Теорія Ймовір. та Матем. Статист. Вип. 90, 2014

MOMENT MEASURES OF MIXED EMPIRICAL RANDOM POINT PROCESSES AND MARKED POINT PROCESSES IN COMPACT METRIC SPACES. 2

UDC 519.21

M. G. SEMEĬKO

ABSTRACT. This is a continuation of the paper by M. G. Semeĭko, Moment measures of mixed empirical random point processes and marked point processes in compact metric spaces. I, Theor. Probability and Math. Statist. **88** (2014), 161–174. Moment measures of mixed empirical marked random point processes are investigated by using the probability generating functions of random counting measures.

This is a continuation of the paper [1]. The numbering of equations in the current paper continues the numbering in [1].

7. Main definitions of the theory of random mixed empirical ordered marked point processes

Every trajectory E^* of a finite strictly simple ordered marked point process

$$\mathcal{D} = (\mathcal{E}^*, \mathfrak{X}^*, P^*)$$

in a bounded space $(Y = X \times K, \mathfrak{A}_Y = \mathfrak{A}_X \otimes \mathfrak{A}_K, \mathcal{B}_Y = \mathcal{B}_X \odot \mathcal{B}_K)$ is a thinned set in the Cartesian product $Y = X \times K$ [2]. If X is a compact metric space of states endowed with a measure ϑ , metric $\rho_X(x_i, x_j)$, and natural structures of measurable sets \mathfrak{A}_X and bounded sets \mathfrak{B}_X and if the space of marks K is an interval $[a, b] \subset \mathbb{R}^1$, then every trajectory E^* of an ordered marked point process consists of a finite sequence of points: $E^* = (y_1, \ldots, y_i, \ldots, y_n) = ([x_1; k_1], \ldots, [x_i; k_i], \ldots, [x_n; k_n])$, where $y_i = [x_i; k_i]$, x_i is a state and k_i is its mark. The phase space $Y = X \times K$ can be endowed with the structure of a metric space by defining the distance between the points $y_i = [x_i; k_i]$ and $y_j = [x_j; k_j], i \neq j$, by

$$\rho_Y([x_i; k_i], [x_j; k_j]) = \rho_X(x_i, x_j) + |k_i - k_j|.$$

Consider the following random procedure of constructing an ordered marked point process. Introduce the following three random variables: $x = x(\omega)$, $k = k(\omega)$, and $\nu = \nu(\omega)$ and assume that these random variables satisfy the following conditions.

7.1. The random variables $x(\omega)$, $k(\omega)$, and integer valued nonnegative random variable $\nu(\omega)$ are defined on the main probability space $(\Omega, \mathfrak{F}, \mathsf{P})$.

²⁰¹⁰ Mathematics Subject Classification. Primary 60G55.

Key words and phrases. Mixed empirical point process, marked point process, probability generating function, moment measures.

7.2. The random variables $x(\omega)$, $k(\omega)$, and $\nu(\omega)$ assume values in the sample spaces (X, \mathfrak{A}_X, P_x) , (K, \mathfrak{A}_K, P_k) , and $(Z_+, \mathfrak{A}_{Z_+}, P_{\nu})$, respectively, where

$$P_x(B_X) = \mathsf{P}\{\omega \colon x(\omega) \in B_X\} = \mu_1(B_X), \qquad B_X \in \mathfrak{A}_X,$$
$$P_k(B_K) = \mathsf{P}\{\omega \colon k(\omega) \in B_K\} = \mu_2(B_K), \qquad B_K \in \mathfrak{A}_K,$$

and

$$P_{\nu}(B_{Z_+}) = \mathsf{P}\{\omega \colon \nu(\omega) \in B_{Z_+}\}, \qquad B_{Z_+} \in \mathfrak{A}_{Z_+}\}$$

7.3. The distribution $P_x(B_X)$ of the random variable $x = x(\omega)$ is absolutely continuous with respect to the measure ϑ in the measurable space (X, \mathfrak{A}_X) .

7.4. The distribution $P_k(B_K)$ of the random variable $k = k(\omega)$ is absolutely continuous with respect to the Lebesgue measure in the measurable space $(\mathbf{R}^1, \mathfrak{A}_{\mathbf{R}^1})$.

7.5. $x(\omega)$, $k(\omega)$, and $\nu(\omega)$ are jointly independent random variables.

Consider the product of probability measures $P_y = P_x \otimes P_k$ on the σ -algebra of Borel sets $\mathfrak{A}_Y = \mathfrak{A}_X \otimes \mathfrak{A}_K$ of the phase space $Y = X \times K$. Then (Y, \mathfrak{A}_Y, P_y) can be viewed as a sample probability space for the two dimensional random variable $y(\omega) = [x(\omega); k(\omega)]$ that generates the probability measure

$$P_y(B_Y) = P_y(B_X \times B_K) = \mathsf{P}\{\omega \colon [x(\omega); k(\omega)] \in B_X \times B_K\}$$

= $\mathsf{P}\{\omega \colon x(\omega) \in B_X, k(\omega) \in B_K\} = \mathsf{P}\{\omega; x(\omega) \in B_X\} \mathsf{P}\{\omega \colon k(\omega) \in B_K\}$
= $P_x(B_X)P_k(B_K) = \mu_1(B_X)\mu_2(B_K) = \mu(B_X \times B_K) = \mu(B_Y),$

where $B_Y = B_X \times B_K \in \mathfrak{E}_Y = \mathfrak{A}_Y \cap \mathcal{B}_Y$.

Let G_1 and G_2 be two independent random experiments corresponding to the sample probability spaces (X, \mathfrak{A}_X, P_x) and (K, \mathfrak{A}_K, P_k) . Then $G = (G_1, G_2)$ is a "compound" random experiment with the sample probability space (Y, \mathfrak{A}_Y, P_y) . A number $n \in \mathbb{Z}_+$ is chosen at random and then every trajectory of the ordered marked point process

$$E^* = ([x_1; k_1], \dots, [x_i; k_i], \dots, [x_n; k_n])$$

of size n is formed as a result of n independent repetitions of the same "compound" random experiment $G = (G_1, G_2)$ that can be described as a simple random choice without repetition of a pair $y_i = [x_i; k_i]$, i = 1, ..., n, from the phase space $Y = X \times K$: the state point x_i is chosen from the space X (experiment G_1), while its mark k_i is chosen from the space K (experiment G_2).

Thus a trajectory E^* can be viewed as a realization in the sample measurable space (Y, \mathfrak{A}_Y) of the following sequence:

$$E^* = E^*(\omega) = (y_1(\omega), \dots, y_i(\omega), \dots, y_{\nu(\omega)}(\omega))$$

= ([x_1(\omega); k_1(\omega)], \dots, [x_i(\omega); k_i(\omega)], \dots, [x_{\nu(\omega)}(\omega); k_{\nu(\omega)}(\omega)])

of a random size $\nu(\omega)$ of independent and identically distributed random elements (two dimensional random variables) defined in the main probability space $(\Omega, \mathfrak{F}, \mathsf{P})$ and distributed according to the probability measure P_y , where $y_i(\omega) = [x_i(\omega); k_i(\omega)]$.

It is clear that the random variable $\nu(\omega)$ admits the following representation:

$$\nu(\omega) = N^* = N^*(E^*, Y) = \operatorname{card}[E^* \cap Y] = \sum_{y \in E^*} I_Y(y),$$

where $N^*(E^*, Y)$ is the random variable determining the number of points in the set E^* of the space Y and where $I_Y(y)$ is the characteristic function of the space Y.

Definition 7.1. A random process $\mathcal{D} = (\mathcal{E}^*, \mathfrak{X}^*, P^*)$ is called a strictly simple mixed empirical ordered marked point process with independent marks in a bounded space $(Y, \mathfrak{A}_Y, \mathcal{B}_Y)$ [2, 3].

Given $n, N^* = n$, and an arbitrary bounded measurable set $B_Y = B_X \times B_K, B_X \in \mathfrak{E}_X$, $B_K \in \mathfrak{A}_K$, consider a random empirical counting measure of the ordered marked point process

$$N^*(B_Y) = N^*(E^*, B_Y) = \operatorname{card}[E^* \cap B_Y] = \sum_{i=1}^n I_{B_Y}([x_i; k_i]).$$

The counting measure $N^*(B_Y)$ has the binomial distribution $B(n, \mu(B_Y))$ with parametric measure $\mu(B_Y)$ [3]:

(34)

$$P^*\{N^*(B_Y) = k \mid N^* = n\} = C_n^k \mu^k (B_Y) [1 - \mu(B_Y)]^{n-k}$$

$$= C_n^k \mu_1^k (B_X) \mu_2^k (B_K) [1 - \mu_1(B_X) \mu_2(B_K)]^{n-k}$$

$$k = 0, 1, \dots, n.$$

If $\{B_Y^j = B_X^j \times B_K^j : j = 1, \dots, s, s \ge 2, \bigcup_{j=1}^s B_Y^j = Y\}$ is an arbitrary finite sequence of disjoint bounded measurable sets of the phase space $Y, k_j \in Z_+, j = 1, \dots, s, k_1 + j \le 1, \dots, j \ge 1, \dots, j \le 1, \dots, j \ge 1, \dots, j \ge 1, \dots, j =$ $k_2 + \cdots + k_s = n$, then, given $N^* = n$, the joint conditional distribution of counting measures $\{N^*(B_V^j), j = 1, \dots, s\}$ has the polynomial distribution [4]:

(35)
$$P^*\left\{N^*(B_Y^j) = k_j, j = 1, \dots, s \mid N^* = n\right\} = \frac{n!}{k_1! \dots k_s!} \mu^{k_1}\left(B_Y^1\right) \dots \mu^{k_s}\left(B_Y^s\right),$$

where $\sum_{i=1}^{s} \mu(B_{Y}^{i}) = 1.$

8. Moment measures of a mixed empirical random ordered marked point PROCESS WITH INDEPENDENT MARKS

We construct the joint probability generating function of the counting measures

$$\left\{N^*\left(B_Y^j\right), j=1,\ldots,s\right\},\,$$

where $\bigcup_{j=1}^{s} B_Y^j = Y(B_Y^i \cap B_Y^r = \emptyset, 1 \le i, r \le s, i \ne r)$, by using the joint conditional distribution (35) and a similar evaluation presented in Section 4 of [1]:

(36)
$$\Pi_{N^*(B_Y^1),\dots,N^*(B_Y^s)}(z_1,\dots,z_s) = \Pi_{N^*}(z_1\mu(B_Y^1)+\dots+z_s\mu(B_Y^s))$$
$$= \Pi_{N^*}(z_1\mu_1(B_X^1)\mu_2(B_K^1)+\dots+z_s\mu_1(B_X^s)\mu_2(B_K^s)).$$

Introduce the following notation for the measures of an ordered marked point pro- $\operatorname{cess}\, \mathcal{D} {:}$

- 1. $\nu_{\mathcal{D}}^{(h)}(B_Y^j) = M[\{N^*(B_Y^j)\}^h]$ is the moment measure of order $h, h = 1, 2, \ldots;$ 2. $\nu_{\mathcal{D}}^{(h)}(B_Y^{j_1} \times \cdots \times B_Y^{j_h}) = M[N^*(B_Y^{j_1}) \dots N^*(B_Y^{j_h})]$ is the mixed moment measure of order $h, 1 \le j_1 < \dots < j_h \le s, h = 1, \dots, s$;
- 3. $\alpha_{\mathcal{D}}^{(h)}(B_Y^j) = M[N^*(B_Y^j)(N^*(B_Y^j)-1)\dots(N^*(B_Y^j)-h+1)]$ is the factorial moment measure of order h;
- 4. $\nu_{\mathcal{D}}^{(2)}(B_Y^{j_1} \times B_Y^{j_2}) = M[N^*(B_Y^{j_1})N^*(B_Y^{j_2})]$ is the mixed moment measure of the second order, $1 \leq j_1, j_2 \leq s, j_1 \neq j_2$; 5. $D(N^*(B_Y^j)) = \nu_{\mathcal{D}}^{(2)}(B_Y^j) - \{\nu_{\mathcal{D}}^{(1)}(B_Y^j)\}^2$ is the variance of the counting measure
- $N^{*}(B_{V}^{j});$
- 6. $\operatorname{cov}[N^*(B_Y^{j_1}), N^*(B_Y^{j_2})] = \nu_{\mathcal{D}}^{(2)}(B_Y^{j_1} \times B_Y^{j_2}) \nu_{\mathcal{D}}^{(1)}(B_Y^{j_1})\nu_{\mathcal{D}}^{(1)}(B_Y^{j_2})$ is the covariance measure of dependence between the measures $N^*(B_V^{j_1})$ and $N^*(B_V^{j_2})$.

Reasoning as in Section 4 of [1], we obtain

(37)
$$\nu_{\mathcal{D}}^{(h)} \left(B_Y^{j_1} \times \dots \times B_Y^{j_h} \right) = \mu \left(B_Y^{j_1} \right) \dots \mu \left(B_Y^{j_h} \right) \Pi_{N^*}^{(h)}(1),$$

(38)
$$\alpha_{\mathcal{D}}^{(h)}(B_Y^j) = \mu^h(B_Y^j)\Pi_{N^*}^{(h)}(1), \qquad \nu_{\mathcal{D}}^{(1)}(B_Y^j) = \mu(B_Y^j)\Pi_{N^*}^{\prime}(1),$$

(39)
$$\nu_{\mathcal{D}}^{(2)}(B_Y^j) = \mu^2 (B_Y^j) \Pi_{N^*}^{\prime\prime}(1) + \mu (B_Y^j) \Pi_{N^*}^{\prime\prime}(1)$$

(40)
$$\nu_{\mathcal{D}}^{(2)} \left(B_Y^{j_1} \times B_Y^{j_2} \right) = \mu \left(B_Y^{j_1} \right) \mu \left(B_Y^{j_2} \right) \Pi_{N^*}^{\prime\prime}(1),$$

(41)
$$D(N^*(B_Y^j)) = \mu^2(B_Y^j) [\Pi_{N^*}'(1) - {\Pi_{N^*}'(1)}^2] + \mu(B_Y^j) \Pi_{N^*}'(1),$$

(42)
$$\operatorname{cov}\left[N^*\left(B_Y^{j_1}\right), N^*\left(B_Y^{j_2}\right)\right] = \mu\left(B_Y^{j_1}\right)\mu\left(B_Y^{j_2}\right)\left[\Pi_{N^*}''(1) - \{\Pi_{N^*}'(1)\}^2\right].$$

9. MIXED EMPIRICAL POISSON RANDOM ORDERED MARKED POINT PROCESS WITH INDEPENDENT MARKS

Theorem 9.1. If

- 1. the size of a sample $\nu = \nu(\omega) = N^*$ is a random variable with the Poisson distribution with parameter λ ;
- 2. the random variable ν is independent of the random variables

$$\{[x_i(\omega);k_i(\omega)]: i=1,\ldots,\nu(\omega)\};\$$

- 3. $N^*(B_Y) = \sum_{i=1}^{\nu} I_{B_Y}([x_i; k_i])$ is the random empirical counting measure of the ordered marked point process;
- 4. $\{B_Y^j = B_X^j \times B_K^j : j = 1, ..., s, s \ge 2\}$ is an arbitrary finite sequence of disjoint bounded measurable sets in the space $Y: B_Y^i B_Y^j = \emptyset$ $i, j = 1, ..., s, i \ne j$,

then

1*. the counting measure $N^*(B_Y^j)$, j = 1, ..., s, of the empirical ordered marked point process $\mathcal{D} = (\mathcal{E}^*, \mathfrak{X}^*, P^*)$ is distributed by the Poisson law with parametric measure $\lambda \mu(B_Y^j)$:

$$P^*\left\{N^*\left(B_Y^j\right) = k_j\right\} = \frac{\left[\lambda\mu\left(B_Y^j\right)\right]^{k_j}}{k_j!}e^{-\lambda\mu\left(B_Y^j\right)}$$

where $\mu(B_Y^j) = P_y(B_Y^j), k_j = 0, 1, 2, \ldots;$

2*. the counting measures $\{N^*(B_Y^j), j = 1, ..., s\}$ are jointly independent random variables:

$$P^*\{N^*(B_Y^j) = k_j, j = 1, \dots, s\} = \prod_{j=1}^s P^*\{N^*(B_Y^j) = k_j\}.$$

Proof. The first statement is proved with the help of the full probability formula in view of the binomial distribution (34):

$$P^* \{ N^* (B_Y^j) = k_j \} = \sum_{n \ge k_j} P^* \{ N^* (B_Y^j) = k_j \mid N^* = n \} P^* \{ N^* = n \}$$
$$= \sum_{n-k_j \ge 0} \frac{n!}{k_j! (n-k_j)!} \mu^{k_j} (B_Y^j) [1 - \mu(B_Y^j)]^{n-k_j} \frac{\lambda^{n-k_j} \lambda^{k_j}}{n!} e^{-\lambda}$$
$$= \frac{[\lambda \mu(B_Y^j)]^{k_j}}{k_j!} e^{-\lambda} \sum_{m \ge 0} \frac{[\lambda (1 - \mu(B_Y^j))]^m}{m!},$$

178

where $m = n - k_j$. Since

$$\sum_{m\geq 0} \frac{[\lambda(1-\mu(B_Y^j))]^m}{m!} = e^{\lambda} e^{-\lambda\mu(B_Y^j)},$$

we obtain

$$P^* \{ N^* (B_Y^j) = k_j \} = \frac{[\lambda \mu (B_Y^j)]^{k_j}}{k_j!} e^{-\lambda \mu (B_Y^j)}.$$

To prove the second statement about the joint independence of the random variables $\{N^*(B_Y^j), j = 1, \ldots, s\}$ we use the full probability formula, polynomial law (35), and assume that $B_Y^{s+1} = \left(\bigcup_{j=1}^s B_Y^j\right)^c$, $k = \sum_{j=1}^s k_j$, $k_{s+1} = n - k$ for $n \ge k$. Then (43)

$$P^* \{ N^*(B_Y^j) = k_j, j = 1, \dots, s \}$$

$$= \sum_{n \ge k} P^* \{ N^*(B_Y^j) = k_j, j = 1, \dots, s+1 \mid N^* = n \} P^* \{ N^* = n \}$$

$$= \sum_{n \ge k} \frac{n!}{k_1! \dots k_s! (n-k)!} \mu^{k_1}(B_Y^1) \dots \mu^{k_s}(B_Y^s) \mu^{n-k}(B_Y^{s+1}) \frac{\lambda^k \lambda^{n-k}}{n!} e^{-\lambda}$$

$$= \sum_{n-k \ge 0} \frac{n!}{k_1! \dots k_s! (n-k)!} \mu^{k_1}(B_Y^1) \dots \mu^{k_s}(B_Y^s) \mu^{n-k}(B_Y^{s+1}) \frac{\lambda^{k_1 + \dots + k_s} \lambda^{n-k}}{n!} e^{-\lambda}$$

$$= \prod_{j=1}^s \frac{[\lambda \mu(B_Y^j)]^{k_j}}{k_j!} e^{-\lambda} \left[\sum_{m \ge 0} \frac{[\lambda \mu(B_Y^{s+1})]^m}{m!} \right] \qquad (m = n - k).$$

Since

$$\sum_{m \ge 0} \frac{\left[\lambda \mu (B_Y^{s+1})\right]^m}{m!} = e^{\lambda \mu (B_Y^{s+1})}, \qquad \sum_{j=1}^{s+1} \mu (B_Y^j) = 1$$

we conclude that

(44)
$$\exp\{-\lambda[(\cdot)]\} = \exp\left\{-\lambda\left(\sum_{j=1}^{s+1}\mu(B_Y^j)\right)\right\} \exp\{\lambda\mu(B_Y^{s+1})\}$$
$$= \exp\left\{-\lambda\sum_{j=1}^{s}\mu(B_Y^j)\right\}.$$

Substituting (44) into (43) we get

$$P^* \{ N^* (B_Y^j) = k_j, j = 1, \dots, s \} = \prod_{j=1}^s \frac{\left[\lambda \mu (B_Y^j) \right]^{k_j}}{k_j!} e^{-\lambda \mu (B_Y^j)}$$
$$= \prod_{j=1}^s P^* \{ N^* (B_Y^j) = k_j \}.$$

Definition 9.1. A random process $\mathcal{D} = (\mathcal{E}^*, \mathfrak{X}^*, P^*)$ satisfying the assumptions of Theorem 9.1 is called a strictly simple mixed empirical Poisson ordered marked point process with independent marks in a bounded space $(Y, \mathfrak{A}_Y, \mathcal{B}_Y)$ [2, 3].

Corollary 9.1. If the random variable N^* is distributed by the homogeneous Poisson law with parameter λ , then, using the general results (37)–(42), we obtain the moment

characteristics of the mixed empirical Poisson ordered marked point process \mathcal{D} with independent marks:

$$\nu_{\mathcal{D}}^{(1)}(B_Y^j) = \nu_{\mathcal{D}}^{(1)}(B_X^j \times B_K^j) = \lambda \mu (B_X^j \times B_K^j) = \lambda \mu_1 (B_X^j) \mu_2 (B_K^j) = \nu_{\widetilde{\mathcal{D}}}^{(1)}(B_X^j) \mu_2 (B_K^j),$$

where $\nu_{\widetilde{\mathcal{D}}}^{(1)}(B_X^j) = \lambda \mu_1(B_X^j)$ is the moment measure of the first order of the Poisson ordered point process $\widetilde{\mathcal{D}}$ of state points considered in Section 5 of [1],

$$\nu_{\mathcal{D}}^{(h)}(B_Y^{j_1} \times \dots \times B_Y^{j_h}) = \lambda^h \mu(B_Y^{j_1}) \dots \mu(B_Y^{j_h}) = \nu_{\mathcal{D}}^{(1)}(B_Y^{j_1}) \dots \nu_{\mathcal{D}}^{(1)}(B_Y^{j_h}),$$

$$\lambda_{\mathcal{D}}^{(h)}(B_Y^j) = \lambda^h \mu^h(B_Y^j) = [\nu_{\mathcal{D}}^{(1)}(B_Y^j)]^h, \qquad \nu_{\mathcal{D}}^{(2)}(B_Y^j) = \lambda^2 \mu^2(B_Y^j) + \lambda \mu(B_Y^j),$$

$$\nu_{\mathcal{D}}^{(2)}(B_Y^{j_1} \times B_Y^{j_2}) = \lambda^2 \mu(B_Y^{j_1}) \mu(B_Y^{j_2}),$$

$$D(N^*(B_Y^j)) = \lambda \mu(B_Y^j), \qquad \operatorname{cov}[N^*(B_Y^{j_1}), N^*(B_Y^{j_2})] = 0.$$

10. Mixed empirical negative binomial ordered marked point process with independent marks

Definition 10.1. A random process $\mathcal{D} = (\mathcal{E}^*, \mathfrak{X}^*, P^*)$ is called a strictly simple mixed empirical negative binomial ordered marked point process with independent marks in a bounded space $(Y, \mathfrak{A}_Y, \mathcal{B}_Y)$ if the size of a sample N^* is a random variable with the negative binomial distribution.

Similarly to Section 6 of [1], one can evaluate the following probability generating functions:

(45)
$$\Pi_{N^*(B^1_Y),\dots,N^*(B^s_Y)}(z_1,\dots,z_s) = \left[1 + \beta \sum_{j=1}^s \mu(B^j_Y)(1-z_j)\right]^{-\alpha}$$

(46)
$$\Pi_{N^*(B_Y^j)}(z_j) = \left[1 + \beta \mu \left(B_Y^j\right)(1 - z_j)\right]^{-\alpha}, \qquad j = 1, \dots, s$$

Then, using (37)–(42) and (45), (46), we obtain the following moment characteristics for a family of bounded measurable disjoint sets $\{B_Y^j, j = 1, \ldots, s\}$ that form a partition of the phase space $Y = X \times K$:

$$\begin{split} \nu_{\mathcal{D}}^{(h)} \big(B_Y^{j_1} \times \dots \times B_Y^{j_h} \big) &= \beta^h \prod_{i=1}^h (\alpha + i - 1) \mu \big(B_Y^{j_1} \big) \dots \mu \big(B_Y^{j_h} \big) \\ & 1 \leq j_1 < \dots < j_h \leq s, \qquad h = 1, \dots, s, \end{split} \\ \alpha_{\mathcal{D}}^{(h)} \big(B_Y^j \big) &= \beta^h \prod_{i=1}^h (\alpha + i - 1) \mu^h \big(B_Y^j \big), \qquad \nu_{\mathcal{D}}^{(1)} \big(B_Y^j \big) = \lambda \beta \mu \big(B_Y^j \big), \\ & \nu_{\mathcal{D}}^{(2)} \big(B_Y^j \big) = \lambda \beta \mu \big(B_Y^j \big) [(\alpha + 1) \beta \mu \big(B_Y^j \big) + 1], \\ & \nu_{\mathcal{D}}^{(2)} \big(B_Y^{j_1} \times B_Y^{j_2} \big) = \alpha (\alpha + 1) \beta^2 \mu \big(B_Y^j \big) \mu \big(B_Y^{j_2} \big), \\ & D \big(N^* \big(B_Y^j \big) \big) = \alpha \beta \mu \big(B_Y^j \big) \big[\beta \mu \big(B_Y^j \big) + 1 \big], \end{split}$$

(47) $\operatorname{cov}\left[N^*\left(B_Y^{j_1}\right), N^*\left(B_Y^{j_2}\right)\right] = \alpha \beta^2 \mu\left(B_Y^{j_1}\right) \mu\left(B_Y^{j_2}\right), \qquad 1 \le j_1, \ j_2 \le s, \ j_1 \ne j_2.$

Considering (45)-(47) we make the following conclusions:

a) Counting measures $N^*(B_Y^1), \ldots, N^*(B_Y^s)$ form a family of mutually correlated identically distributed random variables with negative binomial distribution with parameters $\beta \mu(B_Y^j) > 0$, $\alpha > 0$, $j = 1, \ldots, s$.

b) There is a positive correlation between the counting measures $N^*(B_Y^i)$ and $N^*(B_Y^r)$ $(1 \le i, r \le s, i \ne r)$.

BIBLIOGRAPHY

- M. G. Semeiko, Moment measures of mixed empirical random point processes and marked point processes in compact metric spaces. I, Teor. Imovirnost. Matem. Statyst. 88 (2013), 144–156; English transl. in Theor. Probability and Math. Statist. 88 (2014), 161–174. MR3112642
- Yu. I. Petunin and M. G. Semeĭko, Mixed empirical stochastic point processes in compact metric spaces. I, Teor. Imovirnost. Matem. Statyst. 74 (2006), 98–107; English transl. in Theor. Probability and Math. Statist. 74 (2007), 113–123. MR2321193 (2008f:60053)
- Yu. I. Petunin and M. G. Semeiko, Mixed empirical point random processes in compact metric spaces. II, Teor. Imovirnost. Matem. Statyst. 75 (2006), 121–126; English transl. in Theor. Probability and Math. Statist. 75 (2007), 139–145. MR2321187 (2008f:60054)
- D. I. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer-Verlag, New York, 1988. MR950166 (90e:60060)

Department of Higher Mathematics, Faculty for Human Resources Management and Marketing, Kyiv National Vadym Get'man University for Economics, Peremogy Avenue, 54/1, Kyiv 03680, Ukraine

E-mail address: semejko@ukr.net

Received 15/SEP/2011 Translated by S. KVASKO