij − xij−1 |−β .

Reordering terms, this is ∑
0≤l1<l2≤k

c′l1,l2 |xl2 − xl1 |−β

for suitable coefficients c′l1,l2
. Again we will prove that most of the coefficients vanish except c′1,k = 1 and

c′0,k = −1 so that the corresponding density is |x(k) − x(1)|−β − |x(k)|−β , which is (2.15). To see this we observe
that for the case 1 ≤ l1 < l2 ≤ k, the previous computations remain the same with c′l1,l2

= cl1,l2 equal to 1 if
(l1, l2) = (1, k) and 0 otherwise. The case l1 = 0 needs to be considered separately. Here, c′0,l2

=
∑

I(−1)r with

the sum running over all r-tuplets i1 < . . . < ir, 1 ≤ r ≤ k, such that l2 = i1. There exists exactly
(

k − l2
r − 1

)
such r-tuplets, obtained by choosing r − 1 indices in the set {l2 + 1, . . . , k}. Finally,

c′0,l2 =
k∑

r=1

(
k − l2
r − 1

)
(−1)r = −

k−l2∑
r=0

(
k − l2

r

)
(−1)r = −(1 − 1)k−l2 ,

which is 0 if l2 < k and −1 if l2 = k. �

3. Aggregation of sources

The Proof of Theorem 1.4 is based on the method of cumulants [8], a variant of the method of moments for
proving weak convergence. In the present context, cumulants have two main advantages over moments: first, the
cumulants of the Poisson and Gaussian integrals appearing in the limit have a simple structure (see Sect. 1.4);
second, cumulants are well adapted to aggregation, since the cumulant of a sum of independent random variables
is equal to the sum of cumulants of each term.
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3.1. Proof of Propositions 1.2 and 1.3

We first consider the Proof of Proposition 1.2. According to [11], Lemma 12.13, the Poisson integral

Ñ [g] =
∫

R×[0,+∞)

g(x, u) Ñ(dx, du)

exists for any measurable function g : R × [0, +∞) → R such that∫
R×[0,+∞)

|g(x, u)| ∧ g(x, u)2 n(dx, du) < ∞.

For k ≥ 1, the kth moment E[Ñ [g]k] and kth cumulant Ck(Ñ [g]) of Ñ [g] are well-defined as soon as∫
R×[0,+∞) |g(x, u)|k n(dx, du) < ∞. Then, C1(Ñ [g]) = 0 and for k ≥ 2,

Ck(Ñ [g]) =
∫

R×[0,+∞)

g(x, u)k n(dx, du). (3.1)

Corresponding remarks apply to stochastic integrals with respect to Ñ+(dx, du). Therefore, in order to prove
that the Poisson integrals Jeq

β [f ] and J0
β [f ] exists and have finite cumulants of all order, it is enough to show

that, for all k ≥ 1,∫
R×[0,+∞)

|g(x, u)|k n(dx, du) < ∞ and
∫

R×[0,+∞)

|g(x, u)|k n+(dx, du) < ∞

with g(x, u) =
∫
[0,+∞) 1[x,x+u](y)f(y) dy. This follows easily from the fact that f is bounded and has bounded

support. Then, using equation (3.1), we compute

Ck(Jeq
β [f ]) =

∫
R×[0,+∞)

(∫
[0,+∞)

1[x,x+u](y)f(y) dy

)k

n(dx, du)

=
∫

R×[0,+∞)

dx (β + 1)u−β−2du

∫
[0,+∞)k

1y(k)−u≤x≤y(1) f(y1) . . . f(yk) dy1 . . . dyk

=
1
β

∫
[0,+∞)k

f(y1) . . . f(yk) |y(k) − y(1)|−β dy1 . . . dyk =
1
β

P̃ eq
k [f⊗k].

By restricting the dx-integration to the positive half axis rather than the real line as above, we obtain

Ck(J0
β [f ]) =

∫
[0,+∞)2

(∫
[0,+∞)

1[x,x+u](y)f(y) dy

)k

(β + 1)u−β−2dudx

=
1
β

∫
[0,+∞)k

f(y1) . . . f(yk)
(
|y(k) − y(1)|−β − |y(k)|−β

)
dy1 . . . dyk =

1
β

P̃ 0
k [f⊗k]·

It remains to prove that the distributions of Jeq
β [f ] and J0

β [f ] are uniquely determined by their sequence of
cumulants. To this aim, we show that the cumulant generating function

log EeθJeq
β [f ] =

∞∑
k=1

θk

k!
Ck(Jeq

β [f ])

has a positive radius of convergence and similarly for J0
β [f ]. Indeed, there exist M > 0 and T > 0 such that

|f(y)| ≤ M1[0,T ](y) for all y ∈ [0, +∞), and then

|Ck(J0
β [fc])| ≤ Mk|Ck(J0

β [1[0,T ]])| ≤ Mk|Ck(Jeq
β [1[0,T ]])| =

MkT k−βk(k − 1)
β(k + 1 − β)(k + 2 − β)

·

The claim follows.
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The Proof of Proposition 1.3 is easier and based on the same arguments. The Gaussian integral

W [g] =
∫

R×[0,+∞)

g(x, u) W̃ (dx, du)

is well defined for g ∈ L2(R × [0, +∞), n) and then, W [g] is a centered Gaussian variable with variance

C2(W [g]) =
∫

R×[0,+∞)

g(x, u)2 n(dx, du).

The remaining cumulants Ck(W [g]), k = 1, or k ≥ 3, are equal to 0. Corresponding remarks hold for stochastic
integrals with respect to W+. Further details are omitted.

3.2. Proof of Theorem 1.4

We begin the proof by restating the convergence results for centered moments in Theorem 1.1 in a form
which is adapted to the scaling assumptions (ICR) and (FCR). Recall that β and � are given in (1.2) and that,
in the scaling (ICR), the sequence a = am satisfies a → ∞ and m�(a)/aβ → μcβ as m → ∞. With b(a, m) = a,
Theorem 1.1 implies, for k ≥ 1,

m

bk
M̃π

k s−1
a =

m�(a)
aβ

1
ak−β�(a)

M̃π
k s−1

a
Fk−→ (−1)k cβ

βμk
P̃ π

k . (3.2)

Turning to fast connection rate scaling (FCR), we have m�(a)/aβ → ∞ and norming sequence b(a, m) =
(ma2−β�(a))1/2. Hence, for k = 2

m

b2
M̃π

2 s−1
a =

1
a2−β�(a)

M̃π
2 s−1

a
F2−→ 1

βμ3
P̃ π

2 (3.3)

and, for k ≥ 3,

m

bk
M̃π

k s−1
a =

(
aβ

m�(a)

)k/2−1 1
ak−β�(a)

M̃π
k s−1

a ∼
(

aβ

m�(a)

)k/2−1 (−1)k

βμk+1
P̃ π

k

Fk−→ 0. (3.4)

Based on the above relations we are able to derive the asymptotic behavior of the cumulants of
ξ̃a,m[f ]. As in Section 1.4 we write Ck(X) for the kth order cumulant of a random variable X , so that
log EeθX =

∑∞
k=1

θk

k! Ck(X). It is convenient to write Cπ
k (X) to emphasize that expectations over X are

taken with respect to Eπ with π = δ0 or π = eq, and C0
k(X) and Ceq

k (X) if there is a need to distinguish the
two cases.

Lemma 3.1. Under both scaling assumptions (ICR) and (FCR), with the corresponding choice of norming
sequence b(a, m), for any f ∈ F1 we have Cπ

1 (ξ̃a,m[f ]) = 0 and, for k ≥ 2,

Cπ
k (ξ̃a,m[f ]) =

m

bk
(M̃π

k s−1
a )[f⊗k] + o(1) as m → +∞.

Proof. Since the centering of ξ̃a,m[f ] is prescribed with respect to the relevant measure Eπ, and hence

lnEπeθξ̃a,m[f ] = m lnEπeθξs−1
a /b − m

b
θEπξs−1

a ,

we have
Cπ

1 (ξ̃a,m[f ]) = 0
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and
Cπ

k (ξ̃a,m[f ]) =
m

bk
Cπ

k (ξs−1
a [f ]), k ≥ 2.

Moreover, for k ≥ 2 the cumulants of ξs−1
a [f ] and of (ξs−1

a − (a/μ)λ)[f ] coincide. Thus, by applying the general
recursive relation between moments and cumulants given by

Ck(X) = E[Xk] −
k−1∑
i=1

(
k − 1
i − 1

)
Ci(X)E[Xk−i]

to X = (ξs−1
a − (a/μ)λ)[f ], we obtain, for k ≥ 2,

Cπ
k

(
(ξs−1

a )[f ]
)

=
(
M̃π

k s−1
a

)
[f⊗k] −

k−1∑
i=1

(
k − 1
i − 1

)
Cπ

i

(
(ξs−1

a

)
[f ])

(
M̃π

k−is
−1
a

)
[f⊗k−i].

Hence,
Cπ

k

(
ξ̃a,m[f ]

)
=

m

bk

(
M̃π

k s−1
a

)
[f⊗k] − Rk[f ],

where

Rk[f ] =
k−1∑
i=1

(
k − 1
i − 1

)
Cπ

i

(
ξ̃a,m[f ]

) (
M̃π

k−is
−1
a

)
[f⊗k−i]

bk−i
·

It remains to prove that asymptotically Rk[f ] = o(1). For a proof by induction on k, we notice R2[f ] = 0 and
suppose that

Cπ
i

(
ξ̃a,m[f ]

)
=

m

bi

(
M̃π

i s−1
a

)
[f⊗i] + o(1), 2 ≤ i ≤ k − 1. (3.5)

Here, f⊗i ∈ Fi since f ∈ F1. In view of (3.2) for (ICR) scaling and (3.3), (3.4) for (FCR) we have
m

bi

(
M̃π

i s−1
a

)
[f⊗i] = O(1),

from which then follows Rk[f ] = O(1/m), and hence (3.5) is true for i = k. �

Proof of Theorem 1.4. We consider the scaling regime (ICR). Minor modifications yield the case (FCR).
For k ≥ 2, f⊗k ∈ Fk. Hence, by Lemma 3.1 and (3.2),

Cπ
k

(
ξ̃a,m[f ]

)
→ (−1)k cβ

βμk
P̃ π

k [f⊗k].

The scaling property
P π

k [f⊗k
c ] = cβPk[f⊗k], P̃ π

k [f⊗k
c ] = cβP̃ π

k [f⊗k] (3.6)

and the property of Poisson integrals (1.8) imply that the limit is

(−1)k cβ

βμk
P̃ π

k

[
f⊗k

]
=

(−1)k

βμk
P̃ π

k

[
f⊗k

c

]
= Ck

(
− 1

μ
Jπ

β [fc]
)

.

For k = 1, the first cumulant of the Poisson integrals vanish, and Cπ
1 (ξ̃a,m[f ]) = 0 by Lemma 3.1. So, for each

k ≥ 1,

Cπ
k (ξ̃a,m[f ]) → Ck

(
− 1

μ
Jπ

β [fc]
)

.

According to Proposition 1.2, the sequence of cumulants {Ck(Jπ
β [−fc/μ]), k ≥ 1} uniquely determines the

distribution of Jπ
β [−fc/μ]. Hence, by the method of cumulants, we conclude the weak convergence

ξ̃a,m[f ] =⇒ − 1
μ

Jπ
β [fc]. �
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4. A Lévy process renewal model

We are now going to replace the renewal sequence (Sn) with a Lévy subordinator (Zs), so that the role of
the renewal counting process ξ([0, x]) is taken over by the first passage times of the Lévy process

η([0, x]) =
∫ ∞

0

1{0≤Zs≤x} ds, x ≥ 0.

This provides a continuous counterpart of the discrete renewal model. As we will see, the discrete and continuous
models share the same structure of moment measures and all results derived for the discrete model can be
transfered to the continuous framework. The continuous model is introduced in [9] and studied here in a more
general setting.

4.1. Model and results

Let (Z(t))t≥0 be a Lévy subordinator with right-continuous paths, drift zero and Lévy measure ν on [0, +∞)
with no atom at zero, such that∫ ∞

0

(1 ∧ x) ν(dx) < ∞ and μ =
∫ ∞

0

y ν(dy) < ∞.

For the initial distribution π of Z(0) we will again consider two variations in analogy with the discrete renewal
model. The pure subordinator with Z(0) = 0 is the basic case π = δ0. For the stationary case π = πeq we
put Z(t) = Z̃(t) + Z(0), where {Z̃(t)} is a pure subordinator, Z(0) is a random variable with the equilibrium
distribution

πeq([0, x]) =
1
μ

∫ x

0

∫ ∞

y

ν(du)dy, (4.1)

and {Z̃(t)} and Z(0) are independent. As before, the initial distribution is emphasized in the notations Pπ and
Eπ. For the pure Lévy subordinator, we have E0(Z(t)) = μt, t ≥ 0, and

E0[e−λZ(t)] = e−tΦ(λ), Φ(λ) =
∫ ∞

0

(1 − e−λy) ν(dy), λ ≥ 0.

By imposing initially the equilibrium distribution, for which Eeq[e−λZ(0)] = Φ(λ)
μλ , we obtain

Eeq[e−λZ(t)] =
Φ(λ)
μλ

e−tΦ(λ)

We suppose that the Lévy measure ν has a regularly varying tail with index 1 + β for β ∈ (0, 1), i.e.∫ ∞

x

ν(dy) ∼ x−(1+β)�(x), as x → ∞, (4.2)

for some slowly varying function �. In addition, we suppose that the lower index σ of the subordinator is greater
than β, i.e.

σ = sup{α : lim
λ→∞

Φ(λ)/λα → ∞} > β. (4.3)
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Let η be the occupation measure of the process Z, i.e. the random measure on ([0, +∞),B1) defined by

η(A) =
∫ ∞

0

δZ(s)(A) ds, A ∈ B1.

The Lévy subordinator Z is transient (Z(t) → +∞ almost surely as t → +∞), hence η(A) is almost surely finite
for all bounded sets A ∈ B1, [1] Chapter 1.4. For measurable, bounded and compactly supported f : [0, +∞) →
R, we put

η[f ] =
∫

f dη =
∫ ∞

0

f(Z(s)) ds.

Denote by Lπ
k(A) the kth moment measure of η given by

Lπ
k (A) = Eπ[η⊗k(A)], A ∈ Bk.

Equivalently,

Lπ
k (A) = Eπ

[∫
[0,+∞)k

δ(Z(s1),...,Z(sk))(A) ds1 . . . dsk

]
. (4.4)

Define also the centered version of the kth moment measure by

L̃π
k(A) = Eπ[(η − λ1/μ)⊗k(A)], A ∈ Bk bounded.

Interestingly, the asymptotic behavior of the moment measures is the same as for the discrete setting.

Theorem 4.1. Suppose that assumptions (4.2) and (4.3) are satisfied. Then, for k ≥ 1 and as a → ∞,

Lπ
ks−1

a − (a/μ)kλk

ak−β�(a)
Fk−→ 1

βμk+1
P π

k ,
L̃π

ks−1
a

ak−β�(a)
Fk−→ (−1)k

βμk+1
P̃ π

k .

As remarked initially in this section, if we take f to be the indicator function of an interval [0, x] then η[f ]
provides the inverse of the Lévy-subordinator Z, given by the process of passage times

η([0, x]) = inf{s ≥ 0; Z(s) ≥ x}, x ≥ 0. (4.5)

The expected value L0
1([0, x]) = E0[η([0, x])] is the pure subordinator renewal function. Under π = πeq, by

stationarity, Leq
1 ([x, x+y]) = Eeq[η([x, x+y])] = y/μ, see [1]. Similarly as in Section 1.5, the result in Theorem 4.1

provides limit theorems in the continuous setting for the superposition of random sources. Let ηi, i ≥ 1 be i.i.d.
copies of the random measure η. We consider

η̃a,m =
1

b(a, m)

m∑
i=1

(ηis−1
a − Lπ

1s−1
a ).
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The counterpart of Theorem 1.4 is the following:

Theorem 4.2.

(1) Under the rescaling assumption (ICR) with normalization b(a, m) = a,
for the pure case π = δ0,

η̃a,m[f ]
fidi−→ − 1

μ
J0

β [fc], f ∈ F1;

and for the stationary case π = πeq,

η̃a,m[f ]
fidi−→ − 1

μ
Jeq

β [fc], f ∈ F1.

(2) With scaling (FCR) and normalization b(a, m) = (ma2−β�(a))1/2,
in the pure case π = δ0

η̃a,m[f ]
fidi−→ G0

β [f ], f ∈ F1;

and in the stationary case π = πeq

η̃a,m[f ]
fidi−→ Geq

β [f ], f ∈ F1.

The main result in [9] is a weak convergence result under (ICR) of the form

1
a

m∑
i=1

(
ηi([0, ax]) − 1

μ
ax

)
−→ − 1

μ
cJeq

β [x/c],

and a similar result under (FCR) with the fractional Brownian motion as limit process.

4.2. Proof of Theorem 4.1

The discrete renewal measure U is replaced for the continuous model by the (pure) subordinator renewal
measure

V (dy) = E0

[∫ ∞

0

δZ(s)(dy)ds

]
.

The following lemma replaces Lemmas 2.3 and 2.5. We use the same notations.

Lemma 4.3. For any k ≥ 1, the kth moment measure Lπ
k satisfies

Lπ
k(A) =

∑
σ∈Σk

[
(π ∗ V ) ⊗ V ⊗(k−1)

]
θ−1

k σ−1(A).

Moreover, for k ≥ 2,

L̃π
k (A) =

k∑
r=1

∑
|I|=r

(−1)k−r
(
Lπ

r − λr

μr

)
(AI)

λk−r(AIc)
μk−r

·

Proof. For the first statement, split the integral expression in the defining relation (4.4) in k! terms corresponding
to the relative order of si, 1 ≤ i ≤ k, to obtain

Lπ
k(A) = Eπ

∑
σ∈Σk

∫
[0,+∞)k

δ(Z(s1),...,Z(sk))(A)1{sσ(1)<...<sσ(k)} ds1 . . . dsk

=
∑

σ∈Σk

Eπ

∫
0<s1<...<sk

δ(Z(s1),...,Z(sk))(σ−1A) ds1 . . .dsk

=
∑

σ∈Σk

Eπ

∫
0<s1<...<sk

δ(Z(s1),Z(s2)−Z(s1),...,Z(sk)−Z(sk−1))(θ
−1
k σ−1A) ds1 . . . dsk.
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By the Markov property and the fact that Z(0), Z(s1)−Z(0), Z(s2)−Z(s1), . . . , Z(sk)−Z(sk−1) are independent,

Eπ

∫
0<s1<...<sk

δ(Z(s1),Z(s2)−Z(s1),...,Z(sk)−Z(sk−1))(θ−1
k σ−1A) ds1 . . . dsk =

[
(π ∗ V ) ⊗ V ⊗(k−1)

]
(θ−1

k σ−1A).

The proof of the remaining formula is the same as that of Lemma 2.5. �

The Proof of Theorem 4.1 follows the same lines as the proof of Lemma 2.4, with Lemma 4.3 replacing
Lemmas 2.3 and 2.5. The only part in this line of arguments that needs to be considered further is to establish
an analogous result to Teugel’s estimate (2.3), valid for the subordinator renewal measure V . This is the content
of Lemma 4.4 below. The proof relies on fine properties of the Lévy measure ν, taking into account its regularly
varying tail function in (4.2), which we denote here by

ν̄(x) = ν((x,∞)),

as well as the lower index assumption in (4.3).

Lemma 4.4. As x → ∞,

V ([0, x]) − x

μ
∼ �(x)x1−β

μ2β(1 − β)
· (4.6)

Proof. For convenience we denote by (Tx)x≥0, the inverse Lévy-subordinator Tx = η([0, x]) in (4.5), for which
we have Eeq[Tx] = x/μ and E0[Tx] = V ([0, x]). The renewal theorem, see [1] III.1, implies that

V ([0, x]) ∼ x

μ
as x → ∞.

Define also
T̃x = inf{s ≥ 0; Z(s) − Z(0) ≥ x} = η([0, x + Z(0)]), x ≥ 0.

By the Markov property, the distribution of T̃x under Pπ is equal to the distribution of Tx under P0, so that
Eeq[T̃x] = V ([0, x]). Hence, conditioning on Z(0),

V ([0, x]) − x/μ = Eeq[T̃x − Tx]

=
∫ ∞

0

Ey[T̃x − Tx] πeq(dy)

=
∫ x

0

(E0[Tx] − E0[Tx−y])πeq(dy) +
∫ ∞

x

E0[Tx] πeq(dy)

=
∫ x

0

V ((x − y, x])πeq(dy) + V ([0, x])πeq((x, +∞]).

The assumptions (4.1) and (4.2), and Karamata’s theorem [3], imply

πeq((x, +∞)) ∼ x−β�(x)
μβ

, as x → ∞,

so that

V ([0, x]) − x/μ ∼
∫ x

0

V ((x − y, x])πeq(dy) +
x1−β�(x)

μ2β
, as x → ∞. (4.7)

Since πeq(dz) = 1
μ ν̄(z)dz by (4.1),∫ x

0

V ((x − y, x])πeq(dy) =
1
μ

∫ x

0

V ((x − y, x])ν̄(y) dy

=
x1−β�(x)

μ

∫ 1

0

V (x(1 − y, 1])
x

ν̄(xy)
x−(1+β)�(x)

dy. (4.8)
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Using regular variation, for all y ∈ (0, 1) as x → ∞,

V (x(1 − y, 1])
x

→ y

μ
and

ν̄(xy)
x−(1+β)�(x)

→ y−(1+β),

so we expect ∫ 1

0

V (x(1 − y, 1])
x

ν̄(xy)
x−(1+β)�(x)

dy → 1
μ

∫ 1

0

y−β dy =
1

μ(1 − β)
, as x → ∞. (4.9)

The Lemma would then be a direct consequence of (4.7)–(4.9). It remains to justify the convergence (4.9). By
Lebesgue’s dominated convergence theorem, it is enough to provide a suitable domination condition. To this
aim, we will need the following estimate which is proved in Appendix A: for δ > 0 there exists x0 > 0 and C > 0
such that

sup
x≥x0

ν̄(xy)
x−(1+β)�(x)

≤ Cy−1−β−δ, y ∈ (0, 1). (4.10)

Furthermore, using the inequalities E0[Ty+y′ ] ≤ E0[Ty] + E0[Ty′ ] and 0 ≤ E0[Ty] − y/μ ≤ e/Φ(1/y) (see [1],
Sect. III.1), we obtain

V (x(1 − y, 1])
x

≤ V ([0, xy])
x

≤ y

μ
+

e

xΦ(1/(xy))
·

The condition (4.3) on the lower index of the Lévy process ensures that for all p ∈ (β, σ), Φ(λ)/λp → ∞ as
λ → ∞. On the other hand, Φ(λ) ∼ λμ as λ → 0+ and Φ is a continuous positive function on (0, +∞). So for
p ∈ (β, σ ∧ 1), there exists some C > 0 such that Φ(λ) ≥ C(λ ∧ λp) for all λ ≥ 0. As a consequence, for all
y ∈ (0, 1) and x ≥ x0,

V (x(1 − y, 1])
x

≤ y

μ
+

e

C
max(y, ypxp−1

0 ).

This bound together with (4.10) imply that there is C > 0 such that for all x ≥ x0 and y ∈ (0, 1)

V (x(1 − y, 1])
x

ν̄(xy)
x−(1+β)�(x)

≤ Cyp−1−β−δ.

Since p − 1 − β > −1, choosing δ small enough provides a suitable domination condition. This proves the
convergence (4.9) and hence the lemma. �

Note also that equation (2.4) holds with U replaced by V and the proof is the same.

4.3. Proof Theorem 4.2

Just as in the discrete case, Theorem 4.1 implies Theorem 4.2 thanks to the method of cumulants. The proof
is exactly the same as for Theorem 1.4 and we omit the details.

Appendix A. Technical results

We gather in this appendix some technical results and proofs relying on the theory of regularly varying
functions, see e.g. [3] for background and details. We recall the so called Potter bounds (see Prop. 0.8.ii)
in [16]). If h : [0, +∞) → R is regularly varying at infinity with index α ∈ R, then for any δ > 0 and t0 > 0,
there exists y0 such that for t ≥ t0 and y ≥ y0,

(1 − δ)tα−δ ≤ h(yt)
h(y)

≤ (1 + δ)tα+δ. (A.1)
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Proof of (2.4). Consider the function y �→ h(y) = U([0, y])− y/μ. The asymptotic relation (2.3) implies that h
is regularly varying at infinity with index α = 1 − β and that equation (2.4) is equivalent to

sup
u∈[0,x]

sup
a≥a0

h(au)
h(a)

< ∞.

Let δ ∈ (0, 1 − β) and t0 = 1/x. Using the lower Potter bound (A.1), there exists y0 > 0 such that

(1 − δ)t1−β−δ ≤ h(yt)
h(y)

, t ≥ t0, y ≥ y0·

With the substitution t → 1/u and y → au, we obtain

h(au)
h(a)

≤ 1
1 − δ

u1−β−δ, u ≤ x, au ≥ y0.

Note that 1−β−δ > 0. Furthermore, the function h is cad-lag and has limit +∞ at ∞. Therefore, h is bounded
on [0, y0] and 1/h is bounded on [a0, +∞] for some a0 > 0, so that there exists C > 0 such that

h(au)
h(a)

≤ C, u ≤ x, a ≥ a0, au ≤ y0.

Together these two estimates give the upper bound (2.4). �

Proof of (4.10). Since the function ν̄ is regularly varying at infinity with index −1−β, so that ν̄(x) ∼ x−1−β�(x)
as x → ∞, we may restate (4.10) as finding for any δ > 0, C and x0 such that

sup
x≥x0

ν̄(xz)
ν̄(x)

≤ Cz−1−β−δ, z ∈ (0, 1).

By the lower Potter bound (A.1) with 0 < δ < 1 and t0 = 1, there exists y0 such that for t ≥ 1 and y ≥ y0,

(1 − δ)t−1−β−δ ≤ ν̄(yt)
ν̄(y)

·

With the substitution t → 1/z and y → xz, we obtain

ν̄(xz)
ν̄(x)

≤ 1
1 − δ

z−1−β−δ, z ≤ 1, xz ≥ y0.

We still need a bound when xz < y0. For this we take C > 0 and x0 > 0 such that for x ≥ x0, ν̄(x) ≥ C1x
−1−β−δ.

In addition we have the obvious upper bound ν̄(x) ≤ μ/x valid for any x. Thus,

ν̄(xz)
ν̄(x)

≤ μ

xz

1
C1x−1−β−δ

=
μ

C1

1
z
xβ+δ, x ≥ x0.

In particular, considering the case x < y0/z,

ν̄(xz)
ν̄(x)

≤ μyβ+δ
0

C1
z−1−β−δ, z ≤ 1, xz ≤ y0, x ≥ x0.

Then, we obtain the desired result with C = max((1 − δ)−1, μyβ+δ
0 /C1). �
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Brownian motion. Ann. Appl. Probab. 12 (2002) 23–68.

[14] V. Pipiras and M.S. Taqqu, The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable
motion. Bernoulli 6 (2000) 607–614.
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