# MOMENT MEASURES OF MIXED EMPIRICAL RANDOM POINT PROCESSES AND MARKED POINT PROCESSES IN COMPACT METRIC SPACES. 2 

UDC 519.21

M. G. SEMEĬKO


#### Abstract

This is a continuation of the paper by M. G. Semeřko, Moment measures of mixed empirical random point processes and marked point processes in compact metric spaces. I, Theor. Probability and Math. Statist. 88 (2014), 161-174. Moment measures of mixed empirical marked random point processes are investigated by using the probability generating functions of random counting measures.


This is a continuation of the paper [1]. The numbering of equations in the current paper continues the numbering in [1].

## 7. Main definitions of the theory of Random mixed empirical ordered MARKED POINT PROCESSES

Every trajectory $E^{*}$ of a finite strictly simple ordered marked point process

$$
\mathcal{D}=\left(\mathcal{E}^{*}, \mathfrak{X}^{*}, P^{*}\right)
$$

in a bounded space $\left(Y=X \times K, \mathfrak{A}_{Y}=\mathfrak{A}_{X} \otimes \mathfrak{A}_{K}, \mathcal{B}_{Y}=\mathcal{B}_{X} \odot \mathcal{B}_{K}\right)$ is a thinned set in the Cartesian product $Y=X \times K$ [2]. If $X$ is a compact metric space of states endowed with a measure $\vartheta$, metric $\rho_{X}\left(x_{i}, x_{j}\right)$, and natural structures of measurable sets $\mathfrak{A}_{X}$ and bounded sets $\mathfrak{B}_{X}$ and if the space of marks $K$ is an interval $[a, b] \subset R^{1}$, then every trajectory $E^{*}$ of an ordered marked point process consists of a finite sequence of points: $E^{*}=\left(y_{1}, \ldots, y_{i}, \ldots, y_{n}\right)=\left(\left[x_{1} ; k_{1}\right], \ldots,\left[x_{i} ; k_{i}\right], \ldots,\left[x_{n} ; k_{n}\right]\right)$, where $y_{i}=\left[x_{i} ; k_{i}\right]$, $x_{i}$ is a state and $k_{i}$ is its mark. The phase space $Y=X \times K$ can be endowed with the structure of a metric space by defining the distance between the points $y_{i}=\left[x_{i} ; k_{i}\right]$ and $y_{j}=\left[x_{j} ; k_{j}\right], i \neq j$, by

$$
\rho_{Y}\left(\left[x_{i} ; k_{i}\right],\left[x_{j} ; k_{j}\right]\right)=\rho_{X}\left(x_{i}, x_{j}\right)+\left|k_{i}-k_{j}\right| .
$$

Consider the following random procedure of constructing an ordered marked point process. Introduce the following three random variables: $x=x(\omega), k=k(\omega)$, and $\nu=\nu(\omega)$ and assume that these random variables satisfy the following conditions.
7.1. The random variables $x(\omega), k(\omega)$, and integer valued nonnegative random variable $\nu(\omega)$ are defined on the main probability space $(\Omega, \mathfrak{F}, \mathrm{P})$.

[^0]7.2. The random variables $x(\omega), k(\omega)$, and $\nu(\omega)$ assume values in the sample spaces $\left(X, \mathfrak{A}_{X}, P_{x}\right),\left(K, \mathfrak{A}_{K}, P_{k}\right)$, and $\left(Z_{+}, \mathfrak{A}_{Z_{+}}, P_{\nu}\right)$, respectively, where
\[

$$
\begin{array}{ll}
P_{x}\left(B_{X}\right)=\mathrm{P}\left\{\omega: x(\omega) \in B_{X}\right\}=\mu_{1}\left(B_{X}\right), & B_{X} \in \mathfrak{A}_{X}, \\
P_{k}\left(B_{K}\right)=\mathrm{P}\left\{\omega: k(\omega) \in B_{K}\right\}=\mu_{2}\left(B_{K}\right), & B_{K} \in \mathfrak{A}_{K},
\end{array}
$$
\]

and

$$
P_{\nu}\left(B_{Z_{+}}\right)=\mathrm{P}\left\{\omega: \nu(\omega) \in B_{Z_{+}}\right\}, \quad B_{Z_{+}} \in \mathfrak{A}_{Z_{+}}
$$

7.3. The distribution $P_{x}\left(B_{X}\right)$ of the random variable $x=x(\omega)$ is absolutely continuous with respect to the measure $\vartheta$ in the measurable space $\left(X, \mathfrak{A}_{X}\right)$.
7.4. The distribution $P_{k}\left(B_{K}\right)$ of the random variable $k=k(\omega)$ is absolutely continuous with respect to the Lebesgue measure in the measurable space $\left(\mathbf{R}^{1}, \mathfrak{A}_{\mathbf{R}^{1}}\right)$.
7.5. $x(\omega), k(\omega)$, and $\nu(\omega)$ are jointly independent random variables.

Consider the product of probability measures $P_{y}=P_{x} \otimes P_{k}$ on the $\sigma$-algebra of Borel sets $\mathfrak{A}_{Y}=\mathfrak{A}_{X} \otimes \mathfrak{A}_{K}$ of the phase space $Y=X \times K$. Then $\left(Y, \mathfrak{A}_{Y}, P_{y}\right)$ can be viewed as a sample probability space for the two dimensional random variable $y(\omega)=[x(\omega) ; k(\omega)]$ that generates the probability measure

$$
\begin{aligned}
P_{y}\left(B_{Y}\right) & =P_{y}\left(B_{X} \times B_{K}\right)=\mathrm{P}\left\{\omega:[x(\omega) ; k(\omega)] \in B_{X} \times B_{K}\right\} \\
& =\mathrm{P}\left\{\omega: x(\omega) \in B_{X}, k(\omega) \in B_{K}\right\}=\mathrm{P}\left\{\omega ; x(\omega) \in B_{X}\right\} \mathrm{P}\left\{\omega: k(\omega) \in B_{K}\right\} \\
& =P_{x}\left(B_{X}\right) P_{k}\left(B_{K}\right)=\mu_{1}\left(B_{X}\right) \mu_{2}\left(B_{K}\right)=\mu\left(B_{X} \times B_{K}\right)=\mu\left(B_{Y}\right),
\end{aligned}
$$

where $B_{Y}=B_{X} \times B_{K} \in \mathfrak{E}_{Y}=\mathfrak{A}_{Y} \cap \mathcal{B}_{Y}$.
Let $G_{1}$ and $G_{2}$ be two independent random experiments corresponding to the sample probability spaces $\left(X, \mathfrak{A}_{X}, P_{x}\right)$ and $\left(K, \mathfrak{A}_{K}, P_{k}\right)$. Then $G=\left(G_{1}, G_{2}\right)$ is a "compound" random experiment with the sample probability space $\left(Y, \mathfrak{A}_{Y}, P_{y}\right)$. A number $n \in Z_{+}$is chosen at random and then every trajectory of the ordered marked point process

$$
E^{*}=\left(\left[x_{1} ; k_{1}\right], \ldots,\left[x_{i} ; k_{i}\right], \ldots,\left[x_{n} ; k_{n}\right]\right)
$$

of size $n$ is formed as a result of $n$ independent repetitions of the same "compound" random experiment $G=\left(G_{1}, G_{2}\right)$ that can be described as a simple random choice without repetition of a pair $y_{i}=\left[x_{i} ; k_{i}\right], i=1, \ldots, n$, from the phase space $Y=X \times K$ : the state point $x_{i}$ is chosen from the space $X$ (experiment $G_{1}$ ), while its mark $k_{i}$ is chosen from the space $K$ (experiment $G_{2}$ ).

Thus a trajectory $E^{*}$ can be viewed as a realization in the sample measurable space $\left(Y, \mathfrak{A}_{Y}\right)$ of the following sequence:

$$
\begin{aligned}
E^{*} & =E^{*}(\omega)=\left(y_{1}(\omega), \ldots, y_{i}(\omega), \ldots, y_{\nu(\omega)}(\omega)\right) \\
& =\left(\left[x_{1}(\omega) ; k_{1}(\omega)\right], \ldots,\left[x_{i}(\omega) ; k_{i}(\omega)\right], \ldots,\left[x_{\nu(\omega)}(\omega) ; k_{\nu(\omega)}(\omega)\right]\right)
\end{aligned}
$$

of a random size $\nu(\omega)$ of independent and identically distributed random elements (two dimensional random variables) defined in the main probability space $(\Omega, \mathfrak{F}, \mathrm{P})$ and distributed according to the probability measure $P_{y}$, where $y_{i}(\omega)=\left[x_{i}(\omega) ; k_{i}(\omega)\right]$.

It is clear that the random variable $\nu(\omega)$ admits the following representation:

$$
\nu(\omega)=N^{*}=N^{*}\left(E^{*}, Y\right)=\operatorname{card}\left[E^{*} \cap Y\right]=\sum_{y \in E^{*}} I_{Y}(y),
$$

where $N^{*}\left(E^{*}, Y\right)$ is the random variable determining the number of points in the set $E^{*}$ of the space $Y$ and where $I_{Y}(y)$ is the characteristic function of the space $Y$.

Definition 7.1. A random process $\mathcal{D}=\left(\mathcal{E}^{*}, \mathfrak{X}^{*}, P^{*}\right)$ is called a strictly simple mixed empirical ordered marked point process with independent marks in a bounded space $\left(Y, \mathfrak{A}_{Y}, \mathcal{B}_{Y}\right)$ [2, 3].

Given $n, N^{*}=n$, and an arbitrary bounded measurable set $B_{Y}=B_{X} \times B_{K}, B_{X} \in \mathfrak{E}_{X}$, $B_{K} \in \mathfrak{A}_{K}$, consider a random empirical counting measure of the ordered marked point process

$$
N^{*}\left(B_{Y}\right)=N^{*}\left(E^{*}, B_{Y}\right)=\operatorname{card}\left[E^{*} \cap B_{Y}\right]=\sum_{i=1}^{n} I_{B_{Y}}\left(\left[x_{i} ; k_{i}\right]\right)
$$

The counting measure $N^{*}\left(B_{Y}\right)$ has the binomial distribution $B\left(n, \mu\left(B_{Y}\right)\right)$ with parametric measure $\mu\left(B_{Y}\right)$ 3]:

$$
\begin{align*}
P^{*}\left\{N^{*}\left(B_{Y}\right)=k \mid N^{*}=n\right\}= & C_{n}^{k} \mu^{k}\left(B_{Y}\right)\left[1-\mu\left(B_{Y}\right)\right]^{n-k} \\
= & C_{n}^{k} \mu_{1}^{k}\left(B_{X}\right) \mu_{2}^{k}\left(B_{K}\right)\left[1-\mu_{1}\left(B_{X}\right) \mu_{2}\left(B_{K}\right)\right]^{n-k},  \tag{34}\\
& k=0,1, \ldots, n .
\end{align*}
$$

If $\left\{B_{Y}^{j}=B_{X}^{j} \times B_{K}^{j}: j=1, \ldots, s, s \geq 2, \bigcup_{j=1}^{s} B_{Y}^{j}=Y\right\}$ is an arbitrary finite sequence of disjoint bounded measurable sets of the phase space $Y, k_{j} \in Z_{+}, j=1, \ldots, s, k_{1}+$ $k_{2}+\cdots+k_{s}=n$, then, given $N^{*}=n$, the joint conditional distribution of counting measures $\left\{N^{*}\left(B_{Y}^{j}\right), j=1, \ldots, s\right\}$ has the polynomial distribution [4]:

$$
\begin{equation*}
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}, j=1, \ldots, s \mid N^{*}=n\right\}=\frac{n!}{k_{1}!\ldots k_{s}!} \mu^{k_{1}}\left(B_{Y}^{1}\right) \ldots \mu^{k_{s}}\left(B_{Y}^{s}\right) \tag{35}
\end{equation*}
$$

where $\sum_{j=1}^{s} \mu\left(B_{Y}^{j}\right)=1$.

## 8. Moment measures of a mixed empirical random ordered marked point PROCESS WITH INDEPENDENT MARKS

We construct the joint probability generating function of the counting measures

$$
\left\{N^{*}\left(B_{Y}^{j}\right), j=1, \ldots, s\right\}
$$

where $\bigcup_{j=1}^{s} B_{Y}^{j}=Y\left(B_{Y}^{i} \cap B_{Y}^{r}=\varnothing, 1 \leq i, r \leq s, i \neq r\right)$, by using the joint conditional distribution (35) and a similar evaluation presented in Section 4 of 1]:

$$
\begin{align*}
& \Pi_{N^{*}\left(B_{Y}^{1}\right), \ldots, N^{*}\left(B_{Y}^{s}\right)}\left(z_{1}, \ldots, z_{s}\right)=\Pi_{N^{*}}\left(z_{1} \mu\left(B_{Y}^{1}\right)+\cdots+z_{s} \mu\left(B_{Y}^{s}\right)\right) \\
& \quad=\Pi_{N^{*}}\left(z_{1} \mu_{1}\left(B_{X}^{1}\right) \mu_{2}\left(B_{K}^{1}\right)+\cdots+z_{s} \mu_{1}\left(B_{X}^{s}\right) \mu_{2}\left(B_{K}^{s}\right)\right) . \tag{36}
\end{align*}
$$

Introduce the following notation for the measures of an ordered marked point process $\mathcal{D}$ :

1. $\nu_{\mathcal{D}}^{(h)}\left(B_{Y}^{j}\right)=M\left[\left\{N^{*}\left(B_{Y}^{j}\right)\right\}^{h}\right]$ is the moment measure of order $h, h=1,2, \ldots$;
2. $\nu_{\mathcal{D}}^{(h)}\left(B_{Y}^{j_{1}} \times \cdots \times B_{Y}^{j_{h}}\right)=M\left[N^{*}\left(B_{Y}^{j_{1}}\right) \ldots N^{*}\left(B_{Y}^{j_{h}}\right)\right]$ is the mixed moment measure of order $\left.h, 1 \leq j_{1}<\cdots<j_{h} \leq s, h=1, \ldots, s\right)$;
3. $\alpha_{\mathcal{D}}^{(h)}\left(B_{Y}^{j}\right)=M\left[N^{*}\left(B_{Y}^{j}\right)\left(N^{*}\left(B_{Y}^{j}\right)-1\right) \ldots\left(N^{*}\left(B_{Y}^{j}\right)-h+1\right)\right]$ is the factorial moment measure of order $h$;
4. $\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j_{1}} \times B_{Y}^{j_{2}}\right)=M\left[N^{*}\left(B_{Y}^{j_{1}}\right) N^{*}\left(B_{Y}^{j_{2}}\right)\right]$ is the mixed moment measure of the second order, $1 \leq j_{1}, j_{2} \leq s, j_{1} \neq j_{2}$;
5. $D\left(N^{*}\left(B_{Y}^{j}\right)\right)=\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j}\right)-\left\{\nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j}\right)\right\}^{2}$ is the variance of the counting measure $N^{*}\left(B_{Y}^{j}\right)$;
6. $\operatorname{cov}\left[N^{*}\left(B_{Y}^{j_{1}}\right), N^{*}\left(B_{Y}^{j_{2}}\right)\right]=\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j_{1}} \times B_{Y}^{j_{2}}\right)-\nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j_{1}}\right) \nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j_{2}}\right)$ is the covariance measure of dependence between the measures $N^{*}\left(B_{Y}^{j_{1}}\right)$ and $N^{*}\left(B_{Y}^{j_{2}}\right)$.

Reasoning as in Section 4 of [1], we obtain

$$
\begin{gather*}
\nu_{\mathcal{D}}^{(h)}\left(B_{Y}^{j_{1}} \times \cdots \times B_{Y}^{j_{h}}\right)=\mu\left(B_{Y}^{j_{1}}\right) \ldots \mu\left(B_{Y}^{j_{h}}\right) \Pi_{N^{*}}^{(h)}(1),  \tag{37}\\
\alpha_{\mathcal{D}}^{(h)}\left(B_{Y}^{j}\right)=\mu^{h}\left(B_{Y}^{j}\right) \Pi_{N^{*}}^{(h)}(1), \quad \nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j}\right)=\mu\left(B_{Y}^{j}\right) \Pi_{N^{*}}^{\prime}(1),  \tag{38}\\
\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j}\right)=\mu^{2}\left(B_{Y}^{j}\right) \Pi_{N^{*}}^{\prime \prime}(1)+\mu\left(B_{Y}^{j}\right) \Pi_{N^{*}}^{\prime}(1),  \tag{39}\\
\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j_{1}} \times B_{Y}^{j_{2}}\right)=\mu\left(B_{Y}^{j_{1}}\right) \mu\left(B_{Y}^{j_{2}}\right) \Pi_{N^{*}}^{\prime \prime}(1),  \tag{40}\\
D\left(N^{*}\left(B_{Y}^{j}\right)\right)=\mu^{2}\left(B_{Y}^{j}\right)\left[\Pi_{N^{*}}^{\prime \prime}(1)-\left\{\Pi_{N^{*}}^{\prime}(1)\right\}^{2}\right]+\mu\left(B_{Y}^{j}\right) \Pi_{N^{*}}^{\prime}(1),  \tag{41}\\
\operatorname{cov}\left[N^{*}\left(B_{Y}^{j_{1}}\right), N^{*}\left(B_{Y}^{j_{2}}\right)\right]=\mu\left(B_{Y}^{j_{1}}\right) \mu\left(B_{Y}^{j_{2}}\right)\left[\Pi_{N^{*}}^{\prime \prime}(1)-\left\{\Pi_{N^{*}}^{\prime}(1)\right\}^{2}\right] . \tag{42}
\end{gather*}
$$

## 9. Mixed empirical Poisson random ordered marked point process with independent marks

## Theorem 9.1. If

1. the size of a sample $\nu=\nu(\omega)=N^{*}$ is a random variable with the Poisson distribution with parameter $\lambda$;
2. the random variable $\nu$ is independent of the random variables

$$
\left\{\left[x_{i}(\omega) ; k_{i}(\omega)\right]: i=1, \ldots, \nu(\omega)\right\}
$$

3. $N^{*}\left(B_{Y}\right)=\sum_{i=1}^{\nu} I_{B_{Y}}\left(\left[x_{i} ; k_{i}\right]\right)$ is the random empirical counting measure of the ordered marked point process;
4. $\left\{B_{Y}^{j}=B_{X}^{j} \times B_{K}^{j}: j=1, \ldots, s, s \geq 2\right\}$ is an arbitrary finite sequence of disjoint bounded measurable sets in the space $Y: B_{Y}^{i} B_{Y}^{j}=\varnothing i, j=1, \ldots, s, i \neq j$,
then
1*. the counting measure $N^{*}\left(B_{Y}^{j}\right), j=1, \ldots, s$, of the empirical ordered marked point process $\mathcal{D}=\left(\mathcal{E}^{*}, \mathfrak{X}^{*}, P^{*}\right)$ is distributed by the Poisson law with parametric measure $\lambda \mu\left(B_{Y}^{j}\right)$ :

$$
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}\right\}=\frac{\left[\lambda \mu\left(B_{Y}^{j}\right)\right]^{k_{j}}}{k_{j}!} e^{-\lambda \mu\left(B_{Y}^{j}\right)},
$$

where $\mu\left(B_{Y}^{j}\right)=P_{y}\left(B_{Y}^{j}\right), k_{j}=0,1,2, \ldots$;
$2^{*}$. the counting measures $\left\{N^{*}\left(B_{Y}^{j}\right), j=1, \ldots, s\right\}$ are jointly independent random variables:

$$
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}, j=1, \ldots, s\right\}=\prod_{j=1}^{s} P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}\right\} .
$$

Proof. The first statement is proved with the help of the full probability formula in view of the binomial distribution (34):

$$
\begin{aligned}
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}\right\} & =\sum_{n \geq k_{j}} P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j} \mid N^{*}=n\right\} P^{*}\left\{N^{*}=n\right\} \\
& =\sum_{n-k_{j} \geq 0} \frac{n!}{k_{j}!\left(n-k_{j}\right)!} \mu^{k_{j}}\left(B_{Y}^{j}\right)\left[1-\mu\left(B_{Y}^{j}\right)\right]^{n-k_{j}} \frac{\lambda^{n-k_{j}} \lambda^{k_{j}}}{n!} e^{-\lambda} \\
& =\frac{\left[\lambda \mu\left(B_{Y}^{j}\right)\right]^{k_{j}}}{k_{j}!} e^{-\lambda} \sum_{m \geq 0} \frac{\left[\lambda\left(1-\mu\left(B_{Y}^{j}\right)\right)\right]^{m}}{m!}
\end{aligned}
$$

where $m=n-k_{j}$. Since

$$
\sum_{m \geq 0} \frac{\left[\lambda\left(1-\mu\left(B_{Y}^{j}\right)\right)\right]^{m}}{m!}=e^{\lambda} e^{-\lambda \mu\left(B_{Y}^{j}\right)}
$$

we obtain

$$
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}\right\}=\frac{\left[\lambda \mu\left(B_{Y}^{j}\right)\right]^{k_{j}}}{k_{j}!} e^{-\lambda \mu\left(B_{Y}^{j}\right)} .
$$

To prove the second statement about the joint independence of the random variables $\left\{N^{*}\left(B_{Y}^{j}\right), j=1, \ldots, s\right\}$ we use the full probability formula, polynomial law (35), and assume that $B_{Y}^{s+1}=\left(\bigcup_{j=1}^{s} B_{Y}^{j}\right)^{c}, k=\sum_{j=1}^{s} k_{j}, k_{s+1}=n-k$ for $n \geq k$. Then

$$
\begin{align*}
P^{*}\{ & \left.N^{*}\left(B_{Y}^{j}\right)=k_{j}, j=1, \ldots, s\right\}  \tag{43}\\
& =\sum_{n \geq k} P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}, j=1, \ldots, s+1 \mid N^{*}=n\right\} P^{*}\left\{N^{*}=n\right\} \\
& =\sum_{n \geq k} \frac{n!}{k_{1}!\ldots k_{s}!(n-k)!} \mu^{k_{1}}\left(B_{Y}^{1}\right) \ldots \mu^{k_{s}}\left(B_{Y}^{s}\right) \mu^{n-k}\left(B_{Y}^{s+1}\right) \frac{\lambda^{k} \lambda^{n-k}}{n!} e^{-\lambda} \\
& =\sum_{n-k \geq 0} \frac{n!}{k_{1}!\ldots k_{s}!(n-k)!} \mu^{k_{1}}\left(B_{Y}^{1}\right) \ldots \mu^{k_{s}}\left(B_{Y}^{s}\right) \mu^{n-k}\left(B_{Y}^{s+1}\right) \frac{\lambda^{k_{1}+\cdots+k_{s}} \lambda^{n-k}}{n!} e^{-\lambda} \\
& =\prod_{j=1}^{s} \frac{\left[\lambda \mu\left(B_{Y}^{j}\right)\right]^{k_{j}}}{k_{j}!} e^{-\lambda}\left[\sum_{m \geq 0} \frac{\left[\lambda \mu\left(B_{Y}^{s+1}\right)\right]^{m}}{m!}\right] \quad(m=n-k) .
\end{align*}
$$

Since

$$
\sum_{m \geq 0} \frac{\left[\lambda \mu\left(B_{Y}^{s+1}\right)\right]^{m}}{m!}=e^{\lambda \mu\left(B_{Y}^{s+1}\right)}, \quad \sum_{j=1}^{s+1} \mu\left(B_{Y}^{j}\right)=1,
$$

we conclude that

$$
\begin{align*}
\exp \{-\lambda[(\cdot)]\} & =\exp \left\{-\lambda\left(\sum_{j=1}^{s+1} \mu\left(B_{Y}^{j}\right)\right)\right\} \exp \left\{\lambda \mu\left(B_{Y}^{s+1}\right)\right\} \\
& =\exp \left\{-\lambda \sum_{j=1}^{s} \mu\left(B_{Y}^{j}\right)\right\} \tag{44}
\end{align*}
$$

Substituting (44) into (43) we get

$$
\begin{aligned}
P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}, j=1, \ldots, s\right\} & =\prod_{j=1}^{s} \frac{\left[\lambda \mu\left(B_{Y}^{j}\right)\right]^{k_{j}}}{k_{j}!} e^{-\lambda \mu\left(B_{Y}^{j}\right)} \\
& =\prod_{j=1}^{s} P^{*}\left\{N^{*}\left(B_{Y}^{j}\right)=k_{j}\right\}
\end{aligned}
$$

Definition 9.1. A random process $\mathcal{D}=\left(\mathcal{E}^{*}, \mathfrak{X}^{*}, P^{*}\right)$ satisfying the assumptions of Theorem 9.1 is called a strictly simple mixed empirical Poisson ordered marked point process with independent marks in a bounded space $\left(Y, \mathfrak{A}_{Y}, \mathcal{B}_{Y}\right)$ [2, 3.
Corollary 9.1. If the random variable $N^{*}$ is distributed by the homogeneous Poisson law with parameter $\lambda$, then, using the general results (37)-(42), we obtain the moment
characteristics of the mixed empirical Poisson ordered marked point process $\mathcal{D}$ with independent marks:
$\nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j}\right)=\nu_{\mathcal{D}}^{(1)}\left(B_{X}^{j} \times B_{K}^{j}\right)=\lambda \mu\left(B_{X}^{j} \times B_{K}^{j}\right)=\lambda \mu_{1}\left(B_{X}^{j}\right) \mu_{2}\left(B_{K}^{j}\right)=\nu_{\widetilde{\mathcal{D}}}^{(1)}\left(B_{X}^{j}\right) \mu_{2}\left(B_{K}^{j}\right)$, where $\nu_{\tilde{\mathcal{D}}}^{(1)}\left(B_{X}^{j}\right)=\lambda \mu_{1}\left(B_{X}^{j}\right)$ is the moment measure of the first order of the Poisson ordered point process $\widetilde{\mathcal{D}}$ of state points considered in Section 5 of [1,

$$
\begin{gathered}
\nu_{\mathcal{D}}^{(h)}\left(B_{Y}^{j_{1}} \times \cdots \times B_{Y}^{j_{h}}\right)=\lambda^{h} \mu\left(B_{Y}^{j_{1}}\right) \ldots \mu\left(B_{Y}^{j_{h}}\right)=\nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j_{1}}\right) \ldots \nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j_{h}}\right), \\
\lambda_{\mathcal{D}}^{(h)}\left(B_{Y}^{j}\right)=\lambda^{h} \mu^{h}\left(B_{Y}^{j}\right)=\left[\nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j}\right)\right]^{h}, \quad \nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j}\right)=\lambda^{2} \mu^{2}\left(B_{Y}^{j}\right)+\lambda \mu\left(B_{Y}^{j}\right), \\
\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j_{1}} \times B_{Y}^{j_{2}}\right)=\lambda^{2} \mu\left(B_{Y}^{j_{1}}\right) \mu\left(B_{Y}^{j_{2}}\right), \\
D\left(N^{*}\left(B_{Y}^{j}\right)\right)=\lambda \mu\left(B_{Y}^{j}\right), \quad \operatorname{cov}\left[N^{*}\left(B_{Y}^{j_{1}}\right), N^{*}\left(B_{Y}^{j_{2}}\right)\right]=0 .
\end{gathered}
$$

## 10. Mixed empirical negative binomial ordered marked point process WITH INDEPENDENT MARKS

Definition 10.1. A random process $\mathcal{D}=\left(\mathcal{E}^{*}, \mathfrak{X}^{*}, P^{*}\right)$ is called a strictly simple mixed empirical negative binomial ordered marked point process with independent marks in a bounded space $\left(Y, \mathfrak{A}_{Y}, \mathcal{B}_{Y}\right)$ if the size of a sample $N^{*}$ is a random variable with the negative binomial distribution.

Similarly to Section 6 of [1] one can evaluate the following probability generating functions:

$$
\begin{gather*}
\Pi_{N^{*}\left(B_{Y}^{1}\right), \ldots, N^{*}\left(B_{Y}^{s}\right)}\left(z_{1}, \ldots, z_{s}\right)=\left[1+\beta \sum_{j=1}^{s} \mu\left(B_{Y}^{j}\right)\left(1-z_{j}\right)\right]^{-\alpha},  \tag{45}\\
\Pi_{N^{*}\left(B_{Y}^{j}\right)},  \tag{46}\\
\\
\\
\left.z_{j}\right)=\left[1+\beta \mu\left(B_{Y}^{j}\right)\left(1-z_{j}\right)\right]^{-\alpha}, \quad j=1, \ldots, s .
\end{gather*}
$$

Then, using (37)-(42) and (45), (46), we obtain the following moment characteristics for a family of bounded measurable disjoint sets $\left\{B_{Y}^{j}, j=1, \ldots, s\right\}$ that form a partition of the phase space $Y=X \times K$ :

$$
\nu_{\mathcal{D}}^{(h)}\left(B_{Y}^{j_{1}} \times \cdots \times B_{Y}^{j_{h}}\right)=\beta^{h} \prod_{i=1}^{h}(\alpha+i-1) \mu\left(B_{Y}^{j_{1}}\right) \ldots \mu\left(B_{Y}^{j_{h}}\right)
$$

$$
1 \leq j_{1}<\cdots<j_{h} \leq s, \quad h=1, \ldots, s
$$

$$
\alpha_{\mathcal{D}}^{(h)}\left(B_{Y}^{j}\right)=\beta^{h} \prod_{i=1}^{h}(\alpha+i-1) \mu^{h}\left(B_{Y}^{j}\right), \quad \nu_{\mathcal{D}}^{(1)}\left(B_{Y}^{j}\right)=\lambda \beta \mu\left(B_{Y}^{j}\right),
$$

$$
\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j}\right)=\lambda \beta \mu\left(B_{Y}^{j}\right)\left[(\alpha+1) \beta \mu\left(B_{Y}^{j}\right)+1\right],
$$

$$
\nu_{\mathcal{D}}^{(2)}\left(B_{Y}^{j_{1}} \times B_{Y}^{j_{2}}\right)=\alpha(\alpha+1) \beta^{2} \mu\left(B_{Y}^{j_{1}}\right) \mu\left(B_{Y}^{j_{2}}\right),
$$

$$
D\left(N^{*}\left(B_{y}^{j}\right)\right)=\alpha \beta \mu\left(B_{Y}^{j}\right)\left[\beta \mu\left(B_{Y}^{j}\right)+1\right],
$$

$$
\begin{equation*}
\operatorname{cov}\left[N^{*}\left(B_{Y}^{j_{1}}\right), N^{*}\left(B_{Y}^{j_{2}}\right)\right]=\alpha \beta^{2} \mu\left(B_{Y}^{j_{1}}\right) \mu\left(B_{Y}^{j_{2}}\right), \quad 1 \leq j_{1}, j_{2} \leq s, j_{1} \neq j_{2} . \tag{47}
\end{equation*}
$$

Considering (45)-(47) we make the following conclusions:
a) Counting measures $N^{*}\left(B_{Y}^{1}\right), \ldots, N^{*}\left(B_{Y}^{s}\right)$ form a family of mutually correlated identically distributed random variables with negative binomial distribution with parameters $\beta \mu\left(B_{Y}^{j}\right)>0, \alpha>0, j=1, \ldots, s$.
b) There is a positive correlation between the counting measures $N^{*}\left(B_{Y}^{i}\right)$ and $N^{*}\left(B_{Y}^{r}\right)(1 \leq i, r \leq s, i \neq r)$.

## Bibliography

1. M. G. Semeǐko, Moment measures of mixed empirical random point processes and marked point processes in compact metric spaces. I, Teor. Imovirnost. Matem. Statyst. 88 (2013), 144-156; English transl. in Theor. Probability and Math. Statist. 88 (2014), 161-174. MR3112642
2. Yu. I. Petunin and M. G. Semeǐko, Mixed empirical stochastic point processes in compact metric spaces. I, Teor. Imovirnost. Matem. Statyst. 74 (2006), 98-107; English transl. in Theor. Probability and Math. Statist. 74 (2007), 113-123. MR2321193 (2008f:60053)
3. Yu. I. Petunin and M. G. Semeǐko, Mixed empirical point random processes in compact metric spaces. II, Teor. Imovirnost. Matem. Statyst. 75 (2006), 121-126; English transl. in Theor. Probability and Math. Statist. 75 (2007), 139-145. MR2321187 (2008f:60054)
4. D. I. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, SpringerVerlag, New York, 1988. MR 950166 (90e:60060)

Department of Higher Mathematics, Faculty for Human Resources Management and Marketing, Kyiv National Vadym Get'man University for Economics, Peremogy Avenue, 54/1, Kyiv 03680, Ukraine

E-mail address: semejko@ukr.net
Received 15/SEP/2011
Translated by S. KVASKO


[^0]:    2010 Mathematics Subject Classification. Primary 60G55.
    Key words and phrases. Mixed empirical point process, marked point process, probability generating function, moment measures.

