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Abstract

In recent years, computational methods have started to play an increasingly important part

in the design process of antennas. With the development of the new scatterometer-radar

antennas for the next generation of MetOp satellites, there is a need for an application

specific software that allows for a fast and accurate analysis of waveguides coupled through

rectangular slots.

The in-house software used at RUAG Space today for the analysis of these structures as-

sumes that the electric field has no polarization longitudinally along the slot apertures, and

that the remaining transverse component has no variation transversely across the slot. This

assumption is good for moderately and strongly excited slots but is known to yield inaccurate

results for weakly excited slots.

This thesis removes these assumptions by employing an expansion for the equivalent mag-

netic current that corresponds to a modal expansion of the electric field inside the slot

cavities. In this way, the full behavior of the electric field at the slot apertures can be ac-

counted for, and it is shown by comparison with FEKO and results published previously in

the literature that this approach yields accurate values for the scattering parameters even

for weakly excited slots. The developed code is several orders of magnitude faster than

FEKO for these geometries.
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Chapter 1

Introduction

In recent years, computational methods have started to play an increasingly important role

in the design of antennas. They streamline the design process by allowing many different

possible antenna geometries to be analyzed and evaluated without the need of physically

constructing an antenna demonstrator, and also make it possible to apply advanced opti-

mization algorithms in order to find an antenna that meets the relevant customer specifi-

cations.

Today there are many commercial general purpose programs available for use in electro-

magnetic and microwave simulations, such as HFSS and FEKO. While useful and robust,

these programs are sometimes too slow to be used in the initial design stage when a wide

range of different antenna geometries are to be tested. Instead, it is here necessary to

use application specific software that is designed specifically for the particular geometry

at hand, and is therefore also much faster. With the development of the new scatterom-

eter array for the next generation of MetOp satellites, the need has arisen for this kind

of accurate and fast analysis software for slot coupled waveguide junctions. The purpose

of this thesis is to present a method of moments theory that allows accurate analysis of

waveguide coupling junctions, where the full behavior of the field inside the slots is taken

into account.



2 Introduction

1.1 History of the Analysis of Waveguide Coupling

Junctions

Slots in rectangular waveguides is a subject that has been analyzed extensively the past

decades. Stevenson [1] derived the internal Greens function for a rectangular waveguide

and used it to derive an expression for the conductance of a resonant slot as a function of

the offset of the slot from the centerline of the waveguide. This theory was later extended

by Oliner [2] in which he derived expressions for the susceptance as well as the conductance

of longitudinal slots.

The first attempt of using a moment method technique on the slot problem was done by

Khac and Carson [3, 4], where they derived an integral equation for the electric field just at

the slot aperture, from which the total fields in the structure could be calculated thanks to

the Schelkunoff equivalence principle. The integral equation was solved by expanding the

unknown electric field in terms of a set of pulse basis functions with unknown coefficients,

and then taking the inner product of the integral equation with Dirac delta functions to

obtain a set of algebraic equations for the expansion coefficients of the field.

Since then the computing power available in modern computers has increased significantly,

and the moment method approach for analyzing rectangular slots in rectangular waveguides

has been refined and improved upon significantly. In 1987, Elliott and Stern[5] used the

moment method to calculate the resonant length of longitudinal, radiating slots to within

one percent of the experimentally measured values, by using an expansion of the electric

field in terms of sinusoidal basis functions. A similar analysis was performed by Josefsson

[6].

Rengarajan considered the problem of a centered but tilted slot that connected two rectan-

gular waveguides [7], as well as a waveguide with compound (i.e. slots with arbitrary offset

from centerline and tilt) radiating slots. Manholm and Hirokawa studied junctions with sev-

eral waveguides coupled through compound slots, with additional radiating slots[8, 9, 10].

They used an expansion of the transverse electric field in the slot apertures in terms of

a sinusoidal basis, and also sinusoidal testing functions to transform the integral equa-

tions into a system of algebraic equations. In order to facilitate the evaluation of the slot

admittances, they employed an alternative expression for the Green’s function in a rect-

angular waveguide derived by Seki. This method is sometimes referred to as the virtual
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(a)

(b)

Figure 1.1: Waveguide coupling junction with single feeding waveguide (a), and double
feeding layer (b), analyzed by Wettergren. In Fig. (b) one of the top waveguides has been
cut open to show the slot that connects it to the middle waveguide.

cavity method, and was also used in [11] when analyzing radiating slots in waveguides by

including the shape of the external structure.

Wettergren [12] extended this theory to analyze a feeding waveguide that is connected to

an arbitrary number of waveguides above it, shown in Fig. 1.1 (a), as well as the three

layered structure shown in Fig. 1.1, where the top layer may include an arbitrary number

of waveguides.

Common for all of the above is that they assumed that the tangential electric field at the slot

apertures only have a transverse component, i.e. there is no component that is directed

longitudinally along the slot. Most also assume that the field can vary longitudinally

along the slot but is constant transversely across the slot. For slots that are moderately

or strongly excited, in the sense that a non-negligible part of the incident power passes

through them, this is a good assumption that corresponds well with measurements and

full wave solvers, as shown in the above references. However, as shown by Petersen and

Rengarajan[13, 14], this assumption is not true in general and leads to incorrect results for

weakly excited slots. For these slots, the longitudinal polarization of the electric field, as

well as the transverse variation of the field across the slot must be taken into account.

In her PhD thesis, Petersen developed a method of moments program that analyzed lon-

gitudinal slots by expanding the longitudinal and transverse electric field in the slot aper-

tures in terms of a polynomial basis that allowed for variation in both directions along the

slot[14], and showed that the longitudinal field contributed significantly to the scattering

for weakly excited slots.



4 Introduction

1.2 Purpose of this thesis

The purpose of this thesis is to develop a method of moments theory for rectangular

waveguides coupled through compound slots, where both components of the aperture elec-

tric field are taken into account, as well as the transverse variation of this field across the

slot. Specifically, the theory can be used to analyze the structures in Fig. 1.1, and is valid

even for very weakly excited slots.

This is accomplished by expanding both components of the field in terms of trigonometric

functions. The reason for choosing trigonometric functions is twofold. Firstly, it is a very

natural expansion since it corresponds to the modal expansion of the electric field inside

the slot cavity. Secondly, when neglecting the transverse variation, this approach reduces

to the one by Manholm and Hirokawa[8, 9, 10], and their equations and MATLAB code

was available for comparison and could be used as a guide. The derivations in this thesis

are thus generalizations of their calculations.

1.3 Outline of the Thesis

Roughly, the work consists of the following three parts: (i) derivation of a matrix equation

for the expansion coefficients of the tangential electric fields in the apertures, with respect

to a given basis, (ii) derivation of expressions for the matrix elements and the right hand

side vector in this matrix equation and (iii) validation of the previous calculations by

considering a few specific examples.

Chapter 2 discusses the theory behind the method of moments and gives expressions for

the Green’s functions that are encountered throughout the work. In Chapter 3, the ma-

trix equation for the expansion coefficients of the aperture fields are derived, as well as

expressions for the scattering parameters of the structures in terms of these coefficients.

The matrix elements are given in terms of the slot admittances. Expressions for these

admittances are derived in appendix E. Chapter 4 presents numerical results obtained by

applying the developed theory to a few specific waveguide geometries, as well as compar-

isons of these results with values calculated by the commercial FEKO software and with

results published previously in the literature.



Chapter 2

Theory

The analysis of slot coupled waveguides presented in this thesis is accomplished by deriving

a system of governing integral equations for the electric fields in the regions connecting the

waveguides and then solving these through the method of moments - a general purpose

method for solving linear functional equations. This chapter reviews and examines the

mathematical tools needed to cast the Maxwell equations into the form of a system of

integral equations and the subsequent discretization and solution of this system by the

moment method.

The structure of this chapter is as follows: we will first examine the concepts of Huy-

gen’s surfaces and domain decomposition and see how these can be used to derive integral

equations for the electric field at surfaces that connect different canonical regions in the

geometry. Following this, the method of moments will be discussed and it will be shown

how it can be used to solve these equations, and thereafter expressions for the Green’s

functions for the magnetic field due to a magnetic current are given for some common

waveguide geometries. This completes our toolbox, and we are in a position to solve a

simple problem involving two orthogonal, aperture coupled waveguides (the T-Junction

waveguide). This example contains all the vital methods needed to understand the more

complicated problem of analyzing waveguide coupling junctions, which forms the main part

of the thesis.

For more information, Harrington[15] gives an excellent introduction to the method of

moments.



6 Theory

2.1 Domain Decomposition

The slot coupled waveguide structure introduced in the previous chapter has a complex

geometry, and trying to solve Maxwell’s equations for the entire structure as it is without

resorting to a commercial numerical software would be extremely difficult.

There is however a way of reducing the problem to several smaller subproblems, each of

which can be solved with relative ease, and then ”welding” together the solutions of the

subproblems to create the global solution. This method is known as domain decomposition.

In the case of aperture or slot coupled waveguides, the decomposition would loosely mean

treating each waveguide or slot separately, and then forcing the two individual solutions to

produce the same fields at the interface between the different regions so that the electric

and magnetic fields are continuous across this surface.

Consider for example the two aperture coupled waveguides shown in Fig 2.1 where the

top walls have been removed. This is called a T-Junction waveguide, and consists of an

infinitely long waveguide connected to a semi-infinitely long waveguide through an aperture

of width w. The task of calculating the total fields (incident field plus fields scattered at the

aperture) when a wave is incident from the lower left in the geometry as it is would be very

challenging. Instead, it is possible to treat the two waveguides separately. Waveguide 1 is

then simply an infinite waveguide, and waveguide 2 is a shorted (semi-infinite) waveguide,

and the fields inside these simpler geometries have known solutions (the waveguide walls

are assumed to be infinitely thin). By then matching the fields over the aperture we obtain

the solution to the global problem.

So far we have been very vague about how these steps are actually done in practice and

exactly why they work, and it is the purpose of this section to go through this method

step by step. At the end of the chapter, the problem of the T-Junction mentioned above

will be solved in detail.
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a

b

l

w

Waveguide 1

Waveguide 2

Figure 2.1: Interior of a T-Junction waveguide (top cover removed). Only the region in
the vicinity of the aperture is shown, and the waveguides are actually infinite in extent
and continue indefinitely to the lower left, upper left and upper right.

2.1.1 An analogy with image theory

Domain decomposition is quite similar, in spirit, to image theory, in that it allows one to

simplify the geometry of the problem by employing auxiliary sources.

As an example of what this means, consider the well-known problem from electrostatics

of calculating the electric field due to an electric charge in free space, held fixed above a

large, infinitely conducting plane (see Fig. 2.2).

To calculate the field at any point above the plane, we first have to calculate the field

from the charge q itself, but we also have to account for the field generated by the surface

charges induced on the plane due to the presence of q.

However, since we know the electric field inside a perfect conductor is identically zero, we

are really only interested in the field in region I, i.e., above the conductor. In this region

the scalar potential Φ satisfies the Poisson equation

∇2Φ = − ρ
ǫ0

(2.1)
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d

d

+q

-q

σ

Figure 2.2: A charge q above an infinite perfectly conducting plane. The charge induces
a surface charge density σ on the plane. For the purposes of calculating the fields in the
region above the plane, the surface charges may be considered to be concentrated into an
”image charge” of charge −q a distance d below the plane, and hence the ground plane
can be removed.

where ρ is the electric charge density, with the Dirichlet boundary condition Φ(~r) = 0 on

the surface of the conductor. Now, since the solution to the Poisson equation with Dirichlet

boundary conditions is unique[16], all that is left to do is to find a function Φ such that it

vanishes on the metal interface and satisfies (2.1) inside region I. Outside region I however,

the scalar potential need not satisfy the Poisson equation since we are only concerned with

finding the correct field in region I.

In other words, we can change the geometry and sources in the problem, as long as the

sources within the region of interest are kept same, and the appropriate boundary condi-

tions of Φ are still satisfied. The solution Φ inside this region will be then be identical in

both cases.

For the problem of a charge above a conducting plane, this means that we can completely

remove the plane and just place an ”image charge” −q at the position where the mirror

image of q would have been (see Fig 2.2). Since the charge distribution ρ in region I was

not changed, and it is easily seen that Φ is zero where the metal surface previously was,

the field in region I created by this configuration must be unique and therefore identical to

the one in the original problem with the conducting plane. Though in region II both the

geometry and charge distributions were changed, so here the two configurations are not

equivalent and will result in different fields.

In summary, what we have accomplished thus far, is that we started with a problem we
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did not know how to solve straight away (in this case electric charges in the presence of a

conductor), but by changing the geometry and sources of the problem outside the region

of interest, it was possible to turn the problem into one we knew how to solve (charges in

free, unbounded space), but that still gave the same field in the region of interest, and that

the change in geometry (half space to free space) was compensated for by the introduction

of fictitious charges outside the region of interest.

In the analysis of the T-Junction waveguide in Chapter 3, the two waveguides will be sealed

off from one another by adding an infinitely thin, perfectly conducting wall in the aperture,

in addition to introducing auxiliary sources to account for this change in geometry. This

way, the two initially connected waveguides will become one infinite and one semi-infinite

waveguide with no aperture connecting them, and the problem then reduces to calculating

the fields generated by the auxiliary sources in these two simpler geometries. This is

explained in detail in Section 2.5.

2.1.2 Huygen’s Equivalence Theorem

In the above example, the field in a new geometry was calculated by changing the geometry

into one where it was known how to calculate fields due to a given charge distribution, and

adding fictitious charges to compensate for the change in geometry. The important point

was that both configurations gave rise to the same field in the region of interest.

The approach was based on the uniqueness of the solution of the Poisson equation satisfied

by the scalar potential. Later, when we will calculate scattered fields in more complex

waveguide geometries, we will no longer have a time independent problem and will work

directly with the time harmonic ~E and ~H fields themselves. Hence, when changes are made

to the external geometry, a uniqueness theorem based on the electric and magnetic fields

will be needed to ensure that the fields in the region that we are interested in are identical

in both configurations.

Uniqueness Theorem

In a time harmonic situation, the electric and magnetic fields in a volume V are uniquely

determined by Maxwell’s equations if all sources inside V are specified, as well as the
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tangential component of ~E or ~H over the boundary of V , or, more formally:[17, pp. 312–

314]

THEOREM A time-harmonic field inside a volume V in a lossy medium is uniquely

determined if the sources ~J and ~M inside V are known, as well as one of the following

three alternatives:

(1). The tangential component of ~E over the entire boundary ∂V .

(2). The tangential component of ~H over the entire boundary ∂V .

(3). The tangential component of ~E over one part of the boundary, and the tangential

component of ~H over the rest.

The lossless case is treated as the limit of the lossy case as the dissipation tends to zero. �

In other words, for the purpose of calculating the electric and magnetic fields inside some

given volume V , we are always allowed to change the sources outside the volume as long

as these sources produce the same tangential components of the fields over the boundary

∂V . This is the foundation of the domain decomposition technique.

A Comment on the Magnetic Current

The sources ~J and ~M mentioned above correspond to the electric and magnetic currents,

respectively. While magnetic currents do not seem to exist in nature, they can be intro-

duced into Faraday’s law of induction to make Maxwell’s equations more symmetric with

respect to the electric and magnetic fields:

∇× ~E = − ~M − ∂ ~B

∂t
. (2.2)

Albeit not ”real”, these magnetic currents nevertheless constitute a useful theoretical tool

since they can be used as fictitious sources to model other electromagnetic configurations

that are difficult to analyze using conventional methods, as we will soon see.

If the boundary conditions for the electric and magnetic fields are rederived with the
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V

E 

H

∂V
J M

E 0 H0

M0J0

,

,

,

n^

(a)

V

E 

H

∂V
J M

E 0 H0

M0J0

,

= =

= =0

0Meq

PEC

n^

(b)

Figure 2.3: The fields ~E and ~M are generated by the currents ~J and ~M inside V , as
well as ~J0 and ~M0 outside V , as illustrated in the figure on the left. The region exterior
to V is then replaced by a PEC and the currents ~J0 and ~M0 are removed. Furthermore, a
magnetic current ~Meq = ~E × n̂ is introduced just at the surface of the PEC, as shown to

the right. Since both the sources within V and the tangential component of ~E across ∂V
are identical in both cases, the fields ~E, ~H inside V are also identical.

magnetic current term included in the Maxwell equations, one finds that the boundary

condition for the tangential electric field has changed and is

~M = −n̂× ( ~E2 − ~E1) for ~r ∈ S, (2.3)

where n̂ is a unit vector on the interface S between the two media, pointing from media

1 into media 2, ~E1 and ~E2 are the electric fields in these regions, and ~M is the surface

magnetic current on the interface.

Surface Equivalence Principle

Next, with help from the uniqueness theorem, we will see how the geometry of a problem

can be changed while the fields are kept the same through adding fictitious magnetic

currents outside the region of interest.

Consider the situation in Fig. 2.3a, where we have a field generated by some sources ~J

and ~M , and where we are interested in calculating the field inside the volume V . From the
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uniqueness theorem, we are assured that if the tangential component of, say, ~E is known

across the boundary ∂V , as well as the sources within the volume, then the fields in V

are uniquely determined. This means that we are free to change the geometry outside V ,

both media and sources, as long as this new configuration gives rise to the same tangential

electric field on the boundary ∂V as our initial problem, since then on account of the

uniqueness theorem both situations generate the same field internal to V .

The method that is used extensively throughout this thesis is to fill the region exterior to

V with a PEC (cf. Fig. 2.3b). This removes the tangential component of ~E and makes

it identically zero. However, if the new configuration is to provide identical fields in V as

in the original case, they must have the same tangential ~E component at the interface ∂V

between the regions. To this end, a fictitious surface magnetic current ~M = ~E × n̂ can

be introduced just inside the PEC to ensure the tangential ~E take the same value as in

the original problem. This implies that the two different configurations, which have the

same sources inside V , now also have the same tangential component of the electric field

across the surface of V , and hence on account of the uniqueness theorem both have the

same fields inside V , so whichever approach is more convenient can be used to determine

the fields.

One might question the usefulness of this technique, since if the goal is to calculate the

fields in the region, the new geometry would require us to calculate the fields generated by

fictitious magnetic currents that are defined in terms of the unknown fields! This is true.

For this technique to be worthwhile, we must know how to calculate the fields generated

by given magnetic currents in the new geometry (all the relevant Green’s functions for this

will be derived in Sec. 2.4), and then the magnetic currents have to be treated as the new

unknowns to be determined.

We will now consider the example of the T-Junction and see how an integral equation for

the unknown magnetic current can be derived.

2.1.3 Domain Decomposition of T-Junction Waveguide

Consider again the T-Junction waveguide that was mentioned briefly above. A schematical

picture of the situation is shown in Fig. 2.4. A field is incident from the left, generated

by sources at infinity. This field will be scattered at the aperture, reflecting some of the
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Figure 2.4: Schematic picture of the T-Junction waveguide. The geometry is composed
of two canonical regions: one infinite and one semi-infinite waveguide, denoted as regions
I and II, respectively.

energy back to the left, while the remaining part is split between the other two exits. The

ultimate goal is to find the fraction of energy scattered in each direction.

We now subdivide this problem into two subproblems using the domain decomposition

technique as discussed above. First, we subdivide the geometry into two canonical regions,

region I and II. If the aperture S joining the two waveguides was filled with a PEC, region

I transforms into an infinite waveguide, and region II turns into a semi-infinite waveguide.

These geometries are much simpler than the T-Junction waveguide since the electric and

magnetic fields in these structures are known in closed form (in Sec. 2.4 we will derive

exact expressions for the magnetic field Green’s function in these geometries).

By the uniqueness theorem, we are allowed to fill the aperture with a PEC, if we first

add a compensating magnetic current ~M(~r) = ± ~E(~r) × n̂, ~r ∈ S, on both sides of the

aperture, where the plus sign is for the magnetic current in region I, and the minus sign

for the current in region II. The sign difference is due to the fact that the normal to the

PEC is in opposite directions on different sides of the aperture (see Fig. 2.5).

We are now assured by the uniqueness theorem that the fields in the regions I and II are

unaltered by the introduction of both the PEC and magnetic currents. For example, in
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Figure 2.5: T-Junction waveguide where each canonical region is treated separately. It
is permitted to fill the aperture S with PEC material if a ficticious magnetic current is
introduced at the interface in each region. This current has opposite sign in the two regions
due to the opposite facing surface normals n̂ and −n̂.

region I, the tangential ~E component vanishes at the waveguide walls, but the magnetic

current was chosen precisely such that the tangential component of the electric field just

outside the aperture attains its actual value, i.e., is unaffected by the introduction of the

PEC. The same is valid in region II.

As mentioned earlier, the magnetic current is still unknown, but if this can be determined,

the problem is solved, since the Green’s functions
←→
G m

Im and
←→
G m

IIm for the magnetic field

generated by magnetic currents are known in both regions (these will be derived in later

sections, but for now we assume they are known). We will now derive an integral equation

for the unknown magnetic current ~M .

The magnetic field in region I can be written in terms of the magnetic current as

~HI(~r) = ~Hin(~r) +

∫∫

S

←→
G m

Im(~r, ~rs) ~M(~rs)dSs, (2.4)

and the field in region II is given by
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~HII(~r) = −
∫∫

S

←→
G m

IIm(~r, ~rs) ~M(~rs)dSs, (2.5)

where the quantities
←→
G m

Xm are the Green’s functions for the magnetic field in region X

generated by a magnetic current in the same region, and ~Hin is the incident magnetic field.

By considering the original T-Junction geometry, it is clear that the ~H-field must be

everywhere continuous in the T-Junction due to the absence of sources in the original

problem. Specifically, the magnetic field must be continuous across the aperture S, i.e.
~HI(~r) = ~HII(~r) for all ~r on S and hence

~Hin(~r) +

∫∫

S

←→
G m

Im(~r, ~rs) ~M(~rs)dSs = −
∫∫

S

←→
G m

IIm(~r, ~rs) ~M(~rs)dSs (2.6)

This equation must be true for all points ~r on S. 1 This is an integral equation that

completely determines the unknown magnetic current, provided that both the incident

field and Green’s functions are known. Once solved, the total magnetic and electric fields

can be calculated everywhere in the T-Junction through the relevant Green’s functions.

In summary, the task of solving Maxwell’s equations (which is a set of partial differential

equations), applied to the T-Junction waveguide geometry, has been reduced to solving an

integral equation for the fictitious magnetic current ~M in the aperture. This procedure

of subdividing the geometry into several canonical regions with known Green’s functions,

adding magnetic currents to ensure the fields are unchanged, and then deriving integral

equations for the magnetic currents by requiring the magnetic field to be continuous across

the apertures, is a general procedure that is applicable to a wide range of electromagnetic

scattering and radiation problems. Specifically, it is exactly this procedure that will be

followed when analyzing the system of slot coupled waveguides that form the main part of

this thesis.

The final task that now remains is to solve the integral equation in (2.6). This is done

numerically using the method of moments as discussed in the next section.

1We are actually only required to impose the continuity of the tangential ~H-field, but in this case both
waveguides are made of the same media so we might as well impose continuity of the total field.
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2.2 The Method of Moments

The method of moments is a general method for numerically solving linear functional

equations [15, pp. 1–21], i.e. equations of the form

Lf = g. (2.7)

In the above equation, f and g are elements of two different vector spaces, and L is a linear

operator between these spaces. L and g are assumed to be known, so the task is to find

the vector f such that its image under the operator L is g.

This kind of functional equation is interesting to us since both partial differential equations

and integral equations can be cast into functional equation form. For example, for the

integral equation (2.6) describing the fields in the T-Junction waveguide, the unknown f

to be determined would be the magnetic current ~M , the right hand side would be g = − ~Hin,

and the operator would be the sum of the two integrals

LX =

∫∫

S

←→
G m

Im(~r, ~rs)X(~rs)dSs +

∫∫

S

←→
G m

IIm(~r, ~rs)X(~rs)dSs. (2.8)

Note that since L just consists of a sum of two weighted integrals, it is a linear operator,

and this problem is thus actually a linear functional equation.

Returning to the general form (2.7), the idea of the method of moments is to expand the

unknown vector f in terms of a known basis, and then by weighting the result with a set

of testing functions, obtain a matrix equation for the unknown expansion coefficients. If

we denote the basis functions by {fi}, we obtain

f =
∑

i

αifi, (2.9)

where the αi are the unknowns to be determined. In theory, an infinite number of expansion

terms may be needed for the equality in (2.9) to hold, but in practice only a finite number

of terms need to be included to obtain a good approximation in most cases.
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Since L is linear, equation (2.7) becomes

∑

i

αiLfi = g. (2.10)

Equation (2.10) can be turned into M scalar equations by forming the inner product of

this equation with each element of a set of M testing functions {wj}Mj=1.

We thus obtain the system of M equations

M
∑

i=1

αi〈wj,Lfi〉 = 〈wj, g〉, j = 1, 2, ...,M. (2.11)

In the T-Junction waveguide, an appropriate inner product between two vectors is to form

the symmetric product between the vectors and to integrate the result over the aperture

S,

〈 ~A, ~B〉 =
∫∫

S

~A(~r) · ~B(~r)dS. (2.12)

For the problems discussed in this thesis, it also has the property of making the operator

L self-adjoint, in the sense that

〈 ~A,L ~B〉 = 〈L ~A, ~B〉 for all ~A and ~B. (2.13)

This self-adjointness (called reciprocity in electromagnetics) will be useful when calculating

the matrix elements in situations more complicated than the T-Junction.

In equation (2.11), every quantity, except for the coefficients αi, are known, so this is just

a matrix equation for these expansion coefficients once the inner products 〈wj,Lfi〉 and
〈wj, g〉 have been calculated.

In this thesis, the weighting functions wj will be chosen to be identical to the basis functions

fj, i.e.,

wj = fj for j = 1, ...,M, (2.14)

a choice that is referred to as Galerkin’s method.
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What remains is the choice of basis functions fi. Ideally, the expansion functions should be

able to accurately model the actual field with as few terms as possible to keep the matrix

size as small as possible. This is facilitated by employing basis functions that already

satisfy the relevant boundary conditions[14].

Throughout this text, we will use an expansion of the magnetic current into trigonometric

functions in the slots and apertures. It has been found that for moderately and strongly

excited slots a sinusoidal expansion of the longitudinal magnetic current closely models the

actual field with relatively few terms[5, 6, 9], while incorporating the boundary conditions

as the magnetic current tends to zero at the edges of the apertures due to the vanishing

tangential electric field above the metal.

To apply the method of moments to the T-Junction waveguide, the Green’s functions in

infinite and semi-infinite waveguides occuring in Eq. (2.8) have to be determined. Before

these are derived in Sec. 2.4, we will first take a brief look at the different fields that can

exist inside a rectangular waveguide or cavity.

2.3 Modes in a Rectangular Waveguide

The magnetic field in a waveguide of uniform cross section, filled with a homogeneous

dielectric with dielectric parameter ǫ can be expanded in terms of a set of eigenfunctions,

or modal functions. In a rectangular waveguide, there exists two different kinds of modes:

transverse electric (TE) and transverse magnetic (TM) modes. The TE modes have a

completely transverse electric field, i.e., the electric field has no z-component, whereas the

TM modes have a completely transverse magnetic field, i.e., the magnetic field has no

z-component.

Both TE and TM modes are labeled by two sets of integer indices, m and n, and can

travel in either the positive or negative z-direction. In this thesis the TE mode travelling

in the ±z-direction will sometimes be written as ~HTE±
mn , and the corresponding TM mode

is written as ~HTM±
mn . However, more often the more compact notation H±

u will be used,

where it is assumed that the index u contains information about both m and n, as well as

whether the mode is a TE or TM mode.
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This means that any possible time harmonic field configuration can be written as the sum

~H(~r) =
∑

u

(

Au
~H+
u +Bu

~H−
u

)

, (2.15)

where the Au and Bu are complex constants. The sum over u implies that the sum is taken

over all TE and TM modes for all possible values of the indices m and n.

A more thorough explanation of waveguide modes is given in appendix B, where expressions

for the modes in a rectangular waveguide are derived and useful orthogonality conditions

between the modes are listed.

2.4 Green’s Functions

2.4.1 Introduction

As described in the preceding sections, we need to determine for the Green’s functions
←→
G m

Im

and
←→
G m

IIm for the magnetic field due to a given magnetic current in the two waveguide

regions. We start with a short reminder about Green’s functions.

The Green’s function G(~r, ~r ′) to a linear, scalar valued, partial differential equation (PDE)

Ly(~r) = f(~r), (2.16)

is the solution when the right hand side equals the Dirac delta function, f(~r) = δ(~r − ~r ′),

and thus it satisfies

LG(~r, ~r ′) = δ(~r − ~r ′). (2.17)

It can be thought of as the impulse response of the system. From this fundamental solution,

the solution for any right hand side f(~r) can be formed by weighting G with f according

to

y(~r) =

∫

G(~r, ~r ′)f(~r ′)d3x′. (2.18)

By applying the operator L to y, it is seen that this is indeed a solution to the linear
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equation (2.16),

Ly(~r) = L
∫

G(~r, ~r ′)f(~r ′)d3x′ =

∫

[LG(~r, ~r ′)f(~r ′)] d3x′ = (2.19)

=

∫

[δ(~r − ~r ′)] f(~r ′)d3x′ = f(~r).

Hence, if the Green’s function for a linear PDE can be found, any inhomogenous solution

can be found through (2.18).

This technique has one significant shortcoming for our purpose; the approach taken above

is only valid for scalar valued functions y (such as the potential φ in electrostatics). In

our case, we seek the magnetic field, a vector-valued function of the spatial coordinates ~r.

The Green’s function will therefore not be scalar-valued as in the above example, but will

rather be tensorial, called a Dyadic Green’s function. The reason the Green’s function is

not a scalar function anymore is that if it were, then by equation (2.18), the response ~y

would always point in the same direction as the source ~f , which does not have to be the

case.

Dyadic Green’s Functions

We now examine the vector equation

L ~A = ~B, (2.20)

where L is yet again a linear operator. Consider now three vector fields ~Gi(~r, ~r
′) such that

L ~Gi = n̂iδ(~r − ~r ′) for i ∈ {1, 2, 3}, (2.21)

where n̂i denotes the x, y- or z-direction respectively. Next, form the 3x3 tensor

←→
G (~r, ~r ′) =

[

~G1| ~G2| ~G3

]

, (2.22)

where each of the above Green’s functions form the columns.
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The solution to (2.20) is then given by

~A(~r) =

∫ ←→
G (~r, ~r ′) ~B(~r ′)d3x′. (2.23)

Again, this is verified by a straightforward application of L:

L ~A =

∫

L
[←→
G (~r, ~r ′) ~B(~r ′)

]

d3x′. (2.24)

The expression in brackets can be rewritten as

L
[←→
G (~r, ~r ′) ~B(~r ′)

]

= L
[

~G1B1 + ~G2B2 + ~G3B3

]

= B1L ~G1 +B2L ~G2 +B3L ~G3 = (2.25)

= (B1x̂+B2ŷ +B3ẑ)δ(~r − ~r ′) = ~B(~r ′)δ(~r − ~r ′). (2.26)

And hence the integral (2.24) becomes simply

L ~A =

∫

~B(~r ′)δ(~r − ~r ′)d3x′ = ~B(~r). (2.27)

In summary, for the vector equation L ~A = ~B, if the tensorial – or dyadic, as it is commonly

called in electromagnetics – Green’s function
←→
G (~r, ~r ′) is known, then the solution for any

right hand side ~B can be found through (2.23).

When analyzing waveguides by means of the the domain decomposition technique, fictitious

magnetic currents are placed in the waveguides where two different regions have been

sealed off from one another by closing the connecting aperture with a PEC. These magnetic

currents will radiate and generate electric and magnetic fields in the waveguide as discussed

in the previous section, so for this analysis it is imperative to know the dyadic Green’s

functions
←→
G m

m for the magnetic field generated by the magnetic currents in the different

regions. These are listed in the following section.
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2.4.2 Magnetic Field Green’s Functions in Different Waveguide

Geometries

Below are listed the Green’s functions for the magnetic field generated by a magnetic

current in an infinitely long rectangular waveguide, a rectangular cavity and a shorted

(semi-infinite) waveguide. Two forms for Green’s function in the infinitely long waveguide

are presented. The first is very simple but takes on different forms depending on whether

the observation point is in front of or behind the source point, longitudinally. The second,

called the Seki Green’s function, or Seki’s alternative expression, is more complicated but

has the advantage of being independent of whether the observation point is in front of or

behind the source point. Detailed derivations and explanations of all Green’s functions can

be found in appendix D.

Infinite Rectangular Waveguide

In an infinitely long rectangular waveguide with its axis along the z-axis, the Green’s

function
←→
G m

m for the magnetic field due to a magnetic current can be expressed in terms

of the waveguide modes ~H±
u as

←→
G m

m(~r, ~rs) =



















1

2

∑

u

~H−
u (~r) ~H

+
u (~rs) for z < zs,

1

2

∑

u

~H+
u (~r) ~H

−
u (~rs) for z > zs,

(2.28)

where the product of two vectors ~A~B used above is neither a dot product nor a vector

product, but should be regarded as the outer product of the two vectors and is thus an

operator (or a matrix). The action of ~A~B on some vector ~C is

( ~A~B) ~C = ~A( ~B · ~C). (2.29)

The sum is over all TE and TM modes, for all possible values of the indices m and n for

the waveguide modes.

For example, if the magnetic current is confined to some volume V , then the magnetic field
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scattered by this current ~M at some observation point ~r far into the waveguide (z << zs)

is given by

~H(~r) =

∫

V

←→
G m

m(~r, ~r
′) ~M(~rs)d

3x′ =
1

2

∑

u

~H−
u (~r)

[
∫

V

~H+
u (~r

′) · ~M(~r ′)d3x′
]

. (2.30)

Note that the integral in the bracket is a scalar, and the entire expression is simply an

eigenfunction expansion of the magnetic field scattered by the current.

Green’s function in a rectangular cavity

Consider a rectangular cavity that extends from z = −l1 to z = l2. This can be considered

to be a rectangular waveguide that has been cut off at these two z-coordinates, and thus has

the same modal functions ~H±
u as an infinite rectangular waveguide. The Green’s function

in this geometry is given by

←→
G m

m(~r, ~rs) =



















































1

4

∑

u

1

sinh (γul)

[

~H−
u (~r)e

γul1 − ~H+
u (~r)e

−γul1
]

[

eγul2 ~H+
u (~rs)− e−γul2 ~H−

u (~rs)
]

for − l1 < z < zs

1

4

∑

u

1

sinh (γul)

[

~H+
u (~r)e

γul2 − ~H−
u (~r)e

−γul2
]

[

eγul1 ~H−
u (~rs)− e−γul1 ~H+

u (~rs)
]

for zs < z < l2.

(2.31)

The modes ~H±
u above denote modes travelling in the z-direction. However, this direction

has no special significance for a rectangular cavity, and an analogous expansion in y-modes

or x-modes could have been used instead.

Seki’s alternative expression for the infinite waveguide Green’s function

The expression (2.28) is very useful due to its simplicity, but in some circumstances it

is more convenient to use a different form of the Green’s function for an infinitely long

waveguide. This Green’s function is derived by introducing a ”virtual cavity” of length l

of the magnetic current, and extending from z = −l1 to z = l2. This alternate form has



24 Theory

the same functional dependence, irrespective of whether z < zs or z > zs. It is called the

Seki Green’s function and is given by

←→
G Seki(~r, ~rs) =

←→
G y

c(~r, ~rs) +
1

4

∑

u

e−γul1

sinh (γul)

[

~H+
u (~r)e

γul2 − ~H−
u (~r)e

−γul2
]

~H+
u (~rs)+

+
1

4

∑

u

e−γul2

sinh (γul)

[

~H−
u (~r)e

γul1 − ~H+
u (~r)e

−γul1
]

~H−
u (~rs),

(2.32)

where
←→
G y

c is the Green’s function for a cavity where the modal expansion is done in terms

of y-travelling modes, instead of in terms of z-travelling modes as in (2.31). Note that

if the magnetic current is confined to the upper or lower wall, y will always be less than

(or greater than) ys and hence the same form for the cavity Green’s function will be used

everywhere.

One last thing that must be discussed is the choice of length l for the virtual cavity. We

have to avoid making sinh (γul) zero since this term occurs in a denominator in the Seki

Green’s function. This is impossible for evanescent modes, since for these γu is real and

larger than zero. However, for a propagating mode, γu is purely imaginary, so γu = iβu,

where βu is a real, positive number. Our condition on l is then

sinh (γul) = i sin (βul) 6= 0, (2.33)

but since βu is the wavenumber of the wave, the above condition becomes

l 6= n

2
λu, (2.34)

where n is any integer and λu is the wavelength of the propagating mode. In practice,

the dimensions of the waveguide are often chosen such that it allows only one propagating

mode, and the length of the virtual cavity is then chosen halfway between the first two

”forbidden” lengths,

l =
3

4
λin, (2.35)

where λin is the wavelength of the propagating mode.
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Semi-infinite waveguide

The Green’s function for a semi-infinite waveguide extending from z = −∞ and ending at

z = l is given by

←→
G m

m(~r, ~rs) =



















1

2

∑

u

e−γul ~H−
u (~r)

[

~H+
u (~rs)e

γul − ~H−
u (~rs)e

−γul
]

for z < zs,

1

2

∑

u

e−γul
[

~H+
u (~r)e

γul − ~H−
u (~r)e

−γul
]

~H−
u (~rs) for z > zs.

(2.36)

This completes the theory needed to perform an analysis of slot and aperture coupled

waveguides using the MoM approach, and it will in the next section be shown how it can

be used to calculate the scattering parameters in a T-Junction waveguide.

2.5 Example: S-Matrix Calculation for a T-Junction

Waveguide

In this section we will perform a thorough analysis of the T-Junction waveguide shown in

Fig. 2.6.

The geometry consists of two waveguides connected via an aperture S of width w. A wave
~Hin is incident from the left, and we wish to calculate the amplitudes of the waves leaving

each port, or equivalently, the fraction of power scattered into each port. As discussed

in Sec. 2.1, the aperture can be closed if a fictitious magnetic current is introduced on

either side of the aperture, as shown in Fig. 2.6. The field in region I is then the sum of

the incident field and the field radiated by the magnetic current ~M . The field in region II

is the field radiated by the magnetic current − ~M . Since the Green’s functions in both a

shorted waveguide and an infinite waveguide are known, the radiated fields can be easily

calculated from the magnetic currents by

~H(~r) =

∫ ←→
G (~r, ~rs) ~M(~rs)dV . (2.37)
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Figure 2.6: The T-Junction waveguide consisting of one infinite and one semi infinite
waveguide connected through an aperture of width w. The origin of coordinates is placed
in the top wall at the center of the aperture, with axes as shown in the top left. The height
of the waveguides (dimension along y) is b.

In Sec. 2.1, we also required that the magnetic field be continuous across the aperture S,

leading to the integral equation (2.6), i.e.,

~Hin(~r) +

∫∫

S

←→
G m

Im(~r, ~rs) ~M(~rs)dSs = −
∫∫

S

←→
G m

IIm(~r, ~rs) ~M(~rs)dSs, for ~r ∈ S. (2.38)

The above equation simply states that the field, at some observation point ~r, as calculated

in region I should be identical to the field as calculated in region II when the observation

point approaches the aperture S. The two functions
←→
G m

Im and
←→
G m

IIm simply denote the

Green’s functions in region I and II, respectively.

Equation (2.38) can be solved for the unknown magnetic current ~M , and once known, the

fields anywhere – and most interesting to us, far into each port – can be calculated through

the Green’s functions.

Equation (2.38) can be rewritten into the equivalent but more compact Dirac notation

according to

| ~Hin〉+
←→
G m

Im| ~M〉 = −
←→
G m

IIm| ~M〉, (2.39)
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where we have defined

←→
G m

Xm| ~A〉 =
∫∫

S

←→
G m

Xm(~r, ~rs) ~A(~rs)dS. (2.40)

2.5.1 Transformation of the Integral Equation into a Matrix Equa-

tion

The first step in our MoM approach is to expand the unknown current ~M , in terms of a

set of known basis functions {~mj}Nj=1. We choose the basis functions to be directed along

ẑ and have a sine variation across the aperture according to

~mj(z) = sin

[

jπ

w

(

z +
w

2

)

]

ẑ. (2.41)

This choice of basis automatically incorporates the boundary conditions that ~E × n̂, and
thus ~M , should vanish at the aperture edges z = −w

2
and z = w

2
.

Using this basis, the unknown current is expanded according to

~M(~r) =
N
∑

j=1

Aj ~mj(~r). (2.42)

We do not know a priori how many terms N will be needed to obtain accurate results,

and this variable will have to be examined for convergence at the end. We have now

transformed the problem of determining the unknown magnetic current into the problem

of determining the (scalar) expansion coefficients Aj above.

Substituting the expansion (2.42) into the integral equation (2.39) gives

| ~Hin〉+
N
∑

j=1

Aj
←→
G m

Im|~mj〉 = −
N
∑

j=1

Aj
←→
G m

IIm|~mj〉, (2.43)

where we have used the linearity of the operators
←→
G to move the expansion coefficients

outside the operators.
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The next step is to form the symmetric product of the above equation with the testing

function ~mi (see also Sec. 2.2), i.e.,

〈 ~A| ~B〉 =
∫∫

S

~A(~r) · ~B(~r)dS. (2.44)

This leads to the equation

〈~mi| ~Hin〉+
N
∑

j=1

Aj〈~mi|
←→
G m

Im|~mj〉 = −
N
∑

j=1

Aj〈~mi|
←→
G m

IIm|~mj〉. (2.45)

We rewrite this slightly and realize that this is valid for all basis functions ~mi, that is, it

is true for all i = 1, ..., N :

N
∑

j=1

Aj

[

〈~mi|
←→
G m

Im|~mj〉+ 〈~mi|
←→
G m

IIm|~mj〉
]

= −〈~mi| ~Hin〉, i = 1, ..., N. (2.46)

Note that the above represents a matrix equation that can be written symbolically as







〈~mi|
←→
G m

Im|~mj〉
+

〈~mi|
←→
G m

IIm|~mj〉












Aj






=






−〈~mi| ~Hin〉






, (2.47)

where i and j each run from 1 to N . Since the Green’s functions
←→
G m

Im and
←→
G m

IIm as well

as the incident field ~Hin and the basis functions ~mi are known, we can calculate the RHS

and all the elements of the matrix. From the definitions (2.40) and (2.44) it is seen that

the matrix elements are given by

〈~mi|
←→
G m

Xm|~mj〉 =
∫∫

S

dS ~mi(~r) ·
∫∫

S

←→
G m

Xm(~r, ~rs)~mj(~rs)dSs, (2.48)

and

〈~mi| ~Hin〉 =
∫∫

S

~mi(~rs) · ~Hin(~rs)dSs. (2.49)

The above integrals are often referred to as reaction integrals, and they describe the self

and mutual coupling between different basis functions in the aperture in the regions I and
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II, and the coupling between the basis functions and the incident field. The next step is

to evaluate these integrals.

2.5.2 Evaluation of the Reaction Integrals

Let us start with evaluating the reaction integral 〈~mi|
←→
G m

Im|~mj〉, which consists of a double

surface integral. This means that the source coordinate ~rs will sweep over the aperture S

for every value of ~r. Specifically, this means that if we were to use the conventional Green’s

function (2.31) for an infinite waveguide, the integrals would have to be split up depending

on whether z > zs or z < zs, and to avoid this we employ the Seki Green’s function (2.32)

since this has the same functional form for all z and zs. The length d of the virtual cavity

is chosen to be three quarters of the wavelength of the propagating mode in the waveguide.

The Seki Green’s function is composed of two parts: first a contribution from the aperture

current directly, as if it were radiating in a cavity, and then secondly a contribution from

the ficticious currents on the virtual cavity walls. We thus write the Green’s function as 2

←→
G m

Im(~r, ~rs) =
←→
G c

x(~r, ~rs) +
←→
G walls(~r, ~rs). (2.50)

The reaction integral then takes the form

〈~mi|
←→
G m

Im|~mj〉 = 〈~mi|
←→
G c

x|~mj〉+ 〈~mi|
←→
G walls|~mj〉. (2.51)

We start by evaluating the first RHS term.

The cavity Green’s function is given by (2.31). With l1 = 0 and l = l2 = a, this becomes

←→
G c

x(~r, ~rs) =
1

4

∑

u

1

sinh (γuxa)

[

~H+
u (~r)e

γuxa − ~H−
u (~r)e

−γuxa
] [

~H−
u (~rs)− ~H+

u (~rs)
]

(2.52)

where γux is the propagation constant for modes travelling in the x-direction in the virtual

2Compare this with equation (2.32). In this case we have
←→
G c

x
instead of

←→
G c

y
since our coordinate

system is oriented differently here. The rest of the expression (the two double sums, corresponding to the

contribution from the walls) is exactly
←→
G walls.
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cavity. The integral 〈~mi|
←→
G c

x|~mj〉 then separates products of surface integrals according to

〈~mi|
←→
G c

x|~mj〉 =
1

4

∑

u

1

sinh (γuxa)

∫

S

dS
[

~H+
u (~r)e

γuxa − ~H−
u (~r)e

−γuxa
]

· ~mi(~r)×

×
∫

S

[

~H−
u (~rs)− ~H+

u (~rs)
]

· ~mj(~rs)dSs.

(2.53)

The sum above is over all modes, both TE and TM. From the equations in appendix B, it

can be shown that the z-component at x = 0 of the TE and TM waves travelling in the

x-direction is given by

(

HTE±
nm

)

z
= ± nπ

kcuxd

√

γuǫnǫm
jkηdb

sin

[

nπ

d

(

z +
d

2

)]

cos

[

mπ

b

(

y +
b

2

)]

, (2.54)

(

HTM±
nm

)

z
= ∓ mπ

kcuxb

√

jkǫnǫm
γuηdb

sin

[

nπ

d

(

z +
d

2

)]

cos

[

mπ

b

(

y +
b

2

)]

,

where j is the imaginary unit (not to be confused with the basis function index j), η is the

impedance of the medium, in this case free space, and ǫn is given by (B.13). Specifically,

note that for both TE and TM modes, (H+
nm)z = − (H−

nm)z. The reaction integral (2.53)

then becomes

〈~mi|
←→
G c

x|~mj〉 = −
∑

u

coth (γuxa)

∫

S

Hz+
nm(~r)mi(~r)dS

∫

S

Hz+
nm(~r)mj(~r)dS. (2.55)

Note from equation (2.54) that the z-component of the TE and TM waves differ only by

a proportionality constant. In fact, they have identical y and z dependencies. The surface

integrals in (2.55) will then be proportional to

∫ b/2

y=−b/2

∫ w/2

z=−w/2

sin

[

nπ

d

(

z +
d

2

)]

cos

[

mπ

b

(

y +
b

2

)]

sin

[

kπ

w

(

z +
w

2

)

]

dydz =

= bδm0iIInk(d),

(2.56)

where k = i or j is the index of the basis function and where bδm0 results from the

integration over y, and iIInk(d) is given by

iIInk(d) =

∫ w/2

z=−w/2

sin

[

nπ

d

(

z +
d

2

)]

sin

[

kπ

w

(

z +
w

2

)

]

dz, (2.57)
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which can easily be evaluated analytically and can be found in appendix A.1.

An important point to make is that the surface integral contains a factor δm0. This means

that only modes with m = 0 contribute to the sum. But in equation (2.54) we see that the

TM modes are proportional to m, so all TM modes vanish from the sum, leaving only the

TE modes. As a result, by combining equations (2.54), (2.55) and (2.56) the final form of

the reaction integral is found:

〈~mi|
←→
G c

x|~mj〉 = −
∞
∑

n=1

coth (γuxa)
2γuxb

jkηd
iIIni(d)iIInj(d), (2.58)

where we have used that for m = 0, n ≥ 1 modes, the cut-off wavenumber kcux is given by

kcux = nπ/d, and ǫnǫm = 2.

All quantities in equation (2.58) are known, so the first part of the region I reaction integral

(2.51) can be calculated. We will now derive an expression for the integral 〈~mi|
←→
G walls|~mj〉,

i.e., the contribution from the virtual cavity walls to the self-admittance.

As discussed previously, the Green’s function
←→
G walls is given by the two double sums in

Eq. (2.32), and hence the reaction integral becomes

〈~mi|
←→
G walls|~mj〉 =

1

4

∑

u

1

sinh (γuzd)

∫∫

S

dS ~mi(~r) ·
∫∫

S

{

[

~H+
u (~r)− e−γuzd ~H−

u (~r)
]

~H+
u (~rs)+

+
[

~H−
u (~r)− e−γuzd ~H+

u (~r)
]

~H−
u (~rs)

}

~mj(~rs)dSs.

(2.59)

where γuz is the propagation constant for modes travelling in the z-direction.

The above expression contains double surface integrals over four terms for each mode u,

which decouple into products of surface integrals due to the simple dependence on ~r and

~rs. By splitting the expression into four double surface integrals we obtain

〈~mi|
←→
G walls|~mj〉 =

1

4

∑

u

1

sinh (γuzd)

{

y+uiy
+
uj − e−γuzdy−uiy

+
uj + y−uiy

−
uj − e−γuzdy+uiy

−
uj

}

, (2.60)

where the factors y±uk denote the coupling between the mode ~H±
u and the basis function
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~mk, and is given by the integral

y±uk =

∫∫

S

~H±
u (~r) · ~mk(~r)dS. (2.61)

Note that the coupling (2.61) is only nonzero for TE modes since ~mk is directed completely

along z. The z-component of TE waves travelling along z is given by

~H+
nm · ẑ =

kcuz
γuz

√

γuzǫnǫm
jkηab

cos
[mπy

b

]

e∓γuzz, (2.62)

and hence the coupling becomes

∫∫

S

~H±
u (~r) · ~mk(~r)dS =

kcuz
γuz

√

γuzǫnǫm
jkηab

bδm0i
∓
Ink (2.63)

where bδm0 comes from the integration over y from 0 to b, and i∓Ink is the z-part of the

integral,

i∓Ink =

∫ z=w/2

z=−w/2

e∓γuzz sin

[

kπ

w

(

z +
w

2

)

]

dz, (2.64)

which has a closed form expression (see appendix A.1).

Substituting this into equation (2.60) finally gives

〈~mi|
←→
G walls|~mj〉 =

∞
∑

n=1

n2π2b

2a3γuzjkη sinh (γuzd)

{

i−Inii
−
Inj+

− e−γuzdi+Inii
−
Inj + i+Inii

+
Inj − e−γuzdi−Inii

+
Inj

}

(2.65)

where we used that the cut-off wavenumber is given by kcuz = nπ/a.

The above expression consists completely of known quantities and can hence be calculated

numerically. We have thus found expressions for the reaction integral 〈~mi|
←→
G m

Im|~mj〉, as
given by (2.51).

We must now find an expression for the self-admittance in region II; i.e., for 〈~mi|
←→
G m

IIm|~mj〉.
Region II is a semi infinite waveguide shorted at x = 0, and the Green’s function

←→
G m

IIm is
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thus found from (2.36) to be

←→
G m

IIm(~r, ~rs) =
1

2

∑

u

~H−
u (~r)

[

~H+
u (~rs)− ~H−

u (~rs)
]

. (2.66)

The reaction integral thus becomes

〈~mi|
←→
G m

IIm|~mj〉 =
1

2

∑

u

[
∫∫

S

~H−
u (~r) · ~mi(~r)dS

] [
∫∫

S

[ ~H+
u (~r)− ~H−

u (~r)] · ~mj(~r)dS

]

(2.67)

The z-components of x-travelling TE and TM modes at the wall x = 0 are given by

~HTE±
nm · ẑ = ± nπ

kcuya

√

γuyǫnǫm
abjkη

sin
[nπ

a

(

z +
a

2

)]

cos
[mπy

b

]

, (2.68)

~HTM±
nm · ẑ = ∓ mπ

kcuyb

√

jkǫnǫm
abγuyη

sin
[nπ

a

(

z +
a

2

)]

cos
[mπy

b

]

.

Note specifically that ~H−
u = − ~H+

u , and hence the reaction integral (2.67) thus becomes

〈~mi|
←→
G m

IIm|~mj〉 = −
∑

u

[
∫∫

S

~H+
u (~r) · ~mi(~r)dS

] [
∫∫

S

~H+
u (~r) · ~mj(~r)dS

]

, (2.69)

where the surface integrals are found to be

∫∫

S

~H+
u (~r) · ~mi(~r)dS =

nπ

kcuya

√

γuyǫnǫm
abjkη

bδm0iIIni(a), (2.70)

where the factor bδm0 comes from the integral over y, and iIIIni is the integral over z, given

by

iIIni(a) =

∫ w/2

−w/2

sin
[nπ

a

(

z +
a

2

)]

sin

[

iπ

w

(

z +
w

2

)

]

dz, (2.71)

which can be evaluated analytically (see appendix A.1). The contribution from the TM

waves vanish since the factor δm0 forces m to zero, and the amplitude of the TM waves is

proportional to m according to (2.68). Inserting this into equation (2.69) gives

〈~mi|
←→
G m

IIm|~mj〉 = −
∞
∑

n=1

2bγuy
ajkη

iIIni(a)iIInj(a). (2.72)
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This concludes the derivation of the matrix elements in the matrix equation (2.47).

The RHS of (2.47) is readily found since it is the coupling between the incident TE+
10 mode

in region I and the basis functions ~mi in the aperture, and this is given by equation (2.63).

Specifically for the TE+
10 mode, this becomes

− 〈~mi| ~Hin〉 =
kcuz
γuz

√

2bγuz
jkηa

i−I1i. (2.73)

2.5.3 Evaluation of the Scattering Parameters

In the previous section, we performed the rather tedious task of calculating the reaction

integrals that comprise the matrix and right hand side of the matrix equation (2.47) for

the magnetic current. For a given width a and height b, as well as aperture width w, the

matrix and right hand side can be calculated numerically from the expressions derived in

the previous section, by including only a finite number of terms in the infinite summations,

but sufficiently many for convergence. The expansion coefficients Aj are then obtained by

solving the matrix equation.

Once these are obtained, the scattering parameters can be calculated. To find these, the

Green’s function (2.28) for an infinite waveguide will be used.

The scattering parameter Sij is defined as the ratio of the amplitude of the outgoing wave

in port i, to the amplitude of the incoming wave in port j when no waves are incident on

the other ports. Specifically, for a given j, the squared magnitude of the S-parameters,

|Sij|2, denote what fraction of the energy incident in port j exits through the other ports

of the structure.[18, p. 221]

Calculation of S11

Consider the outgoing field at a point ~r sufficiently far into port I that the evanescent

modes are negligible. Outgoing means that it is travelling in the negative z-direction. This
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field is generated by the fictitious magnetic current ~M and is found from

~HI(~r) =

∫∫

S

←→
G m

Im(z < zs) ~M(~rs)dSs =
1

2

∑

u

~H−
u (~r)

∫∫

S

~H+
u (~rs) · ~M(~rs)dSs = (2.74)

=
∑

u

~H−
u (~r)

[

1

2

N
∑

i=1

Ai

∫∫

S

~H+
u (~rs) · ~mi(~rs)dSs

]

Since the dimensions of the waveguide are such that the only propagating mode is the TE10

mode, all modes except TE10 vanish from the sum over u far into port I, hence

~HI(~r) = ~H−
10

[

1

2

N
∑

i=1

Ai

∫∫

S

~H+
10(~rs) · ~mi(~rs)dSs

]

= (2.75)

= ~H−
10

[

1

2

π

aγz10

√

2bγ10z
ajkη

N
∑

i=1

Ai i
−
I1i

]

,

where equation (2.63) was used to evaluate the coupling between the TE10 mode and the

basis functions. The return loss S11 is then seen to be

S11 =

[

1

2

π

aγz10

√

2bγ10z
ajkη

N
∑

i=1

Ai i
−
I1i

]

. (2.76)

Calculation of S21

To calculate the insertion loss parameter S21, we need the field far into the waveguide at

port II, travelling in the z-direction. Like for the S11 parameter, this is calculated using

the Green’s function (2.28), but in this case with the form valid for z > zs. A calculation

almost identical to the one above yields

~HII(~r) = ~H+
10(~r) + ~H+

10

[

1

2

N
∑

j=1

Aj

∫∫

S

~H−
10(~r) · ~mj(~r)dS

]

, (2.77)

where the sum over all modes in the expression for the Green’s function disappears since

only the TE10 mode is a propagating mode in the waveguide and the first term ~H+
10 is the

field incident from port I.
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Using the expression (2.63) for the surface integral, it is found that the scattering parameter

S21 takes the form

S21 = 1 +
π

2a

√

2b

γ10zjkηa

N
∑

j=1

i+I1j Aj. (2.78)

Calculation of S31

To calculate the ~H-field far into region III, we use the Green’s function (2.66) and find

~H(~r) = −
∫∫

S

←→
G m

IIm(~r, ~rs) ~M(~rs)dSs = −
1

2

∑

u

~H−
u (~r)

∫∫

S

[

~H+
u (~rs)− ~H−

u (~rs)
]

· ~M(~rs)dSs

(2.79)

Again, the only propagating mode is the TE10 mode, and the integral was encountered

earlier in equation (2.67), where it was found to be two times the expression in (2.70). The

scattering parameter is therefore

S31 = −
√

2γ10zb

ajkη

N
∑

j=1

AjiII1j(a). (2.80)

2.5.4 Quick Review

It may now be worthwhile to quickly review what we have done so far.

The geometry under consideration is that of the T-Junction waveguide with the TE10 mode

incident from port I as shown in Fig. 2.4. The objective is to find the amplitude of the

outgoing waves from ports II and III, as well as the amplitude of the wave reflected back

into port I. These amplitudes are the scattering parameters S21, S31 and S11, respectively.

To find these, the geometry was first split up into two canonical regions, the infinite

waveguide (region I), and the semi-infinite waveguide (region II), by adding a PEC in the

aperture S. This was only allowed if a magnetic current ~M and ~−M was added on both

sides of the aperture (i.e., in both regions), see Fig. 2.6.

An integral equation for ~M was obtained by requiring the ~H-field to be continuous across
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the aperture S [see Eq. (2.38)], and this was transformed into the matrix equation (2.47)

by expanding the magnetic current in sine functions with unknown coefficients and forming

the symmetric product of the resulting expression with each of the basis functions. The

matrix elements and the vector on the right hand side were then evaluated, allowing the

unknown expansion coefficients to be calculated by solving this equation.

Finally, using this approximate form (finite sine expansion) of the magnetic current, the

amplitudes of the outgoing magnetic fields in the different ports are easily calculated from

the appropriate Green’s function.

The S-parameters were calculated numerically, using MATLAB. First the matrix elements

and the right hand side of the system of equations (2.47) is calculated. The matrix elements

consist of infinite sums over waveguide modes, but these sums converge rather quickly and

in practice only around 50 terms need to be included for accurate results. The system of

equations is then solved for the expansion coefficients {Aj}Nj=1, and then the S-parameters

are calculated according to the equations in the previous section.

2.5.5 Results

The scattering parameters were calculated for a T-Junction waveguide with dimensions

a = 47.55mm, and b = 22.15mm, with an incoming wave of frequency f = 5GHz. N = 5

basis functions were used in the expansion of the magnetic current, and 100 waveguide

modes were included in the mode summations that occur in the expressions for the matrix

elements. The S-parameters were calculated for twenty different aperture widths w, ranging

from w = 0, where there is no aperture and the two waveguides are completely sealed off

from one another, to w = a, where the two waveguides are completely joined and there are

no thin walls to either side of the aperture.

The results are plotted in Fig. 2.7. Also plotted are the same S-parameters as calculated

by the commercial electromagnetics software FEKO, which show a good agreement to the

MoM solution presented in this section.

We see that for small aperture widths, there is little coupling between the waveguides;

almost all of the incoming power goes straight ahead into port II and only a little makes it

way through the aperture into port III, or is reflected back into port I. For larger aperture
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Figure 2.7: S-parameters of the T-Junction waveguide at 5GHz as calculated by the
moment method detailed in this chapter, as well as benchmarking values calculated using
FEKO.

widths, however, the coupling increases and more power enters port III and reflects back

into port I. Since energy is conserved less available power will enter port II and, hence, S21

decreases with increasing w, as expected. This conservation of energy is expressed in the

fact that the sum of the magnitudes of the squared S-parameters should be equal to unity,

i.e.,
∑

j

|Sji|2 = 1 ∀ i. (2.81)

This was found to be true to a very high accuracy in the MoM solution.

For this problem, FEKO was used to validate the solution. The calculation of the S-

parameters using the method of moments solution presented here was over one hundred

times faster than the corresponding computation in FEKO. The MoM code developed here

is fast since the fictitious magnetic current is localized to only the small aperture between

the waveguides, whereas FEKO solves for the equivalent electric currents induced in the

waveguide walls and thus has to solve for a current in a much larger region.



Chapter 3

MoM Discretization of Waveguide

Coupling Junctions

In the previous chapter a domain-decomposition based MoM technique was introduced and

applied to calculate the S-parameters of a T-Junction waveguide.

This chapter presents a systematic treatment of two different waveguide coupling junction

structures. The first structure, shown in figure 3.1, consists of a bottom feeding waveguide,

above which there is an arbitrary number of waveguides, referred to as branch waveguides,

that intersect the feed waveguide at right angles. Each branch waveguide is connected to

the feed waveguide via a slot that may have any transverse and longitudinal offset from

the axis of the feed waveguide, as well as an arbitrary tilt relative to its axis (called a

compound slot). The second waveguide junction studied is identical to the first, except for

an additional feeding waveguide placed below the first one and connected to it through a

compound slot (see Fig. 3.3).

The goal of this chapter is to, for both structures, use the MoM approach to derive a

general matrix equation from which the scattering parameters are easily calculated. The

derivations in this chapter are based on calculations by Johan Wettergren [12].
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Figure 3.1: The geometry of the waveguide junction studied. An arbitrary number of
branch waveguides are placed above, and at right angles to, a feed waveguide. Each branch
waveguide is connected to the feed waveguide through a slot of arbitrary size, position and
tilt.

3.1 Multiple Branch Waveguide Junctions with Sin-

gle Layered Feeding Structure

A multiple branch waveguide junction refers in this thesis to a waveguide coupling junction

composed of a feed waveguide connected through slots (with arbitrary tilts and offsets

from the centerline) to an arbitrary number N of branch waveguides above it. The branch

waveguides are placed at right angles relative to the feed waveguide. All waveguides are

assumed to be rectangular (see Fig. 3.1).

Fig. 3.2 shows a cross section of the multiple branch waveguide junction as seen from

the side. The feed waveguide is denoted as region 0, the slot cavity between the feed

waveguide and the first branch waveguide is denoted as region 1, the cavity between the

feed waveguide and branch waveguide number 2 is region 2, and so on. The interior of the

first branch waveguide is region N +1, the interior of the second is region N +2, etc. The

bottom aperture of region 1 is surface S1, while the top aperture of region 1 is SN+1. The

other apertures are named analogously.

The entire geometry can be divided into 2N+1 canonical regions by adding PEC sheets at

each of the 2N surfaces Sq. The magnetic current added just below surface Sq is denoted
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Figure 3.2: Side view of the multiple branch waveguide junction.
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~Mq, and hence the current just above Sq will be − ~Mq.

With these definitions, it is now possible to write down the integral equations representing

the continuity of the magnetic field across the 2N surfaces. These are given by

| ~H1
in〉+

N
∑

k=1

←→
G 0| ~Mk〉 = −

←→
G q| ~Mq〉+

←→
G q| ~MN+q〉 on Sq, q = 1, 2, ..., N

−←→G q| ~Mq〉+
←→
G q| ~MN+q〉 = −

←→
G N+q| ~MN+q〉+ | ~H2

in〉 on SN+q, q = 1, 2, ..., N.

(3.1)

The first of the two equations above describe continuity across the lower apertures, while

the second equation describes continuity across the top surfaces. The vectors ~Hin represent

any eventual incident fields. For example, if the waveguide junction is excited from port 1,
~H1
in would be the plus propagating TE10 mode in the feed waveguide, and ~H2

in would be

zero. When evaluating the S-matrix for the system, each port will be excited in turn.

Now, we introduce a set of basis functions {~mkj}Qj=1 for the magnetic current in aperture k.

At this moment we will not concern ourselves with what particular set of basis functions to

choose. All equations derived in this section will have the same symbolic form irrespective

of the form of the basis functions.

By expanding the magnetic currents in (3.1) as

~Mk =

Q
∑

j=1

Vkj ~mkj, (3.2)

and then forming the inner product of equation q with all ~mqi, for i = 1, ..., Q, we find that

each equation of the first set of integral equations in (3.1) becomes, after some rearrange-

ment, the Q scalar equations

N
∑

k=1

[

Q
∑

j=1

Vkj〈~mqi|
←→
G 0|~mkj〉

]

+

Q
∑

j=1

Vqj〈~mqi|
←→
G q|~mqj〉+

−
Q
∑

j=1

VN+q,j〈~mqi|
←→
G q|~mN+q,j〉 = −〈~mqi| ~H1

in〉, for i = 1, ..., Q.

(3.3)
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Similarly, each of the bottom equations in (3.1) becomes the Q scalar equations

−
Q
∑

j=1

Vqj〈~mN+q,i|
←→
G q|~mq,j〉+

Q
∑

j=1

VN+q,j〈~mN+q,i|
←→
G q|~mN+q,j〉+

+

Q
∑

j=1

VN+q,j〈~mN+q,i|
←→
G N+q|~mN+q,j〉 = 〈~mN+q,i| ~H2

in〉, for i = 1, ..., Q.

(3.4)

The 2NQ equations in (3.3) and (3.4) can be written as the matrix equation

Y V = I, (3.5)

where I is the excitation matrix for the structure, i.e., a matrix where column i equals the

RHS of the system of equations corresponding to the excitation of port i. The excitation

vector corresponding to an excitation from port 1 or 2 equals

I1 =



























〈~m1j| ~H+
10〉

〈~m2j| ~H+
10〉

...

〈~mNj| ~H+
10〉

0

...

0



























, I2 =



























〈~m1j| ~H−
10〉

〈~m2j| ~H−
10〉

...

〈~mNj| ~H−
10〉

0

...

0



























(3.6)

The index j runs from 1 to Q, and each 0 is actually a column of Q zeroes. The horizontal

line denontes the midpoint of the vector. If the incident wave comes from one of the ports
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in branch waveguide n, the excitation vector takes the form

I2n+1 =

































0
...

0

0
...

−〈~mN+n,j| ~H+
10〉

...

0

































, I2n+2 =

































0
...

0

0
...

−〈~mN+n,j| ~H−
10〉

...

0

































(3.7)

Since the structure has 2N + 2 ports, the matrix I will have 2N + 2 columns, while the

matrix V will have 2N + 2 columns, where each column contains all unknown expansion

coefficients for the magnetic current corresponding to the given excitation from port i. For

each column of V , the expansion coefficients for the magnetic current in the apertures are

listed in the order V1j, V2j, ..., VNj, for j = 1, ..., Q. So the ith column of V , denoted by Vi,

will be equal to

Vi =













V i
1j

V i
2j
...

V i
Nj













, (3.8)

where V i
kj, j = 1, 2, ..., Q is used to denote the expansion coefficients for the current in

aperture k when the system is excited from port i.

Finally, the matrix Y of admittances is composed of four submatrices

Y =

[

Y11 Y12

Y21 Y22

]

, (3.9)

where each of these submatrices are, in turn, composed of N × N admittance matrices

according to

Y11 =













y110ij + y111ij y120ij · · · y1N0ij
y210ij y220ij + y222ij · · · y2N0ij
...

...
. . .

...

yN1
0ij yN2

0ij · · · yNN
0ij + yNN

Nij













, (3.10)
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Y12 =













−y1,N+1
1ij 0 · · · 0

0 −y2,N+2
2ij 0

...
. . . 0

0 · · · 0 −yN,2N
Nij













, (3.11)

Y21 = (Y12)
T , (3.12)

and

Y22 =













yN+1,N+1
1ij + yN+1,N+1

N+1,ij 0 · · · 0

0 yN+2,N+2
2ij + yN+2,N+2

N+2,ij · · · ...
...

. . . 0

0 · · · 0 y2N,2N
Nij + y2N,2N

2N,ij













, (3.13)

where, for compactness, we have defined the admittances from aperture Sn to Sm through

region X as

ymn
Xij = −〈~mm,i|

←→
G X |~mn,j〉. (3.14)

For the multiple branch waveguide junction, there are four different kinds of admittances:

1. the self-admittance of an aperture in the infinite waveguide region,

2. the self-admittance of an aperture in the slot cavity region,

3. the mutual admittance between two apertures on the same wall in the infinite waveg-

uide region,

4. the mutual admittance between two apertures in the slot cavity region.

Expressions for the four admittances, as well as for the coupling between basis functions

and waveguide modes, are derived in appendix E.

The scattering parameters are derived in the same manner as in Sec. 2.5.3. Since the S-

parameters are given by sums over the coupling between the incident waveguide mode and

the basis functions in the apertures, weighted by the corresponding expansion coefficient

of the magnetic current, it is easy to show that

S =
1

2
V T I, (3.15)



46 MoM Discretization of Waveguide Coupling Junctions

Figure 3.3: Waveguide coupling junction with a two layered feeding structure and an
arbitrary number of branch waveguides on top.

where S is the scattering matrix for the multiple branch waveguide junction.

3.2 Multiple Branch Waveguide Junction with Two

Layered Feeding Structure

In this section a waveguide junction consisting of a two layered feeding structure is exam-

ined, and a method for calculating the scattering parameters is presented. The geometry

is shown in Fig. 3.3, and is identical to the one discussed in the previous section, but with

an additional waveguide below the bottom one and connected to this through a compound

slot. This new, bottom waveguide can have an arbitrary tilt relative to the middle feed

waveguide.

The derivation of the scattering parameters will proceed in a way completely analogous to

that in Sec. 3.1, the only difference being the number of integral equations involved.

Fig. 3.4 shows a cross section of the coupling junction. The region inside the bottom feed

waveguide is denoted as wF , the upper feed waveguide (middle layer) is region w0, and the

branch waveguides are denoted w1, w2 up to wN . Similarly, the slot cavities are denoted

as c0, c1, ..., cN .
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Figure 3.4: Cross section of the coupling junction with a two layered feeding structure.
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For each surface, an integral equation is obtained by requiring that the magnetic field is

continuous across that surface, specifically the following 2N + 2 equations are obtained

| ~H1
in〉+

←→
G F | ~MF 〉 = −

←→
G c0 | ~MF 〉+

←→
G c0 | ~M0〉, ~r ∈ SF .

−←→G c0 | ~MF 〉+
←→
G c0 | ~M0〉 = | ~H2

in〉 −
←→
G w0
| ~M0〉+

N
∑

k=1

←→
G w0
| ~Mj〉, ~r ∈ S0

| ~H2
in〉+

N
∑

k=1

←→
G w0
| ~Mj〉 = −

←→
G cq | ~Mq〉+

←→
G cq | ~MN+q〉, ~r ∈ Sq, q = 1, 2, ..., N.

−←→G cq | ~Mq〉+
←→
G cq | ~MN+q〉 = | ~H3

in〉 −
←→
G wN+q

| ~MN+q〉, ~r ∈ SN+q, q = 1, 2, ..., N.

(3.16)

The first equation describes continuity across the bottom surface SF , the second one de-

scribes continuity across S0, and so on.

The magnetic currents ~Mk are expanded according to ~Mk =
∑Q

j=1 Vkj ~mkj. The inner

product is then taken between the integral equation representing continuity across surface

Sk and all basis functions ~mki, i = 1, 2, ..., Q. The system of integral equations (3.16) then

becomes the matrix equation

Y V = I. (3.17)

In the above equation, V is the vector of expansion coefficients, given by

V =
[

VFi V0i V1i · · · V2N,i

]T

, (3.18)

Furthermore, I is the excitation matrix whose columns are given by

I1 =
[

〈~mFj| ~H+
10〉 0 · · · 0

]T

, (3.19)

I2 =
[

〈~mFj| ~H−
10〉 0 · · · 0

]T

. (3.20)

Each element in the above vectors are actually themselves vectors of length Q. When the
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junction is excited from port 3 or 4, the corresponding columns of I are

I3 =
[

0 −〈~m0j| ~H+
10〉 〈~m1j| ~H+

10〉 · · · 〈~mNj| ~H+
10〉 0 · · · 0

]T

, (3.21)

I4 =
[

0 −〈~m0j| ~H−
10〉 〈~m1j| ~H−

10〉 · · · 〈~mNj| ~H−
10〉 0 · · · 0

]T

. (3.22)

Finally, when the junction is excited from port 2n + 3 or 2n + 4 (these are the two ports

in branch waveguide number n), the corresponding columns of I are

I2n+3 =
[

0 · · · 0 −〈~mN+n,j| ~H+
10〉 0 · · · 0

]T

, (3.23)

I2n+4 =
[

0 · · · 0 −〈~mN+n,j| ~H−
10〉 0 · · · 0

]T

. (3.24)

Finally, the matrix Y in (3.17) is given by

Y =











YF YF0 0 0

(YF0)
T Y0 Y0m 0

0 (Y0m)
T Y11 Y12

0 0 (Y12)
T Y22











, (3.25)

where each element is a submatrix, given by

YF = yFF
wF ij + yFF

c0ij
, (3.26a)

YF0 = −yF0
c0ij
, (3.26b)

Y0 = y00w0ij
+ y00c0ij, (3.26c)

Y0m =
[

−y01w0ij
−y02w0ij

. . . −y0Nw0ij

]

, (3.26d)

and the matrices Y11, Y12 and Y22 are given by the expressions (3.10), (3.11) and (3.13).

Recall that the quantities ymn
Xij are admittance matrices of size Q×Q, and given by (3.14).

The mutual admittance between slots in the upper and lower wall of the waveguide is

derived in appendix E.

Once the expansion coefficients V have been solved for, the scattering parameters are



50 MoM Discretization of Waveguide Coupling Junctions

calculated from

S =
1

2
V T I. (3.27)

3.3 Choice of slot basis functions

The last step in the MoM treatment of the waveguide coupling junctions is to decide what

particular set of basis functions to use in the expansion of the magnetic current, since

this will determine the form of the admittances and mode couplings that occur in the

expressions for the scattering parameters derived above.

Previous analyses of similar problems have assumed that the magnetic current is directed

longitudinally along the slot with no variation transversely across the slot. This assumption

is good for moderately and strongly excited slot, but fails to accurately model weakly

excited slots. Since the purpose of this thesis is to develop a MoM technique for waveguide

coupling junctions that is valid even for very weakly excited slots, these transverse effects

of the magnetic current must be included in our choice of basis functions.

The magnetic current is directly related to the electric field in the apertures through the

relation
~M = ~E × n̂, (3.28)

which means that an expansion of the magnetic current is directly related to a correspond-

ing expansion of the electric field in the aperture, and perhaps the most natural expansion of

the electric field is that in terms of TE and TMmodes that exist inside the slot cavity. From

the expressions for these modes in section B.1 and B.2 it is concluded that a very natural ex-

pansion for the magnetic current is ~M l(~r) =
∑

m,n amn sin
[

mπ
l

(

s+ l
2

)]

cos
[

nπ
w

(

t+ w
2

)]

ŝ for

the longitudinal magnetic current, and ~M t(~r) =
∑

m,n bmn cos
[

mπ
l

(

s+ l
2

)]

sin
[

nπ
w

(

t+ w
2

)]

t̂

for the transverse magnetic current. The vectors ŝ and t̂ are unit vectors directed longi-

tudinally and transversely across the slot, respectively, and s and t are the corresponding

coordinates. The center of the (s, t) coordinate system is in the center of the slot aperture.

However, we will not use these expansions, but rather employ a more symmetric expansion

that simplifies the calculation of admittances and mode couplings. Specifically we expand
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the magnetic currents according to

~M l(~r) =
∑

p,q

alpq ~m
l
pq(~r), ~M t(~r) =

∑

p,q

atpq ~m
t
pq(~r) (3.29)

where

~ml
pq(~r) = sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

ŝ, (3.30)

~mt
pq(~r) = cos

[

qπ

l

(

l

2
− s
)]

sin
[pπ

w

(

t+
w

2

)]

t̂.

Note that the transverse basis functions are identical to the longitudinal basis functions

of a slot that is tilted an additional 90◦ and whose length is the original slot’s width, and

whose width is the original slot’s length. Because of this, all expressions for admittances

and coupling to waveguide modes that are valid for the longitudinal components can be

immediately reused for the transverse components as well. We only have to do these

calculations once (see appendix E).

This set of basis functions is used for both the lower and upper aperture in a given slot.

For aperture k, the expansions in the previous two sections were written more compactly

as

~Mk =

Q
∑

j=1

Vkj ~mkj, (3.31)

where it was assumed that the sum over j include both the transverse and longitudinal

polarization of the magnetic current, and for each of these all relevant combinations of

the indices p and q for the longitudinal and transverse variations, for a total of Q basis

functions for each aperture. In other words we have assumed that for a given k the {~mkj}Qj=1

corresponds to some predetermined listing of all basis functions for aperture k.
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Chapter 4

Numerical Results

This chapter presents and discusses the numerical results obtained through using MAT-

LAB to apply the MoM procedures as detailed in Chapter 3 to a variety of waveguide

configurations. First, in Secs. 4.1 and 4.2, results for the waveguide junction with a single

feeding layer are presented for cases with one and two branch waveguides, respectively,

followed by a configuration for the two layered feeding structure in Sec. 4.3.

In this chapter, when discussing the number of basis functions used in a given calculation,

it will be written on the form N = N l
p ×N l

q +N t
p ×N t

q . This means that the longitudinal

magnetic current has been expanded as

~M l(~r) =

N l
p

∑

p=1

N l
q−1
∑

q=0

alpq ~m
l
pq(~r), (4.1)

and the transverse magnetic current has been expanded as

~M t(~r) =

Nt
p

∑

p=1

Nt
q−1
∑

q=0

atpq ~m
t
pq(~r). (4.2)
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Port 1

Port 2

Port 3

Port 4

Figure 4.1: Two-waveguide coupling junction.

4.1 Two-waveguide Coupling Junction

Two different types of junctions with only two waveguides (one feed waveguide and one

branch waveguide, cf. Fig 4.1) coupled through a slot were analyzed using the procedure

outlined in Sec. 3.1. The difference between the two cases concerned the slot dimension

and its tilt angle. In the first case, to be presented in Sec. 4.1.1, the slot was narrow,

centered and longitudinal, i.e. straddling the center line of the feed waveguide with no tilt

relative to the feed waveguide axis. The second case consists of a centered but tilted very

wide slot (its width is on the same order of magnitude as its length), to be presented in

Sec. 4.1.2.

4.1.1 Centered and longitudinal slot

The reason this case is included is because previous moment method analyses of slot

coupled waveguides (with the exception of Cynthia, [14]) have assumed that the magnetic

currents on the apertures only have a longitudinal component, and that this component

has no transverse variation across the slot. In particular, this means that for a centered,

longitudinal slot, the coupling 〈~m1j| ~Hin〉 between the basis functions and the incident mode

is zero, and hence the RHS (3.6) of the matrix equation vanishes. This means that the

magnetic current vanishes, and hence the only non-zero scattering parameter is S21, which

will be equal to unity. In other words, a longitudinal and centered slot leads to absolutely
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Port 1

Port 2

Port 3 Port 4

a

l
w

t
b

a

Dimension Value
f Varies
a 47.55mm
b 23.775mm
w Varies
l 23.775mm
t 1.18875mm

Table 4.1: Dimensions of the centered, longitudinal slot and waveguide junction for which
the S11 parameter is calculated for 30 different cases and compared to Cynthia’s results.

no coupling between the waveguides if these assumptions are made; it is as if the slot did

not exist at all.

In [14], the S11 parameter was listed for different slot dimensions and frequencies for this

geometry. To validate the method presented in this thesis, utilizing entire domain trigono-

metric basis functions, comparisons were made with Cynthia’s results in [14]. As we will

see, the agreement is very good.

Scattering parameters

In order to compare the results generated by the method presented in this thesis to those of

Cynthia [14], the S11 parameter of the two-waveguide junction was calculated at ten differ-

ent frequencies for three different slot dimensions, for a total of 30 cases. The dimensions

are shown in Table 4.1.

All 30 calculated values for S11 are shown in Fig. 4.2, together with the corresponding

values as calculated by Cynthia. The agreement is very good.

When evaluating the S-parameters, both the longitudinal and transverse currents were

expanded into 10 × 10 basis functions, for a total of 10 × 10 + 10 × 10 basis functions.

In the mode summations (corresponding to the eigenfunction expansions of the Green’s



56 Numerical Results

3.5 4 4.5 5 5.5 6
−60

−55

−50

−45

−40

−35

−30

Frequency / [GHz]

R
e
fl
e
c
ti
o
n
 c

o
e
ff
ic

ie
n
t 
(d

B
)

Reflection coefficient as a function of frequency
Parameters: b = 0.5a, l = 0.5a, t = 0.025a

 

 

w = 0.05a

w = 0.10a

w = 0.15a

Trigonometric BF

Cynthia

Figure 4.2: S11 for a centered, longitudinal slot for different frequencies and slot widths,
as calculated by Cynthia and as calculated by the trigonometric basis function approach
developed in this thesis.

functions), 80, 000 waveguide modes in the y-direction and 20 waveguide modes in the

z-direction were included. The calculated S-parameters changed very little (< 1%) when

the number of modes or basis functions was increased by 50%, so the convergence seemed

good.

Cynthia’s scattering parameters were evaluated using a moment method solution employing

polynomial basis functions rather than the trigonometric ones described here, and it is thus

a very good sign that both MoM approaches yield almost identical results.

Electric fields in the apertures

The tangential electric field in the aperture was calculated for one particular centered and

longitudinal slot, using the relation ~Et = n̂ × ~M . The frequency of operation, as well as
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Table 4.2: Dimensions of the centered, longitudinal slot and waveguide junction for which
S11 and the aperture electric field was calculated.

Quantity Value
f 9GHz
a 22.86mm
b 10.16mm
w 1.5875mm
l 15.39494mm
t 0mm

Table 4.3: Test for convergence for the slot with parameters listed in Table 4.2. The
calculated S-parameters differ by less than one percent, and thus exhibit good convergence.

Number of basis functions Modes in y-direction Modes in z-direction S11

10 ×10 + 10× 10 80 000 20 0.006188
10 ×10 + 10× 10 160 000 20 0.006163
15 ×15 + 15× 15 100 000 20 0.006224

all relevant geometrical dimensions, are shown in Table 4.2.

Figs. 4.4, 4.5a and 4.5b show the variation of the longitudinal and transverse components

of the electric field on the lower aperture surface. The transverse component of the field is

negligible at the center line t = w/2, so it is not shown. All amplitudes are normalized to

the amplitude of the incident field at the center of the feed waveguide. This same behaviour

of the fields was reported in [14].

Convergence of the results is something that must be considered. Table 4.3 shows two

different runs, with different number of modes included in the mode summation, and a

different number of basis functions. The two runs differ by less than 1%, and both of these

are in excellent agreement with the value S11 = 0.0062 published in [14]. Fig. 4.3 shows

the calculated S11 parameter as a function of the number of y-directed modes included,

for four different choices of basis functions, and it can be seen that the program seems to

converge for around 100, 000 modes and about 10x10+10x10 basis futions.

The S11 parameter for this configuration was also calculated by the commercial computa-

tional FEKO software, yielding an S11 of 0.00654.
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Figure 4.4: The transverse variation of the transverse component of the electric field in
the lower aperture, evaluated trasnverse across the longitudinal middle (dotted line) of the
slot.
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Figure 4.5: Transverse and longitudinal variation of the longitudinal component of the
electric field in the lower aperture. Fig. (a) is evaluated across the longitudinal middle
(dotted line) of the slot, and Fig. (b) is evaluated across the transverse middle (dotted
line) of the slot.
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4.1.2 Wide tilted slot

The S-parameters were calculated for the case of a centered, wide slot with different tilt

angles between 0◦ and 90◦, in the three following ways

1. using the trigonometric basis functions discussed in this thesis, including both the

longitudinal and transverse polarizations;

2. using the trigonometric basis functions, but including only the longitudinal current

and neglecting the transverse variation;

3. using the FEKO software.

The reason for choosing this particular geometry is that we are interested in a setup

for which the transverse effects of the magnetic current, i.e., transverse polarization and

variation, contribute significantly to the coupling between the waveguides. When including

only the longitudinal current, the MoM approach described in this thesis reduces to the

”old” approach that is known to yield good results for moderately and strongly excited

slots (see e.g. [9, 10]). We are thus mainly interested in finding specific setups where the

transverse effects play a significant role and can thus be used to validate this extension to

the old theory. And intuitively, a very wide slot would seem like a case where the transverse

effects would play a significant role. As will be shown below, they do.

The method presented in Sec. 3.1 was used to analyze two waveguides connected through

a wide slot for a series of angles ranging from 0◦ to 90◦. These angles were analyzed twice,

first including the transverse polarization and variation, and then for only a longitudinal

magnetic current that is constant transversely across the slot. FEKO was then used to

calculate the S-parameters for the same geometries. The results are shown in Fig. 4.6. All

values for the geometrical parameters, as well as the used frequency, are listed in Table

4.7.

Note that the computed values, when including the transverse variation and polarization,

agree well with the values given by FEKO, while there is a noticeable difference between the

FEKO values and the herein computed values when neglecting the transverse polarization

and variation.
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Figure 4.6: The S-parameters in a waveguide junction with a wide slot for different tilt
angles as calculated by a MoM approach when the transverse variation and polarization of
the magnetic current is (a) accounted for and (b) neglected, together with values that are
calculated by the FEKO software for the same geometry.
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Table 4.4: Frequency and values for geometrical parameters for the wide slot.

Quantity Value
f 5GHz
a 47.55mm
b 22.15mm
w 20mm
l 28mm
t 1.62mm

The moderate disagreement with FEKO for S21 at large angles is because these values had

not quite converged yet. Attempts to increase the accuracy by including more waveguide

modes or basis functions changed the calculated S21 values towards the FEKO values,

but the number of modes soon became too many for the calculation to be performed in

a feasible amount of time. In [9] it was noted that strongly coupled slots required the

inclusion of more modes before reaching convergence, and perhaps it is this effect that can

be observed here.

Fig. 4.7 shows two plots. In Fig. (a), the convergence properties of S21 for the tilt angle

θ = 20◦ is shown. Note that the S-parameter varies very little when the number of basis

functions or the number of y-directed waveguide modes are increased. Fig. (b) shows a

corresponding plot for the tilt angle θ = 80◦, and it is here clear that the S-parameter

has not yet reached convergence for 40x40 + 40x40 basis functions when less than 25,000

y-directed waveguide modes are included.

4.2 Two Branch Waveguide Junction

Two different cases were examined for the waveguide junction consisting of two branch

waveguides connected to a single feeding waveguide using the procedure described in Sec.

3.1. In the first case, presented in section 4.2.1 below, one of the slots was oriented

completely longitudinally but with an offset, while the other slot was centered and tilted.

The second case, presented in Sec. 4.2.2, consists of one centered and longitudinal slot and

one slot that is centered and longitudinal, and one that is longitudinal but with a small

offset from the center line of the feed waveguide. The general geometry for both cases is

shown in fig 4.8.
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Figure 4.7: The convergence properties for S21 for the wide tilted slot. Figure (a) is
calculated for a tilt θ = 20◦, and figure (b) is for θ = 80◦.
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Figure 4.8: Waveguide junction consisting of a single feeding waveguide connected to
two branch waveguides.

The two slots in the first case are moderately excited, and as will be shown, the transverse

polarization and variation play a small but noticeable role. In the second case however,

the slots are weakly excited, and the transverse effects must be included to obtain accurate

results.

4.2.1 Two branch waveguide junction with moderately excited

slots

All relevant geometrical parameters are listed in Table 4.5.

The S-parameters in this geometry were computed for 30 linearly spaced frequencies be-

tween 5 and 6GHz, both when the transverse effects of the magnetic current were included

and when they were excluded. In addition, FEKO was used to calculate the S-parameters

for 11 frequencies in the same interval. The results are shown in Figs. 4.9(a) and 4.9(b).

In Fig. 4.9 (b) (where no transverse effects included), the program has converged for

40 longitudinal basis functions, 30, 000 y-directed modes and 20 z-directed modes. The

difference between the S-parameters calculated by FEKO and by the trigonometric basis

function MoM is no larger than around 0.3 dB, except for S11, where the difference for

frequencies close to 6GHz is on the order of 0.7 dB.



4.2 Two Branch Waveguide Junction 65

o θ1

a

a

a

x1

z1

θ2

x2 z2

Port 1

Port 2

Port 3 Port 4

Port 5 Port 6

Dimension Value
a 38.48mm
b 10mm
w 3mm
l 28mm
t 1mm
z1 3a/4
z2 3a/4
x1 5mm
x2 0mm
θ1 0◦

θ2 15◦

Table 4.5: Geometrical parameters for the two branch waveguide junction with moder-
ately excited slots. b and t are the waveguide height and slot thickness, respectively.

When the transverse polarization and variation are included in the method of moments

calculations, the results agree slightly more with FEKO, though the improvement is rather

marginal, especially when considering that the run time was around 6 times longer when the

transverse effects were included in the calculations. However, both cases were significantly

quicker than FEKO (over 100 times faster). When including transverse effects, 20x20 +

20x20 basis functions, 15, 000 y-directed waveguide modes and 15 z-directed ones were

sufficient for convergence.

For moderately excited slots, it thus seems that including only longitudinal effects for the

magnetic current is sufficient to obtain good results, but if the additional time can be

afforded, including the transverse effects will give even more accurate results.

4.2.2 Two branch waveguide junction with weakly excited slots

A waveguide junction with two branch waveguides connected to a feeding waveguide

through weakly excited slots was also studied. One of the slots was completely centered

and oriented longitudinally, while the other slot was longitudinal but offset 0.5mm from

the axis of the feeding waveguide. The geometrical parameters are listed in Table 4.6.
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Figure 4.9: S-parameters for different frequencies in the two branch waveguide coupling
junction with one offset and one tilted slot, as calculated when transverse effects are in-
cluded (a) and neglected (b). The dots denote the corresponding points as calculated by
FEKO (transverse effects are included in FEKO).
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o θ1

a

a

a

x1

z1

θ2

x2 z2

Port 1

Port 2

Port 3 Port 4

Port 5 Port 6

Quantity Value
a 38.48mm
b 10mm
w 3mm
l 28mm
t 1mm
z1 a/2+3mm
z2 a/2+3mm
x1 0.5mm
x2 0mm
θ1 0◦

θ2 0◦

Table 4.6: Geometrical parameters for the two branch waveguide junction with weakly
excited slots. b and t are the waveguide height and slot thickness, respectively.

When only the longitudinal effects were included, the method converged at 80 basis func-

tions, 30, 000 y-directed waveguide modes and 15 z-directed ones. When the trans-

verse effects are included, the program converges for 20x20 + 20x20 basis functions,

30, 000 y-directed waveguide modes and 15 z-directed ones. The results are shown in Figs

4.10(a) and 4.10(b). The solid lines denote the points as calculated by the trigonometric

basis function method described in this thesis, while the dots denote the corresponding

points as calculated by the FEKO software.

In this case it is clear that the transverse effects cannot be ignored, as seen in Fig. 4.10

(b).

4.3 Two Layered Feeding Structure

The S-parameters of the waveguide junction with two feed waveguides and two branch

waveguides shown in Fig. 4.11 were computed using the MoM approach described in 3.2,

as well as with FEKO. The results are shown in figure 4.12.

In the MoM program, only longitudinal basis functions with no transverse variation were

used. To reach convergence, 160 basis functions were needed, 60,000 y-directed waveguide
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Figure 4.10: S-parameters for different frequencies in the two branch waveguide coupling
junction with weakly excited slots, as calculated when the transverse polarization and
variation of the magnetic current were included (a) and neglected (b). The dots denote
the corresponding points as calculated by FEKO.
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Figure 4.11: Waveguide junction with two-layered feeding structure and two branch
waveguides.

Table 4.7: Frequency and values for geometrical parameters for the waveguide junction
with a two layered feeding structure. The parameters for the two upper slots are defined
as in the previous section. The slot between the two feeding waveguides is placed such
that it is centered in both waveguides, and makes an angle θF with the bottom feeding
waveguide, and an angle θ0 with the middle feeding waveguide.

Quantity Value
a 38.78mm
b 10mm
w 3mm
l 28mm
t 1mm
x1 0mm
x2 5mm
z1 3a/4
z2 3a/4
θF 15◦

θ0 5◦

θ1 20◦

θ2 0◦
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Figure 4.12: S-parameters for the waveguide junction with a two-layered feeding struc-
ture as computed by the MoM approach described in this thesis, as well as by the FEKO
software (dots).

modes and 30 z-directed ones. When the transverse polarization and variation were in-

cluded, good convergence couldn’t be achieved, but the general form of the curves was very

similar to the ones in Fig. 4.12. Since the slots are moderately excited, no big advantage

from including the transverse effects was expected.

FEKO had not converged completely either; when the mesh was refined around the slots,

the values changed on the order of several tenths of decibels in the direction of the curve

calculated by the MoM approach.



Chapter 5

Conclusions

In this work, a method of moments technique was developed that enabled fast and accu-

rate analysis of waveguides coupled through rectangular apertures. By employing a basis

function expansion corresponding to the modal expansion of the electric field in the slot

cavities, both polarizations of the electric field in the slot apertures, as well as the trans-

verse variation of the fields across the slots, could be accounted for. The finite slot thickness

was also included in the analysis.

A MATLAB program was developed to test the theory for specific waveguide configura-

tions, and comparisons were made with the FEKO software and results published previously

in the literature. The agreement was good, and the MATLAB program was in all cases

significantly faster than the corresponding FEKO computations.

The main disadvantage of the code is that convergence is sometimes an issue. This was

seen when examining the wide tilted slot. For small tilt angles the S-parameters con-

verged very quickly, while for large angles good convergence was hard, if not impossible,

to achieve. This was also seen for larger structures, such as the waveguide junction with a

two layered feeding structure. Convergence was achieved when the transverse polarization

of the magnetic current was included, but was, due to memory constraints, not achieved

when the transverse component was included. However, it seems that even if convergence

is not quite achieved, the computed value still lies in the neighborhood of the actual value.
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5.1 Future Improvements

The possibility of improvements comes in two different forms: improvements of the theory

or of the implementation.

The implementation could be improved by writing the code in a high-performance language,

such as C, instead of MATLAB. This would not only make the code faster, but would also

require less memory, since an unnecessary amount of data must be stored simultaneously in

memory to make use of MATLAB’s vectorization features. The parallel nature of the MoM

problem could also be taken advantage of. Since all matrix elements can be calculated

independently of one another, it might be worthwhile to consider implementing it in a

language where one can take advantage of multiple processing cores or the graphics card

to accelerate performance.

On the theory side, one might consider using numerically generated basis functions (the

characteristic basis function method, CBFM) to decrease computation time for large struc-

tures.



Appendix A

List of Integrals

This appendix contains a collection of closed form expressions for various integrals encoun-

tered when applying the method of moments.

A.1 Integrals for T-Junction Waveguide
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A.2 Integrals encountered when evaluating y-mode

coupling

The two integrals Iysupqβ and Iycupqβ are encountered when evaluating the coupling between

the slot basis functions and the y-travelling modes in the virtual cavity. These are evaluated

below.

A.2.1 Evaluation of first integral

The integral is given by

Iysupqβ =

∫ l/2

s=−l/2

∫ w/2

t=−w/2

sin
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dsdt.

(A.3)

To simplify notation, define the following quantities:

α = sin
[mπ

a

(
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(A.4a)

β = cos
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γ = sin
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(A.4c)

δ = cos
[qπ

w

(

t+
w

2
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(A.4d)

By employing the multiplication formulas for sine and cosine, the integral may be rewritten
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as

Iysupqβ =

∫∫

S
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(A.5)

All of the above integrals are of the same general form:

I1 =

∫∫

S

sin(α + uβ) sin(γ + vδ)dS, (A.6)

where the constants u and v are either 1 or -1. Using the product rule for sine, this is in

turn written as

I1 =

∫∫
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(A.7)

By inserting the Eqs. (A.4) and the expressions (E.11) into the above expression, each of

the integrals can be evaluated:

∫∫

S

cos(α + uβ ± γ ± vδ)dS =
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(A.8)

where the coefficients in front of s, t and the constant have been labeled cs, ct and c0,

respectively, and are given by
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Every part of the original integral Iysupqβ have now been evaluated.

A.2.2 Evaluation of the second integral

In this section we turn towards the evaluation of the second integral

Iycupqβ =

∫ l/2

s=−l/2

∫ w/2

t=−w/2

cos
[mπ

a

(

xβ(s, t) +
a

2

)]

sin
[nπ

c

(

zβ(s, t) +
c

2

)]

·

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

dsdt.

(A.12)

By using the product formula for sine and cosine, this can be rewritten as

Iycupqβ =

∫∫

S

1

2
[sin(α + β) + sin(β − α)] 1

2
[sin(γ + δ) + sin(γ − δ)] dS =

=
1

4

∫∫

S

sin(α + β) sin(γ + δ)dS +
1

4

∫∫

S

sin(α + β) sin(γ − δ)dS+

− 1

4

∫∫

S

sin(α− β) sin(γ + δ)dS − 1

4

∫∫

S

sin(α− β) sin(γ − δ)dS.

(A.13)

All of the above integrals were encountered and evaluated in the previous section.

A.3 Integrals encountered when evaluating z-mode

coupling

The two integrals Izsupqβ± and Izcupqβ± are encountered when evaluating the coupling between

the slot basis functions and the z-travelling modes in the virtual cavity. These are evaluated

below.
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A.3.1 Evaluation of first integral

The integral is given by

Izsupqβ± =

∫∫

Sβ

sin
[mπ

a

(

xβ(s, t) +
a

2

)]

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

e±γuzzdS.

(A.14)

Using the definitions (A.4) and the sine and cosine product formula, the above is rewritten

as

Izsupqβ± =
1

2

∫∫

S

sinα sin(γ + δ)e±γuzdS +
1

2

∫∫

S

sinα sin(γ − δ)e±γuzdS =

=
1

4

∫∫

S

cos(γ + δ − α)e±γuzdS − 1

4

∫∫

S

cos(γ + δ + α)e±γuzdS+

+
1

4

∫∫

S

cos(γ − δ − α)e±γuzdS − 1

4

∫∫

S

cos(γ − δ + α)e±γuzdS.

(A.15)

All of the above integrals are of the form

I2 =

∫∫

S

cos(γ + uδ + vα)e±γuzdS, (A.16)

where u and v are either 1 or -1. Substutituting back the expressions (A.4), as well as the

expressions (E.11), the above integral is rewritten as

I2 = e±γuz0

∫ l/2

s=−l/2

∫ w/2

t=−w/2

cos [c′ss+ c′tt+ c0] e
±γus cos θe∓γut sin θdsdt, (A.17)

where we have defined

c′s =
pπ

l
− vmπ

a
sin θ, (A.18)

c′t = u
qπ

w
− vmπ

a
cos θ, (A.19)

c′0 =
pπ

2
+ u

qπ

2
+ v

mπ

2
+ v

mπ

a
x0. (A.20)
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Integrating this yields the result

I2 = e±γuz0
e∓γu sin θw

2

γ2u sin
2 θ + c′2t

[

∓γu sin θ
∫ l/2

−l/2

e±γus cos θ cos(c′ss+ c′t
w

2
+ c′0)ds+

+ c′t

∫ l/2

−l/2

e±γus cos θ sin(c′ss+ c′t
w

2
+ c′0)ds

]

+

− e±γuz0
e±γu sin θw

2

γ2u sin
2 θ + c′2t

[

∓γu sin θ
∫ l/2

−l/2

e±γus cos θ cos(c′ss− c′t
w

2
+ c′0)ds+

+ c′t

∫ l/2

−l/2

e±γus cos θ sin(c′ss− c′t
w

2
+ c′0)ds

]

,

(A.21)

where the two kinds of integrals in this expression are given by

∫ l/2

−l/2

e±γus cos θ cos(c′ss+ c′tA+ c′0)ds =

=

[

e±γus cos θ

γ2u cos
2 θ + c′2s

(±γu cos θ cos(c′ss+ c′tA+ c′0) + c′s sin(c
′
ss+ c′tA+ c′0))

]s=l/2

s=−l/2

,

(A.22)

and

∫ l/2

−l/2

e±γus cos θ sin(c′ss+ c′tA+ c′0)ds =

=

[

e±γus cos θ

γ2u cos
2 θ + c′2s

(±γu cos θ sin(c′ss+ c′tA+ c′0)− c′s cos(c′ss+ c′tA+ c′0))

]s=l/2

s=−l/2

,

(A.23)

where A is a constant (set to either w/2 or −w/2 when evaluating Eq. (A.27)). All parts

of the expression for Izsupqβ± have now been evaluated.

A.3.2 Evaluation of the second integral

In this section we turn towards the evaluation of the second integral

Izcupqβ± =

∫∫

Sβ

cos
[mπ

a

(

xβ(s, t) +
a

2

)]

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

e±γuzzdS.

(A.24)

Using the definitions (A.4) and the product rules for sine and cosine, the integral can be
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written

Izcupqβ± =
1

4

∫∫

S

sin(γ + δ − α)e±γuzdS +
1

4

∫∫

S

sin(γ + δ + α)e±γuzdS+

+
1

4

∫∫

S

sin(γ − δ − α)e±γuzdS +
1

4

∫∫

S

sin(γ − δ + α)e±γuzdS.

(A.25)

The above expression consists of integrals of the form

I3 =

∫∫

S

sin(γ + uδ + vα)e±γuzdS, (A.26)

where u and v are either 1 or -1. Note the similarity to Eq. (A.16). This integral is

evaluated in the same way. The result is

I3 = e±γuz0
e∓γu sin θw

2

γ2u sin
2 θ + c′2t

[

∓γu sin θ
∫ l/2

−l/2

e±γus cos θ sin(c′ss+ c′t
w

2
+ c′0)ds+

− c′t
∫ l/2

−l/2

e±γus cos θ cos(c′ss+ c′t
w

2
+ c′0)ds

]

+

− e±γuz0
e±γu sin θw

2

γ2u sin
2 θ + c′2t

[

∓γu sin θ
∫ l/2

−l/2

e±γus cos θ sin(c′ss− c′t
w

2
+ c′0)ds+

− c′t
∫ l/2

−l/2

e±γus cos θ cos(c′ss− c′t
w

2
+ c′0)ds

]

,

(A.27)

where the integrals were evaluated in the previous section.
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Appendix B

Modes in a Rectangular Waveguide

Consider a uniform waveguide with rectangular cross section with its axis parallel to the

z-axis, as shown in Fig. B.1. Let it be filled with a homogeneous and source-free dielectric

with constitutive parameters ǫ and µ.

In any waveguide of uniform cross section, there will exist a countably infinite set of

eigenfunctions, or modes, which are fundamental fields into which an arbitrary field in

the waveguide can be decomposed. We will in this section derive the modal functions in

a rectangular waveguide. This section is not intended to be a thorough introduction to

waveguide theory, but rather provides the relevant expressions for the modes, as well as

some orthogonality conditions that will be used when deriving Green’s functions in the

next section. The derivations in this section are based on the ones in [19, pp.xx–yy]. See

also [20, pp. 239–246] for similar derivations.

By taking the curl of the time harmonic Faradays’s law of induction and Ampere’s law,

it is observed that in a source free region the ~E and ~H fields satisfy the vector Helmholtz

equations:

(∇2 + k2) ~E = 0 (B.1)

(∇2 + k2) ~H = 0, (B.2)

where k = ω
√
ǫµ is the wavenumber of the medium. Since the waveguide is completely

uniform along z, we further assume a z-dependence of e∓γz, where γ is called the propaga-
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b

a

x

y

z

Figure B.1: A uniform waveguide with rectangular cross section of dimension a× b. The
waveguide may be filled with a dielectric with dielectric constant ǫ.

tion constant of the wave, to be determined. Note that a purely imaginary γ corresponds

to travelling waves, while a γ with a non-zero real component corresponds to exponentially

decaying (evanescent) waves. Different z-dependencies can be created by a superposition of

these waves, and enforcing this can be seen simply as taking the spatial Fourier transform

of the fields along z. Waves travelling in the positive z-direction will have the minus in the

exponent, while waves travelling in the negative z-direction will have the plus sign.

With this dependence established, the Laplacian takes the form

∇2 = ∇2
t + γ2, (B.3)

where

∇2
t =

∂2

∂x2
+

∂2

∂y2
(B.4)

is the transverse part of the Laplacian. The Helmholtz equation then takes the form

∇2
t
~E + (k2 + γ2) ~E = 0 (B.5)

∇2
t
~H + (k2 + γ2) ~H = 0.

Each component of the electric and magnetic fields must satisfy the above Helmholtz
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equations, but not all components of ~E and ~H are independent. By expanding the two

Maxwell equations ∇ × ~E = −jωµ ~H and ∇ × ~H = jωǫ ~E in Cartesian coordinates and

solving for the transverse components of ~E and ~H in terms of the longitudinal components

Hz and Ez, one obtains the following relations between the components:

Hx = − 1

k2cu

(

±γ ∂Hz

∂x
− jωǫ∂Ez

∂y

)

(B.6)

Hy = −
1

k2cu

(

±γ ∂Hz

∂y
+ jωǫ

∂Ez

∂x

)

Ex = − 1

k2cu

(

±γ ∂Ez

∂x
+ jωµ

∂Hz

∂y

)

Ey = −
1

k2cu

(

±γ ∂Ez

∂y
− jωµ∂Hz

∂x

)

,

where we have introduced the cut-off wavenumber k2cu = γ2+ k2, which corresponds to the

largest possible wavenumber that is allowed for propagating modes. Modes with wavenum-

bers larger than this will be evanescent, as will be apparent soon.

Perhaps the most important conclusion from the above equations is that the transverse

components of the fields are completely determined by the longitudinal field components;

the z-component is the only degree of freedom. This means that we only need to concern

ourselves with the z-components of the vector Helmholtz equations in (B.5), that is,

∇2
tEz + (k2 + γ2)Ez = 0 (B.7)

∇2
tHz + (k2 + γ2)Hz = 0.

The possible field solutions can now be grouped into three distinct categories: (i) Transverse

Electric (TE) waves having Ez = 0, Hz 6= 0; (ii) Transverse Magnetic (TM) waves satisfying

Hz = 0, Ez 6= 0, and; (iii) Transverse ElectroMagnetic (TEM) waves having Ez = Hz =

0. It turns out that TEM waves cannot exist inside our rectangular waveguide, see for

example [16] or [21] for a detailed explanation. The troublesome part is the fact that the

denominator k2cu may be zero, and thus it is not as simple as just letting Ez = Hz = 0 and

saying that the transverse components vanish in view of equations (B.6)).

Any wave with Ez 6= 0 and Hz 6= 0 can be treated as a superposition of a TE wave and a

TM wave.
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B.1 Transverse Electric Waves

TE waves have a transversely directed electric field, i.e., Ez = 0, as the name suggests. By

setting Ez to zero in Eqs. (B.6), we observe that the transverse component of the electric

and magnetic fields can be calculated from Hz as

~Ht = ∓
γ

k2cu
∇tHz (B.8)

~Et =
1

k2cu
jωµ ẑ ×∇tHz.

The longitudinal component of the magnetic field is determined from the Helmholtz equa-

tion [∇2
t + (γ + k2)]Hz = 0. However for this to be a well-posed problem, we must impose

boundary conditions on Hz. At the inside of the metal walls of the waveguide, the normal

component of the magnetic field must vanish. This implies that n̂ · ~Ht = 0 on the walls,

but from (B.8) we conclude that this is equivalent to the Neumann boundary condition

∂Hz

∂n
= 0, (B.9)

where n is a coordinate normal to the waveguide walls.

We are now ready to solve the equations for Hz in our rectangular waveguide. First we

separate out the different spatial dependencies of Hz as

Hz =
kcu√
jγkη

ψ(x, y)e∓γz, (B.10)

where η =
√

µ/ǫ is the impedance of the medium. The constant in front has been added to

make the orthogonality conditions between modes (derived later) more convenient. Note

that we are free to scale the fields by any constant, since if some field Hz is a solution

to the homogeneous Helmholtz equation, then so is the field obtained by scaling Hz by a

constant factor. We are also free to choose a normalization for ψ, and we decide that

∫∫

S

|ψ(x, y)|2dS = 1, (B.11)

where the surface S is any cross section of the waveguide.
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Substituting (B.10) into (B.7), it is clear that ψ (called the Hertz potential), must satisfy

the same equation and boundary conditions as Hz. It is easily found through a separation

of variables procedure that in rectangular coordinates:

ψ(x, y) = ψmn(x, y) =

√

ǫmǫn
ab

cos
[mπ

a
x
]

cos
[nπ

b
y
]

, (B.12)

is a solution, where m and n are any non-negative integers, though both may not be zero,

and

ǫk =

{

2 for k 6= 0,

1 for k = 0.
(B.13)

From the separation of variables procedure, the propagation constant γ is also found to be

γ =

√

(mπ

a

)2

+
(nπ

b

)2

− k2. (B.14)

Recalling from earlier that we defined k2cu = γ2+k2, it is now clear that the cutoff wavenum-

ber is given by

k2cu =
(mπ

a

)2

+
(nπ

b

)2

. (B.15)

The electric and magnetic fields can now be found from (B.10) and (B.8).

The meaning of the cutoff wavenumber is now clear. For k > kcu, the propagation constant

γ is purely imaginary, and the mode is a propagating mode. However, when k < kcu, γ will

be a real-valued number and the mode will be evanescent. Since k2 = ω2µǫ, for a given

frequency, the dimensions a and b of the waveguide will determine whether a given mode is

propagating or not. Usually the waveguide dimensions are chosen such that only one mode

is propagating at the operating frequency. This mode is referred to as the fundamental

mode of the waveguide.

B.2 Transverse Magnetic Waves

TM waves are waves whose magnetic field is transverse to the direction of propagation,

i.e., Hz = 0. In this case, all fields will be derived from Ez that must satisfy the Helmholtz
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equation [∇2
t + (γ2 + k2)]Ez = 0. The boundary condition in this case is simply Ez = 0 on

the waveguide walls, since the tangential components of the electric field must vanish at

the surface of a PEC. The analysis of TM waves is carried out in a completely analogous

way to the analysis of TE waves in the previous section. Finally, one ends up with the

following expressions for the field components

~Ez = ±ẑkcu
√

η

jγk
ψ(x, y)e∓γz (B.16)

~Et = −
1

kcu

√

γη

jk
e∓γz∇tψ(x, y)

~Ht = ±
jk

γη
ẑ × ~Et,

where γ and kcu are given by the same expressions as before, and

ψ(x, y) =

√

ǫmǫn
ab

sin
[mπ

a
x
]

sin
[nπ

b
y
]

. (B.17)

B.3 Orthogonality Conditions between Modes

It can be shown through a direct calculation, that the modes obey the following orthogo-

nality conditions:
∫∫

S

( ~E±
u × ~H+

v ) · ẑdS = δuve
(∓γu−γv)z, (B.18a)

∫∫

S

( ~E±
u × ~H−

v ) · ẑdS = −δuve(∓γu+γv)z, (B.18b)

where the integral is taken over a cross section S of the waveguide at a given z, and the

indices u and v each contain information on the two indices m and n, as well as if the mode

is TE or TM.

If we denote by ~etu and ±~htu the transverse component of the electric and magnetic field in

mode u, with the z-dependence e∓γuz removed, one can show through a direct calculation

that these transverse components obey

∫∫

S

(~etu × ~htv) · d~S = δuv. (B.19)
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For a general derivation of the orthogonality conditions for waveguides of arbitrary cross

section, see for example [22, pp. 329-337].
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Appendix C

Lorentz Reciprocity Theorem

In this appendix a useful identity known as Lorentz reciprocity theorem is proved[17, pp.

xx–yy]. The derivations of all Green’s functions used in this thesis are based on this

theorem.

Consider two sets of sources ~J1, ~M1 and ~J2, ~M2 in a linear, isotropic medium, producing

the fields ~E1, ~H1 and ~E2, ~H2, respectively.

These fields satisfy Maxwell’s equations

∇× ~E1 = − ~M1 − jωµ ~H1 (C.1a)

∇× ~H1 = ~J1 + jωǫ ~E1 (C.1b)

for ~J1 and ~M1 and

∇× ~E2 = − ~M2 − jωµ ~H2 (C.2a)

∇× ~H2 = ~J2 + jωǫ ~E2 (C.2b)

for ~J2 and ~M2.

Upon dot-multiplying the first equation by ~H2, the fourth by ~E1, and subsequently sub-

tracting the results yields

~E1 · ∇ × ~H2 − ~H2 · ∇ × ~E1 = ~E1 · ~J2 + jωǫ ~E1 · ~E2 + ~H2 · ~M1 + jωµ ~H2 · ~H1. (C.3)
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Now, by using the vector identity

∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A(∇× ~B), (C.4)

we observe that ~E1 · ∇ × ~H2 − ~H2 · ∇ × ~E1 = ∇ · ( ~H2 × ~E1) so that (C.3) is rewritten as

−∇ · ( ~E1 × ~H2) = ~E1 · ~J2 + ~H2 · ~M1 + jωǫ ~E2 · ~E1 + jωµ ~H1 · ~H2. (C.5)

We can perform an analogous procedure by dot multiplying ∇× ~H1 = ~J1 + jωǫ ~E1 by ~E2

and ∇× ~E2 = − ~M2jωµ ~H2 by ~H1 to obtain

−∇ · ( ~E2 × ~H1) = ~E2 · ~J1 + ~H1 · ~M2 + jωǫ ~E2 · ~E1 + jωµ ~H1 · ~H2. (C.6)

Subtracting (C.6) from (C.5) leads to the identity

−∇ · ( ~E1 × ~H2 − ~E2 × ~H1) = ~E1 · ~J2 + ~H2 · ~M1 − ~E2 · ~J1 − ~H1 · ~M2. (C.7)

Finally, by integrating this expression over some volume V and using the divergence the-

orem we obtain the Lorentz reciprocity theorem

−
∫∫

∂V

( ~E1 × ~H2 − ~E2 × ~H1) · n̂dS =

∫∫∫

V

( ~E1 · ~J2 + ~H2 · ~M1 − ~E2 · ~J1 − ~H1 · ~M2)dV .

(C.8)

The derivation of all Green’s functions used in this thesis are be based upon this identity.



Appendix D

Derivations of Green’s Functions for

Magnetic Field in Different

Geometries

In this appendix the Green’s functions for the magnetic field generated by magnetic currents

in infinite, rectangular waveguides are derived. The simplest form of this Green’s function

is derived in Sec. D.1. This particular form has the disadvantage of being piecewise

defined, that is, it takes two different forms depending on whether the observation point is

in front of or behind the source point (magnetic current), longitudinally. To remove this

disadvantage, a different expression for this Green’s function is derived in Sec. D.3. This

new form is referred to as the Seki Green’s function, or Seki’s alternate expression for the

Green’s function, and has the advantage that it is independent on whether the observation

point is in front of the source or behind it. However, to derive this form, we need the

Green’s function for a rectangular cavity, so this is derived in Sec. D.2. In the final section

D.4, the Green’s function for a shorted (semi-infinite) waveguide is derived.

D.1 Infinite Rectangular Waveguide

The dyadic Green’s function
←→
G m

m for the magnetic field due to a magnetic current simply

the field generated by a dirac delta current.
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z = zs

M = a δ(r - r ) s

z = -z
1

z = z2

S1
S2

-ẑ ẑ

z-axis

Figure D.1: A radiating point magnetic current in an infinite rectangular waveguide.
The fields in the waveguide consist of modes propagating in the positive z-direction for
z > zs, and modes propagating in the negative z-direction for z < zs. The fields are
determined by applying the Lorentz reciprocity theorem to the volume bounded by the
surfaces z = −z1 and z = z2 in the waveguide.

Consider the infinitely long rectangular waveguide in Fig. D.1. At some ~r = ~rs, a magnetic

current given by
~M = ~aδ(~r − ~rs). (D.1)

is placed.

The corresponding ~E− and ~H-fields fields generated by this current can be decomposed

into TE and TM modes, ~E±
u and ~H±

u . The index u contains information of mode number

and mode type (TE or TM), and the ± denotes whether the wave travels in the positive

or negative z-direction.

To the right (z > zs) of the source, the waves travel in the positive z-direction, while the

waves to the left of ~M travel in the negative z-direction. This implies that the eigenmode

decomposition of ~E and ~H is expressed accordingly:

~E(~r) =















∑

u

Au
~E+
u (~r) for z > zs,

∑

u

Bu
~E−
u (~r) for z < zs.

(D.2)
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and similarly for ~H:

~H(~r) =















∑

u

Au
~H+
u (~r) for z > zs,

∑

u

Bu
~H−
u (~r) for z < zs.

(D.3)

If we can find the coefficients Au and Bu, we will know the form of the fields generated

by the magnetic current ~M , and hence the magnetic field Green’s function
←→
G m

m. To

determine these, the Lorentz reciprocity theorem (appendix C) is used. Consider, in the

infinite waveguide, two sets of sources ~J1, ~M1 and ~J2, ~M2, and the corresponding fields ~E1,
~H1 and ~E2, ~H2.

Furthermore, let

~J1 = 0 (D.4a)

~M1 = ~aδ(~r − ~rs)
~E1 = ~E

~H1 = ~H,

and

~J2 = 0 (D.4b)

~M2 = 0

~E2 = ~E+
v

~H2 = ~H+
v .

In other words, for the two independent sets of fields in the Lorentz reciprocity theorem,

we use the field generated by the magnetic current ~M in the waveguide (this is the field

that we wish to determine), and for the second field we use mode number v travelling in

the positive z-direction. We are free two choose any two fields we like, since the reciprocity

theorem is an identity valid for any two sets of fields. The reason for choosing these

particular fields is that expressions for the coefficients Au and Bu will be found from the

calculation (though this is not obvious at the moment).
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To apply the Lorentz reciprocity theorem, Eq. (C.8), we must first decide on a volume

V for integration; we choose the volume V in the waveguide between the parallel planes

z = −z1 and z = z2, see Fig. D.1.

We recall the Lorentz reciprocity theorem for convenience:

−
∫∫

∂V

( ~E1 × ~H2 − ~E2 × ~H1) · n̂dS =

∫∫∫

V

( ~E1 · ~J2 + ~H2 · ~M1 − ~E2 · ~J1 − ~H1 · ~M2)dV .

(D.5)

Consider first the volume integral. Since ~J1 = ~J2 = ~M2 = 0, the right hand side reduces to

RHS =

∫∫∫

V

~H2 · ~M1dV =

∫∫∫

V

~H+
v · ~aδ(~r − ~rs)dV = ~H+

v (~rs) · ~a. (D.6)

The surface integral contains three different contributions: the integral over the S1, S2 and

the walls of the waveguide. It is immediately evident that the integral over the walls is

zero, since the electric field is always perpendicular to the surface of a PEC and hence
~E × ~H is orthogonal to the surface normal.

The contribution from S1 is

−
∫∫

S1

( ~E1 × ~H2 − ~E2 × ~H1) · n̂dS =

= −
∫∫

z=−z1

(

∑

u

Au
~E−
u × ~H+

v − ~E+
v ×

∑

u

Au
~H−
u

)

· (−ẑ)dS =

=
∑

u

Auδuve
(+γu−γv)(−z1) −

∑

u

Au(−δuv)e(−γu+γv)(−z1) =

= 2Av,

(D.7)

where the orthogonality property (B.18) of the different modes was used.



D.1 Infinite Rectangular Waveguide 95

The contribution from S2 is

−
∫∫

S2

( ~E1 × ~H2 − ~E2 × ~H1) · n̂)dS =

= −
∫∫

z=z2

(

∑

u

Bu
~E+
u × ~H+

v − ~E+
v ×

∑

u

Bu
~H+
u

)

· ẑdS =

= −
∑

u

Buδuve
(−γu−γv)z2 +

∑

u

Bu(−δuv)e(−γu−γv)z2 =

= 0,

(D.8)

where again the orthogonality property of the modes was used.

This means that the total surface integral on the left hand side of the reciprocity theorem

(D.5) is

LHS = 2Av, (D.9)

but this equals the right hand side (D.6)! We have thus found that

Av =
1

2
~H+
v (~rs) · ~a. (D.10)

The coefficients for the scattered fields generated by ~M to the left of the source are now

known. To find the fields to the right of the source, the coefficients Bu must be determined.

These are found through exactly the same procedure as above, but instead of using the

modes ~E+
v and ~H+

v as the testing modes in the reciprocity theorem, we use the modes ~E−
v

and ~H−
v instead, and after an almost identical calculation we find

Bv =
1

2
~H+
v (~rs) · ~a. (D.11)

With the coefficients Au and Bu known, the fields due to a point source ~M = ~aδ(~r−~rs) in
an infinite waveguide can be written as

~E(~r) =



















1

2

∑

u

~E−
u (~r)

[

~H+
u (~rs) · ~a

]

for z < zs,

1

2

∑

u

~E+
u (~r)

[

~H−
u (~rs) · ~a

]

for z > zs,
(D.12)
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and

~H(~r) =



















1

2

∑

u

~H−
u (~r)

[

~H+
u (~rs) · ~a

]

for z < zs,

1

2

∑

u

~H+
u (~r)

[

~H−
u (~rs) · ~a

]

for z > zs.
(D.13)

.

Now that the scattered fields from a point source have been determined, the fields due to

any source distribution can be determined through a weighted sum of the fields from all

infinitesimal point sources.

From equation (D.13), the Green’s function
←→
G m

m can be extracted:

←→
G m

m(~r, ~rs) =



















1

2

∑

u

~H−
u (~r) ~H

+
u (~rs) for z < zs,

1

2

∑

u

~H+
u (~r) ~H

−
u (~rs) for z > zs,

(D.14)

where the product of two vectors ~A~B used above is neither a dot product nor a vector

product, but should be interpreted as the outer product of the two vectors and is thus an

operator (or a matrix). The action of ~A~B on some vector ~C is defined as

( ~A~B) ~C = ~A( ~B · ~C). (D.15)

The magnetic field due to an arbitrary magnetic current ~M(~r) can then be found from

~H(~r) =

∫ ←→
G m

m(~r, ~rs) ~M(~rs)dVs. (D.16)

Similarly, we have found the Green’s function for the electric field due to a magnetic

current,

←→
G e

m(~r, ~rs) =



















1

2

∑

u

~E−
u (~r) ~H

+
u (~rs) for z < zs,

1

2

∑

u

~E+
u (~r) ~H

−
u (~rs) for z > zs.

(D.17)
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Figure D.2: Point magnetic current in a cavity.

Note that the Green’s functions are defined in a piecewise manner, that is, they take two

different forms depending on whether z > zs or z < zs. This is not a severe problem

when calculating ~H from simple magnetic current distributions, but for more complicated

magnetic currents this may pose a problem rather quickly when calculating the matrix

elements 〈wj,Lfi〉 in (2.11). For this reason an alternative expression for this Green’s

function, known as the Seki Green’s function[23], that has the same functional form for all

z will be derived below. However, to this end, we will first need the magnetic field Green’s

function in a cavity.

D.2 Green’s Function in a Cavity

Consider a rectangular cavity with walls C1 at z = −l1 and C2 at z = l2, as shown in Fig.

D.2. Once again the goal is to find the Green’s function by calculating the magnetic field

inside the cavity due to a point source.

After placing a magnetic current element ~M = ~aδ(~r − ~rs) at ~rs, we expand the magnetic

field to the left and right of the magnetic current in terms of eigenmodes. However, unlike

the case with the infinite waveguide, we now have modes travelling in both the negative and

positive z-direction, since the outgoing waves are reflected off the cavity walls at z = −l1
and z = l2.
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We thus have

~H(~r) =















∑

u

[

Au
~H−
u (~r) + Bu

~H+
u (~r)

]

for − l1 < z < zs,

∑

u

[

Cu
~H+
u (~r) +Du

~H−
u (~r)

]

for zs < z < l2.
(D.18)

and

~E(~r) =















∑

u

[

Au
~E−
u (~r) + Bu

~E+
u (~r)

]

for − l1 < z < zs,

∑

u

[

Cu
~E+
u (~r) +Du

~E−
u (~r)

]

for zs < z < l2.
(D.19)

Two of the unknowns can be removed by imposing the boundary condition that the tan-

gential electric field vanishes at the PEC walls C1 and C2.

Since the tangential electric field for a mode u is given by ~E±
ut = ~etue

∓γuz, and hence

~Et(z = −l1) =
∑

u

[

Au~etue
−γul1 +Bu~etue

γul1
]

= 0. (D.20)

We now take the cross product of this equality with ~htv from the right and make use of

the orthogonality condition (B.19) to obtain

∫∫

C1

∑

u

[

Au~etue
−γul1 +Bu~etue

γul1
]

× ~htv · d~S = Ave
−γvl1 +Bve

γvl1 = 0 (D.21)

and hence

Bv = −Ave
−2γvl1 . (D.22)

Similarly, for C2, it is found that

Dv = −Cve
−2γvl2 . (D.23)
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The ~E and ~H fields can thus be written

~E(~r) =















∑

u

Au

[

~E−
u (~r)− ~E+

u (~r)e
−2γul1

]

for − l1 < z < zs

∑

u

Cu

[

~E+
u (~r)− ~E−

u (~r)e
−2γul2

]

for zs < z < l2,
(D.24)

and

~H(~r) =















∑

u

Au

[

~H−
u (~r)− ~H+

u (~r)e
−2γul1

]

for − l1 < z < zs

∑

u

Cu

[

~H+
u (~r)− ~H−

u (~r)e
−2γul2

]

for zs < z < l2.
(D.25)

As in the case of the infinite waveguide, we now make use of the reciprocity theorem twice,

using first right and then left travelling modes as testing functions. The integration volume

is the one contained between the surfaces S1 and S2 in Fig. D.2.

For the two sets of fields required in the reciprocity theorem, we choose

~E1 = ~E (D.26)

~H1 = ~H (D.27)

~J1 = 0 (D.28)

~M1 = ~aδ(~r − ~rs), (D.29)

and

~E2 = ~E+
v (D.30)

~H2 = ~H+
v (D.31)

~J2 = 0 (D.32)

~M2 = 0. (D.33)

We now apply the reciprocity theorem (C.8) to these fields. The volume integral on the

right hand side becomes

RHS =

∫

V

~H2 · ~M1dV =

∫

V

~H+
v (~r) · ~aδ(~r − ~rs)dV = ~H+

v (~rs) · ~a. (D.34)
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The surface integral is a little more complicated. Again, the parts of the surface integral

over the PEC walls vanish due to the boundary conditions of ~E, so we only need to calculate

the contribution from S1 and S2. Starting with S1:

−
∫

S1

( ~E1 × ~H2 − ~E2 × ~H1) · d~S =

= −
∫

S1

[

∑

u

Au[ ~E
−
u − ~E+

u e
−2γyl1 ]× ~H+

v − ~E+
v ×

∑

u

Au[ ~H
−
u − ~H+

u e
−2γul1 ]

]

· d~S =

=
∑

u

Au

[

δuve
(+γu−γv)(−z1) − δuve(−γu−γv)(−z1)e−2γul1

]

+

−
∑

u

Au

[

−δuve(−γv+γu)(−z1) − δuve(−γu−γv)(−z1)e−2γul1
]

=

= 2Av,

(D.35)

where we used the orthogonality property (B.18) of the eigenmodes.

Similarly, for the contribution at S2 we get

−
∫

S2

( ~E1 × ~H2 − ~E2 × ~H1) · d~S =

= −
∫

S2

[

∑

u

Cu[ ~E
+
u − ~E−

u e
−2γyl2 ]× ~H+

v − ~E+
v ×

∑

u

Cu[ ~H
+
u − ~H−

u e
−2γul2 ]

]

· d~S =

= −
∑

u

Cu

[

δuve
(−γu−γv)z2 − δuve(γu−γv)z2e−2γul2

]

+

+
∑

u

Cu

[

δuve
(−γv−γu)z2 + δuve

(−γv+γu)z2e−2γul2
]

=

= 2e−2γvl2Cv.

(D.36)

Upon combining the results from equation (D.34), (D.35) and (D.36), we obtain

2Av + 2e−2γvl2Cv = ~H+
v (~rs) · ~a. (D.37)
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Next, by applying the reciprocity theorem once again, but choosing ~E1 as ~E−
v and ~H2 as

~H−
v yields, after very similar calculations,

2Cv + 2e−2γvl1Av = ~H−
v (~rs) · ~a. (D.38)

Solving the above two equations for Av and Cv yields

Av =
eγvl1

4 sinh (γvl)

[

eγvl2 ~H+
v (~rs) · ~a− e−γvl2 ~H−

v (~rs) · ~a
]

(D.39)

Cv =
eγvl2

4 sinh (γvl)

[

eγvl1 ~H−
v (~rs) · ~a− e−γvl1 ~H+

v (~rs) · ~a
]

. (D.40)

where l = l1 + l2.

We have now determined the magnetic field due to a point source magnetic current. Sub-

stituting these results into Eq. (D.25) for the ~H-field, we find that the magnetic field

Green’s function in a cavity due to a magnetic current is given by

←→
G m

m(~r, ~rs) =



















































1

4

∑

u

1

sinh (γul)

[

~H−
u (~r)e

γul1 − ~H+
u (~r)e

−γul1
]

[

eγul2 ~H+
u (~rs)− e−γul2 ~H−

u (~rs)
]

for − l1 < z < zs

1

4

∑

u

1

sinh (γul)

[

~H+
u (~r)e

γul2 − ~H−
u (~r)e

−γul2
]

[

eγul1 ~H−
u (~rs)− e−γul1 ~H+

u (~rs)
]

for zs < z < l2.

(D.41)

where, as defined above, the product of two vectors ~A~B denotes the outer product.

D.3 Seki’s Alternative Expression

The Green’s function for the infinite waveguide derived above has one major disadvantage:

it takes different functional forms depending on whether z > zs or z < zs. This becomes

very problematic when evaluating the matrix elements 〈wj,Lfi〉 in the method of moments

[see Eq. (2.11)]. To circumvent this problem, we will now derive an alternative expression

for the Green’s function that has the same functional form for all z, known as the Seki
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z = -l 1

z = l 2
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S2

x

z
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M1

M2
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Ma

Figure D.3: A section of an infinite waveguide with an aperture A in one of its walls.
The fields can be analyzed by closing the aperture and the two surfaces S1 and S2 with
PEC material and introducing appropriate magnetic currents at the surfaces.

Green’s function, that will make the calculation of the matrix elements considerably easier.

To find this expression, consider an infinite waveguide with a magnetic current along the

surface of one of its walls. This will be the case in all applications studied throughout this

text, since every magnetic current will be the fictitious current due to an aperture in the

wall that has been closed with a PEC.

In principle, the magnetic field could be calculated using the Green’s function (2.28) for

an infinite waveguide, and splitting the integral up over the two parts z < zs and z > zs if

needed, but we will use a different approach. Instead, we seal off the waveguide with two

PEC walls S1 and S2 to create a ”virtual cavity”. This is allowed if we also add sheets of

magnetic current, ~M1 and ~M2, over the respective surfaces, given by

~M1 = ~E1 × ẑ, (D.42)

~M2 = ~E2 × (−ẑ), (D.43)

where ~E1 is the electric field at surface S1, and ~E2 is the magnetic field at the surface S2.

With these currents, the uniqueness theorem of electromagnetic fields ensures us that the

fields in this new geometry (with the PEC walls and magnetic currents) is the same as in
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the original situation (without the walls and currents).

The magnetic field in the waveguide can now be calculated by considering this virtual

cavity, and instead of using the infinite waveguide Green’s function, we are now allowed

to use the cavity Green’s functions instead. As we will now see, this allows us to find an

equivalent Green’s function that has the same form for all z. The ~H-field scattered by the

current ~Ma is then

~H(~r) =

∫

Sa

←→
G c

y(~r, ~rs) ~Ma(~rs)dSs +

∫

S1

←→
G c

z(~r, ~rs) ~M1(~rs)dSs +

∫

S2

←→
G c

z(~r, ~rs) ~M2(~rs)dSs,

(D.44)

where the Green’s functions in the above expression are all for the magnetic field due to

a magnetic current in a cavity. Specifically, the last two terms are identical to the one

derived in the previous section, with the fields expanded in terms of modes travelling in

the z-direction. The first RHS-term uses a Green’s function where the fields are expanded

in terms of modes travelling in the y-direction. The derivation of this Green’s function is

identical to the derivation in the previous section, except that z should be replaced by y.

The reason that the y-expansion is used for the magnetic current in the aperture is that

for every point ~r in the cavity, y > ys for every source point ~rs in the aperture. This means

that the form of the Green’s function for y > ys can be used in the entire integral in Eq.

(D.44).

The same holds true for the magnetic currents at S1 and S2. When evaluating the second

integral in Eq. (D.44), z > zs and only one form of the Green’s function is needed, and for

the third integral z < zs so the Green’s function takes the same form for the entire surface

here as well. This is the key behind the Seki Green’s function, derived below.

We now proceed to calculate the magnetic field in the virtual cavity in terms of the magnetic

current ~Ma in the aperture by starting with the field due to ~M1.

As stated earlier, ~M1 = ~E1 × ẑ, where ~E1 is the electric field at the surface S1 and can be

calculated from the electric field Green’s function in an infinite waveguide [cf. Eq. (D.17)].

The magnetic current is then

~M1(~rs) =

[

1

2

∑

v

~E−
v (~rs)

∫

Sa

~H+
v (~r

′
s) · ~Ma(~r

′
s)dS

′
s

]

× ẑ, (D.45)
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so the magnetic field generated by this current is

∫

S1

←→
G c

z(~r, ~r
′
s) ~M1(~r

′
s)dS

′
s =

1

4

∑

u

1

sinh (γul)
[ ~H+

u (~r)e
γul2 − ~H−

u (~r)e
−γul2 ]

∫

S1

dS ′
s

[

~H−
u (~r

′
s)e

γul1 − ~H+
u (~r

′
s)e

−γul1
]

·
[

1

2

∑

v

~E−
v (~r

′
s)× ẑ

∫

Sa

~H+
v (~rs) · ~Ma(~rs)dSs

]

.

(D.46)

The multiplication between the first and second line in the right hand side is an outer

product, whereas the multiplication between lines two and three is a dot product. The

expression may seem hideous, but we will now rewrite it into a much simpler form.

Using the vector identity ~H · ( ~E × ẑ) = −ẑ · ( ~E × ~H), the above expression can be written

as

∫

S1

←→
G c

z(~r, ~r
′
s) ~M1(~r

′
s)dS

′
s = −

1

4

∑

u

1

sinh (γul)
[ ~H+

u (~r)e
γul2 − ~H−

u (~r)e
−γul2 ]

∫

S1

1

2

∑

v

~E−
v (~r

′
s)

∫

Sa

~H+
v (~rs) · ~Ma(~rs)dSs×

[

~H−
u (~r

′
s)e

γul1 − ~H+
u (~r

′
s)e

−γul1
]

· ẑdS ′
s.

(D.47)

To make sense out of the above equation, note that the integal over Sa on the second line is

a constant, so the outer integral over S1 is, after moving all constants outside, the surface

integral of ~E−
v × ~H±

u over a cross section of the waveguide. But this implies that we can

use the orthogonality conditions (B.18) to obtain

∫

S1

←→
G c

z(~r, ~r
′
s) ~M1(~r

′
s)dS

′
s = −

1

4

∑

v

1

sinh (γvl)
[ ~H+

v (~r)e
γvl2 − ~H−

v (~r)e
−γvl2 ]×

[

1

2
(−e−γvl1 − e−γvl1)

∫

Sa

~H+
v (~rs) · ~Ma(~rs)dSs

]

=

=
1

4

∑

v

e−γvl1

sinh (γvl)
[ ~H+

v (~r)e
γvl2 − ~H−

u (~r)e
−γvl2 ]×

∫

Sa

~H+
v (~rs) · ~Ma(~rs)dSs.

(D.48)
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An analogous calculation for finding the magnetic field from ~M2 at the opposing surface

S2, yields:

∫

S2

←→
G c

z(~r, ~r
′
s) ~M2(~r

′
s)dS

′
s =

1

4

∑

v

e−γvl2

sinh (γvl)

[

~H−
v (~r)e

γvl1 − ~H+
v (~r)e

−γvl1
]

∫

Sa

~H−
v (~rs) · ~Ma(~rs)dSs.

(D.49)

Note that we have now transformed the integrals over the two fictitious magnetic currents
~M1 and ~M2 into integrals over the current ~Ma in the aperture. We can thus combine all

integrals in the expression (D.44) to obtain an expression for ~H in terms of ~Ma that consists

of only one integral over Sa:

~H(~r) =

∫

Sa

←→
G Seki(~r, ~rs) ~Ma(~rs)dSs, (D.50)

and the Seki Green’s function
←→
G Seki is given by

←→
G Seki(~r, ~rs) =

←→
G y

c(~r, ~rs)+
1

4

∑

u

e−γul1

sinh (γul)

[

~H+
u (~r)e

γul2 − ~H−
u (~r)e

−γul2
]

~H+
u (~rs)+

1

4

∑

u

e−γul2

sinh (γul)

[

~H−
u (~r)e

γul1 − ~H+
u (~r)e

−γul1
]

~H−
u (~rs),

(D.51)

which is the Green’s function we were after. It provides us with the magnetic field due to

a magnetic current on one of the waveguide walls, and has the vital property of having the

same functional expression for all z and zs, independent of whether z is greater than or less

than zs. It is this form for
←→
G that is used to calculate the self- and mutual admittances

of slots in the waveguide walls in appendix E.

One important aspect that must be discussed is the choice of length l for the virtual cavity.

We have to avoid making sinh (γul) zero since this term occurs in a denominator in the Seki

Green’s function. This is impossible for evanescent modes, since for these γu is real and

larger than zero. However, for a propagating mode, γu is purely imaginary, so γu = iβu,

where βu is a real, positive number. Our condition on l is then

sinh (γul) = i sin (βul) 6= 0, (D.52)
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Figure D.4: A waveguide shorted at z = l with an incremental magnetic current source
at z = zs.

but since βu is the wavenumber of the wave, the above condition becomes

l 6= n
λu
2
, (D.53)

where n is any positive integer and λu is the wavelength of the propagating mode. In

practice, the dimensions of the waveguide are often chosen such that it allows only one

propagating mode, and the length of the virtual cavity is then chosen halfway between the

first two ”forbidden” lengths, i.e.,

l =
3

4
λu. (D.54)

D.4 Green’s function in a shorted waveguide

Consider the shorted waveguide in Fig. D.4. An incremental magnetic current source ~M is

placed at some point ~rs. The magnetic field to the left of zs, i.e., with z < zs consists only of

modes travelling in the negative z-direction. The waves travelling to the right are reflected

at the end surface C, which means that the field at z > zs consists of modes propagating

both to the left and right. The magnetic field can thus be decomposed according to

~H(~r) =















∑

u

Au
~H−
u (~r) for z < zs,

∑

u

[

Bu
~H−
u (~r) + Cu

~H+
u (~r)

]

for z > zs.
(D.55)
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A similar decomposition is true for the electric field:

~E(~r) =















∑

u

Au
~E−
u (~r) for z < zs,

∑

u

[

Bu
~E−
u (~r) + Cu

~E+
u (~r)

]

for z > zs.
(D.56)

We now make use of the boundary condition that the tangential electric field vanishes at C

in exactly the same way as we did when deriving the cavity Green’s function in Sec. D.2.

The tangential electric field for mode u at any z is given by ~E±
ut = ~eute

∓γuz. The boundary

condition can thus be written

~Et(z = l) =
∑

u

[

Bu~etue
γul + Cu~etue

−γul
]

= 0. (D.57)

Cross multiplying by ~htv from the right, integrating over a cross section of the waveguide,

and making use of the orthogonality condition (B.19) between ~etu and ~htv yields

Bv = −Cve
−2γvl. (D.58)

The unknowns Bu have now been removed. To determine Au and Cu, Lorentz reciprocity

theorem is applied twice to the volume between surfaces S1 and S2. The fields ~E and ~H

in the waveguide are first tested against the modes ~E+
v , ~H

+
v , and then against the modes

~E−
v , ~H

−
v .

The first application yields

Av + e−2γvlCv =
1

2
~H+
v (~rs) · ~a, (D.59)

and the second application yields

Cv =
1

2
~H−
v (~rs) · ~a. (D.60)

(See section on the Green’s function in a cavity for details on how the volume and surface

integrals in the reciprocity theorem are evaluated. This case is completely analogous.)
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Substituting (D.60) back into Eqs. (D.60) and (D.58) gives

Av =
e−γvl

2

[

~H+
v (~rs)e

γvl − ~H−
v (~rs)e

−γvl
]

· ~a. (D.61)

and

Bv = −
e−2γvl

2
~H−
v (~rs) · ~a. (D.62)

The above three equations for the expansion coefficients Au, Bu and Cu are now substituted

into the original expression (D.55) for the ~H field:

~H(~r) =



















1

2

∑

u

e−γul ~H−
u (~r)

[

~H+
u (~rs)e

γul − ~H−
u (~rs)e

−γul
]

· ~a for z < zs,

1

2

∑

u

e−γul
[

~H+
u (~r)e

γul − ~H−
u (~r)e

−γul
]

~H−
u (~rs) · ~a for z > zs.

(D.63)

The Green’s function for a shorted waveguide can readily be extracted from the above

expression:

←→
G m

m(~r, ~rs) =



















1

2

∑

u

e−γul ~H−
u (~r)

[

~H+
u (~rs)e

γul − ~H−
u (~rs)e

−γul
]

for z < zs,

1

2

∑

u

e−γul
[

~H+
u (~r)e

γul − ~H−
u (~r)e

−γul
]

~H−
u (~rs) for z > zs.

(D.64)



Appendix E

Self- and Mutual Admittances

Expressions for the self- and mutual admittances of tilted slots in rectangular waveguides

are needed to calculate the S-parameters of the waveguide coupling junction studied in this

thesis. The admittances of the basis functions in the cavities formed between waveguides

due to the non-zero thickness of the waveguide walls are also needed, as well as expressions

for the coupling between basis functions and waveguide modes. The sole purpose of this

appendix is to derive expressions for these quantities.

The derivations presented here are based on very similar derivations by Lars Manholm

and Jiro Hirokawa [8, 10], but their expressions are valid only for longitudinal magnetic

currents with no transverse variation, whereas the basis functions used here allow for both

transverse polarization and variation of the magnetic current. Hence, the admittances

derived in this chapter are generalizations of those in [8, 10], and it is easy to show that

they reduce to those equations in the case when no transverse variation is included.

E.1 Self- and mutual admittances of slots in the upper

wall of a rectangular waveguide

We start by deriving expressions for the self- and mutual admittances of slots in the

same broad wall of a rectangular waveguide. The derivations are generalizations of the
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Figure E.1: Two slots whose mutual admittance we wish to calculate. The waveguide
geometry has been changed into a virtual cavity with the origin at the center of the top wall.
Angles are measured counterclockwise to the waveguide axis (meaning that the particular
value for θs shown above is negative).

calculations by Manholm and Hirokawa [9, 10].

Consider an infinite waveguide with a rectangular cross section of dimension a × b, with
two slots in the upper wall. The fields due to the equivalent magentic current distributions

in these slots will be analyzed using the virtual cavity method, and thus Seki’s alternative

expression (2.32) for the Green’s function in a rectangular waveguide will be used. Let

the origin be placed in the upper wall, at the center of the virtual cavity, and the slots be

located as shown in Fig. E.1. The virtual cavity is chosen to be large enough to enclose

both slots. The tilt angles θ of the slots are defined to be positive in the counterclockwise

direction.
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The admittance between the slots is defined as the matrix whose elements are given by

yij = −
∫∫

So

dSo ~m
o
i (~ro) ·

∫∫

Ss

←→
G (~ro, ~rs)~m

s
j(~rs)dSs, (E.1)

where all quantities with subscript or superscript o belong to the observation slot So, and

all quantities with subscript or superscript s belong to the source slot Ss. If the source

and observation slot are chosen to be the same slot, the admittance (E.1) becomes the

self-admittance of the slot. In this case, the virtual cavity is placed such that the slot is

at its center line, i.e. z0 = zs = 0.

The Seki Green’s function is given by equation (2.32) and consists of two distinct contribu-

tions, one from the waves travelling in the y-direction, and the other from waves travelling

in the z-direction from the equivalent magnetic currents on the virtual cavity walls. With

the coordinate system and geometry as given in figure E.1, the Seki Green’s function takes

the form

←→
G (~ro, ~rs) =

←→
G c

y(~ro, ~rs)+
1

4

∑

u

1

sinh (γuzc)

{

[

~H+
u (~ro)− ~H−

u (~r0)e
−γuzc

]

~H+
u (~rs)+

[

~H−
u (~ro)− ~H+

u (~ro)e
−γuzc

]

~H−
u (~rs)

}

,

(E.2)

where
←→
G c

y(~r0, ~rs) is the Green’s function for a cavity, given by equation (2.31) as

←→
G c

y(~r0, ~rs) =
1

4

∑

u

1

sinh (γuyb)

[

~H+
u (~r0)e

γuyb − ~H−
u (~r0)e

−γuyb
] [

~H−
u (~rs)− ~H+

u (~rs)
]

. (E.3)

It should be noted that the modes ~Hu in equation (E.2) travel in the z-direction, but in

equation (E.3) they are travelling in the y-direction. For the cavity Green’s function, the

form valid for yo > ys has been used.

The admittance yij is split into two parts,

yij = y1ij + y2ij, (E.4)

where y1pq is the contribution from the y-travelling modes, and y2ij is the contribution from

the z-travelling modes. These will now be evaluated in turn.
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E.1.1 Contribution to admittance from y-travelling modes

The y-contribution is given by

y1ij = −
∫∫

So

dSo ~m
o
i (~ro) ·

∫∫

Ss

←→
G c

y(~ro, ~rs)~m
s
j(~rs)dSs

= −1

4

∑

u

1

sinh (γuyb)

∫∫

So

[

~H+
u (~ro)e

γuyb − ~H−
u (~ro)e

−γuyb
]

· ~mo
i (~ro)dSo×

∫∫

Ss

[

~H−
u (~rs)− ~H+

u (~rs)
]

· ~ms
j(~rs)dSs.

(E.5)

To evaluate this, we need expressions for the transverse components of modes propagating

in the y-direction in the virtual cavity. These are found from the equations in appendix B

to be

( ~HTE±
mn )t = ±

π

kcuy

√

γuyǫnǫm
jkηac

{

m

a
sin
[mπ

a

(

x+
a

2

)]

cos
[nπ

c

(

z +
c

2

)]

x̂+

+
n

c
cos
[mπ

a

(

x+
a

2

)]

sin
[nπ

c

(

z +
c

2

)]

ẑ

}

e∓γuyy

(E.6)

for TE modes, and

( ~HTM±
mn )t = ±

π

kcuy

√

jkǫnǫm
γuyηac

{

m

a
cos
[mπ

a

(

x+
a

2

)]

sin
[nπ

c

(

z +
c

2

)]

ẑ+

− n

c
sin
[mπ

a

(

x+
a

2

)]

cos
[nπ

c

(

z +
c

2

)]

x̂

}

e∓γuyy

(E.7)

for TM modes. kcuy denotes the cut-off wavenumber for mode u propagating in the

y-direction. An important remark to make about the expressions for the modes is that at

the upper wall, y = 0, and hence

~H−
mn = − ~H+

mn for y = 0 (E.8)

for both TE and TM waves. Using this relation in equation (E.5) yields

y1ij =
∑

u

coth (γuyb)

∫∫

So

~H+
u (~ro) · ~mo

i (~ro)dSo ×
∫∫

Ss

~H+
u (~rs) · ~ms

j(~rs)dSs. (E.9)
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We thus see that the contribution from y-travelling modes to the admittance is just the

product of the couplings between the respective basis functions to the +y travelling modes,

weighted with coth (γuyb), summed over all modes. This coupling is evaluated next.

E.1.2 Coupling between basis functions in upper or lower wall

and y-travelling modes

In this section the coupling between the basis functions ~mpq in a slot in the upper or lower

wall and the modes travelling in the y-direction in the virtual cavity is derived.

Consider a slot of length l, width w and inclination θ, in the upper or lower wall of

the virtual cavity, with its center at (x0, z0). The coupling between basis functions and

waveguide modes is given by the surface integral

iupqβy =

∫∫

Sβ

~H+
u (~r) · ~mβ

pq(~r)dS. (E.10)

The parameter β denotes for which slot the coupling is calculated, and it is either the

observation slot o, or the source slot s. We have here written out the two basis function

indices p and q. Sometimes these will be written more compactly as i or j, such as the

~mβ
i used in the previous section, but it should still be remembered that the i in this case

actually corresponds to two indices, as seen in the expressions for the magnetic current in

(E.12) below.

To evaluate this integral, we introduce the coordinates s and t as shown in Fig. E.2. Using

this coordinate system, the xz-coordinates corresponding to a given s and t are

xβ(s, t) = xβ − s sin θ − t cos θ, (E.11a)

zβ(s, t) = zβ + s cos θ − t sin θ. (E.11b)

As was discussed in section 3.3, there are two different kinds of basis functions in the slot,

one that is longitudinal to the slot, i.e. directed along ŝ, and the other is transverse to the
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Figure E.2: To evaluate the surface integral over the slot, a local coordinate system (s, t)
is introduced. The origin of this system coincides with the slot center (x0, z0).

slot, i.e. directed along t̂. More precisely, they were given by

~ml
pq = sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

ŝ, (E.12)

~mt
uv = sin

[uπ

w

(

t+
w

2

)]

cos

[

vπ

l

(

l

2
− s
)]

t̂.

The coupling (E.10) is now evaluated for the longitudinal magnetic current. The coupling

to the corresponding transverse current can then be found by interchanging l and w, and

increasing θ by π/2.

Using expressions (E.6) and (E.7) for the waveguide mode ~Hu, and (E.12) for the longitu-

dinal magnetic current, the coupling (E.10) is found to be

iupqβy =



















e−γuyy′
√

ǫnǫmγuy
acjkη

1

kcuy

[

−mπ
a

sin θ Iysupqβ +
nπ

c
cos θ Iycupqβ

]

for TE modes,

e−γuyy′

√

ǫnǫmjk

acγuyη

1

kcuy

[nπ

c
sin θ Iysupqβ +

mπ

a
cos θ Iycupqβ

]

for TM modes,

(E.13)
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where Iys and Iyc are the integrals

Iysupqβ =

∫ l/2

s=−l/2

∫ w/2

t=−w/2

sin
[mπ

a

(

xβ(s, t) +
a

2

)]

cos
[nπ

c

(

zβ(s, t) +
c

2

)]

·

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

dsdt

(E.14)

and

Iycupqβ =

∫ l/2

s=−l/2

∫ w/2

t=−w/2

cos
[mπ

a

(

xβ(s, t) +
a

2

)]

sin
[nπ

c

(

zβ(s, t) +
c

2

)]

·

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

dsdt.

(E.15)

Closed form expressions for the integrals (E.14) and (E.15) are found in appendix A. For

slots in the upper wall, y′ = 0, and for slots in the lower wall, y′ = b. This means that the

only difference in the coupling between a slot in the upper and lower wall is a factor e−γuyb.

E.1.3 Contribution to admittance from z-travelling modes

The contribution to the admittance from the z-travelling modes comes from the part of

the Green’s function in (E.2) that is not
←→
G c

y. By inserting this into the original expression

(E.1) for the admittance and expanding the brackets, this is immediately found to be

y2ij = −
1

4

∑

u

(

yuioz1 y
ujs
z2 + yuioz3 y

ujs
z4

)

, (E.16)

where the quantities yupqβzi are given by

yupqβz1 =
1

sinh (γuzc)

[

iupqβ+z − e−γuzc iupqβ−z

]

, (E.17)

yupqβz2 = iupqβ+z , (E.18)

yupqβz3 =
1

sinh (γuzc)

[

iupqβ−z − e−γuzc iupqβ+z

]

, (E.19)

yupqβz4 = iupqβ−z , (E.20)
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where iupqβ±z is the coupling between mode u travelling in the ±z-direction and the basis

function pq in slot β. (In equation (E.16), the basis function indices p and q have been

collected in the single indices i and j.) This coupling is given by

iupqβ±z =

∫∫

Sβ

~H±
u (~r) · ~mpq(~r)dS (E.21)

and is evaluated below.

E.1.4 Coupling between basis functions in the upper or lower

wall and z-travelling modes

We now evaluate the coupling integral (E.21). For TE modes, the x and z-components of

the ~H-field are given by

~HTE±
mn · x̂ = ± mπ

kcuza

√

γuǫnǫm
jkηab

sin
[mπ

a

(

x+
a

2

)]

cos
[nπy

b

]

e∓γuzz, (E.22)

and
~HTE±
mn · ẑ =

kcuz
γu

√

γuǫnǫm
jkηab

cos
[mπ

a

(

x+
a

2

)]

cos
[nπy

b

]

e∓γuzz. (E.23)

For TM waves the two components are

~HTM±
mn · x̂ = ± nπ

kcuzb

√

jkǫnǫm
γuzηab

sin
[mπ

a

(

x+
a

2

)]

cos
[nπy

b

]

e∓γuzz, (E.24)

and
~HTM±
mn · ẑ = 0. (E.25)

Inserting these expressions into equation (E.21) gives

iupqβ±z =



















cos

[

nπy′

b

]
√

γuzǫnǫm
jkηab

{

∓ mπ

kcuza
sin θIzsupqβ∓ + cos θ

kcuz
γuz

Izcupqβ∓

}

for TE modes, and

∓ cos

[

nπy′

b

]

sin θ
nπ

kcuzb

√

jkǫnǫm
γuzηab

Izsupqβ∓ for TM modes,

(E.26)
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where the quantities Izsp± and Izcp± are given by the integrals

Izsupqβ± =

∫∫

Sβ

sin
[mπ

a

(

xβ(s, t) +
a

2

)]

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

e±γuzzdS,

(E.27)

Izcupqβ± =

∫∫

Sβ

cos
[mπ

a

(

xβ(s, t) +
a

2

)]

sin

[

pπ

l

(

s+
l

2

)]

cos
[qπ

w

(

t+
w

2

)]

e±γuzzdS,

(E.28)

and y′ is the y-coordinate for the slot, given by y′ = 0 for slots in the upper wall, and

y′ = b for slots in the lower wall.

These integrals can be evaluated analytically, and can be found in appendix A.

Just as for the coupling to y-travelling modes, the coupling between a transverse basis

function and a z-travelling mode is obtained by interchanging l and w, and increasing θ to

θ + π/2 in the expression (E.26) above.

This concludes the derivation of the self- and mutual admittances of compound slots in the

upper broad wall in the infinite waveguide region. With the expressions (E.13) and (E.26)

for the coupling between modes and basis functions, the contribution to the admittance

from y- and z-travelling modes can be calculated from (E.9) and (E.16), respectively.

E.2 Self- and mutual admittances of slots in the lower

wall of a rectangular waveguide

The expressions for the admittances for slots in the lower wall of a rectangular waveguide

are very similar to those derived in the previous section for slots in the upper wall. Again,

the admittance is defined through the reaction integral (E.1), and the Green’s function

is still the Seki Green’s funcion given by (E.2). The only difference is that the slots are

now located at the bottom wall with y = b, which also means that the form of the cavity

Green’s function
←→
G c

y valid for ys > yo must be used. By equation (2.31) this is given by

←→
G c

y(~r, ~rs) =
1

4

∑

u

1

sinh (γuyb)

[

~H−
u (~r)− ~H+

u (~r)
] [

eγuyb ~H+
u (~rs)− e−γuyb ~H−

u (~rs)
]

. (E.29)
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As for slots in the upper wall, the admittance is split up into two parts,

yij = y1ij + y2ij (E.30)

representing contribution from the y-travelling modes and the z-travelling modes, respec-

tively. These are treated in turn below.

E.2.1 Contribution to admittance from y-travelling modes

The contribution y1ij from modes travelling in the y-direction are found by inserting the

cavity Green’s function (E.29) into the original expression (E.1) for the admittance. By

also noting from equations (E.6) and (E.7) for the y-propagating modes in the cavity that

at the lower wall y = b the two modes ~H−
mn and ~H+

mn are related by

~H−
mn = −e2γuyb ~H+

mn, (E.31)

the contribution to the admittance from these modes is quickly found to be

y1ij =
∑

u

e2γuyb coth (γuyb)

∫∫

So

~H+
u (~ro) · ~mo

i (~ro)dSo ×
∫∫

Ss

~H+
u (~rs) · ~ms

j(~rs)dSs. (E.32)

It is important to note that in the expression above, the two couplings between mode u

and the basis functions are for slots in the lower wall of the waveguide. However, since

the y-mode coupling for a slot in the lower wall is just a factor e−γuyb compared to an

identical slot in the upper wall, the contribution (E.32) to the admittance for a slot in

the lower wall is identical to the corresponding y-mode contribution to the admittance

for a corresponding slot in the upper wall, given by equation (E.9). In other words, the

contribution to the admittance from y-travelling modes are identical for slots that are both

in the upper wall and slots that are both in the lower wall of the waveguide.

E.2.2 Contribution to admittance from z-travelling modes

Since the only difference in the Green’s function for slots in the lower wall compared to

slots in the upper wall is in the cavity part
←→
G c

y, the contribution to the admittance for



E.3 Mutual admittance between two slots that are not overlapping longitudinally in

the waveguide region 119

z-travelling modes is still given by the expression (E.16), but in this case the couplings

iupqβ±z are evaluated for slots in the lower wall.

E.3 Mutual admittance between two slots that are

not overlapping longitudinally in the waveguide

region

The mutual admittance between two slots in the waveguide region can be calculated by

the method in the previous section. However, if the slots do not overlap longitudinally, it

is easier and more efficient to calculate the admittance from the standard form (2.28) of

the Green’s function in an infinite waveguide.

If the two slots are denoted slot 1 and slot 2, and have their centers at z-coordinates z1

and z2 respectively, the mutual admittance becomes

−〈~m1
pq|
←→
G m

m|~m2
ij〉 = −

∫∫

S1

dS ~m1
pq(~r) ·

∫∫

S2

←→
G m

m(~r, ~rs)~m
2
ij(~rs)dSs =

=



















−1

2

∑

u

iupq1+z iuij2−z for z1 > z2

−1

2

∑

u

iupq1−z iuij2+z for z1 < z2.

(E.33)

Note that the above expression is valid regardless of whether the slots are in the upper or

lower wall, and it can even be used to calculate the mutual admittance between two slots

in different walls, as long as they do not overlap longitudinally. One only has to make sure

that the correct expression for the couplings is used, depending on which wall the slot is

located in. The case with two longitudinally overlapping slots in different walls is the last

admittance left to discuss in the infinite waveguide region, and it is treated in the following

section.
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E.4 Mutual admittance between longitudinally over-

lapping slots in opposite walls in the waveguide

region

The mutual admittance between two slots, placed in opposite walls and possibly overlap-

ping longitudinally, is now evaluated. The geometry is as shown in figure E.1, with one slot

in the lower wall, and the other in the upper wall. Consider the case when the observation

slot is in the lower wall at y = b and the source slot is in the upper wall at y = 0.

For this geometry the Green’s function is given by equations (E.2) and (E.3). By the

same procedure as in section E.1 and E.2, the admittance is split up in two parts: the

contribution y1ij from y-travelling and y2ij from z-travelling modes, respectively.

By inserting the y-part [Eq. (E.3)] of the Green’s function into the definition (E.1) for the

mutual admittance, the contribution from the y-travelling modes is found to be

y1ij =
∑

u

eγuyb

sinh (γuyb)

∫∫

So

~H+
u (~ro) · ~mo

i (~ro)dSo ×
∫∫

Ss

~H+
u (~rs) · ~ms

j(~rs)dSs, (E.34)

where the first coupling integral is for the observation slot in the lower wall, and the second

is for the source slot in the upper wall.

The contribution from z-travelling modes comes from the part of the Green’s function that

is not contained in the cavity part
←→
G c

y, and this is the same for slots that are in the upper

wall, lower wall, or one slot in the upper and one in the lower. In all cases, the contribution

from z-modes is given by equation (E.16), where in this case the observation slot is in the

lower wall, and the source slot is in the upper wall.

The admittance is thus the sum of the expressions in (E.34) and (E.16). The mutual

admittance when the source slot is in the lower wall and the observation slot is in the

upper wall can be calculated from the the above expressions from reciprocity.
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Figure E.3: Two slots S1 and S2 in the wall thickness (slot cavity) region and their
corresponding longitudinal and transverse magnetic currents. Also note the orientation of
the coordinate system, and that the origin is placed at the center of the slot cavity.

E.5 Self and mutual admittances of slots in the slot

cavity region

In this section the self and mutual admittances between slots in the slot cavity region

(sometimes referred to as the wall thickness region) are evaluated. The wall thickness

regions are the slot cavities that connect the different waveguides. We will consider a slot

cavity of length l, width w and thickness (height) t. A coordinate system with origin at

the center of the cavity, and oriented as shown in figure E.3 is introduced. The surfaces S1

and S2 are the apertures connecting the slot cavity with the lower and upper waveguides,

respectively, and it is thus on these surfaces the equivalent magnetic currents are located.

In the next subsection the self-admittance of the lower slot is evaluated (the self-admittance

of the upper slot is identical to this due to symmetry), and thereafter the mutual admittance

between the slots is evaluated.

When evaluating these, expressions for the z-travelling TE and TM modes will be needed,

as well as the Green’s function for the magnetic field inside the cavity. These are listed

below for convenience.
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The Green’s function is of the form

←→
G m

m(~r, ~rs) =
1

4

∑

u

1

sinh (γuzt)

[

~H+
u (~r)e

γuzt/2 − ~H−
u (~r)e

−γuzt/2
]

×
[

~H−
u (~rs)e

γuzt/2 − ~H+
u (~rs)e

−γuzt/2
]

(E.35)

for z > zs, and

←→
G m

m(~r, ~rs) =
1

4

∑

u

1

sinh (γuzt)

[

~H−
u (~r)e

γuzt/2 − ~H+
u (~r)e

−γuzt/2
]

×
[

~H+
u (~rs)e

γuzt/2 − ~H−
u (~rs)e

−γuzt/2
]

(E.36)

for z < zs. The TE and TM modes are given by

~HTE±
mn · x̂ = ±mπ

lkcu

√

γuzǫmǫn
wljkη

e∓γuzz sin

[

mπ

l

(

x+
l

2

)]

cos
[nπ

w

(

y +
w

2

)]

(E.37)

~HTM±
mn · x̂ = ± nπ

wkcu

√

jkǫmǫn
wlγuzη

e∓γuzz sin

[

mπ

l

(

x+
l

2

)]

cos
[nπ

w

(

y +
w

2

)]

~HTE±
mn · ŷ = ± nπ

wkcu

√

γuzǫmǫn
wljkη

e∓γuzz cos

[

mπ

l

(

x+
l

2

)]

sin
[nπ

w

(

y +
w

2

)]

~HTM±
mn · ŷ = ∓mπ

lkcu

√

jkǫmǫn
wlγuzη

e∓γuzz cos

[

mπ

l

(

x+
l

2

)]

sin
[nπ

w

(

y +
w

2

)]

.

E.5.1 Self-admittance of an aperture in the wall thickness region

We now calculate the self-admittance −〈~m1
i |
←→
G m

m|~m1
j〉 of the lower aperture in the slot

cavity. This admittance consists of four distinct parts: the admittance between the lon-

gitudinally directed basis functions, the admittance between the longitudinal and trans-

verse basis functions, the admittance between transverse and longitudinal basis functions

and finally the admittance between the transverse basis functions. Specifically, these are

given by the reaction integrals −〈~m1l
pq|
←→
G m

m|~m1l
uv〉, −〈~m1l

pq|
←→
G m

m|~m1t
uv〉, −〈~m1t

pq|
←→
G m

m|~m1l
uv〉 and

−〈~m1t
pq|
←→
G m

m|~m1t
uv〉, and they must all be evaluated. They are treated in turn below.
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Admittance between longitudinal components

The admittance between the longitudinal components in the lower slot is

−〈~m1l
pq|
←→
G m

m|~m1l
uv〉 = −

1

4

∑

u

1

sinh (γuzt)

∫∫

S1

[

~H+
u (~r)e

γuzt/2 − ~H−
u (~r)e

−γuzt/2
]

· ~m1l
pq(~r)dS·

∫∫

S1

[

~H−
u (~rs)e

γuzt/2 − ~H+
u (~rs)e

−γuzt/2
]

· ~m1l
uv(~rs)dSs,

(E.38)

where the expression (E.36) for the Green’s function in the slot cavity has been used. The

sum is over all TE and TM modes. Inserting the expressions (E.37) for the modes in the

cavity, and (3.30) for the basis functions, readily gives for the admittance

− 〈~m1l
pq|
←→
G m

m|~m1l
uv〉 = coth (γpqt)

[

(pπ

l

)2 γpq
jk

+
(qπ

w

)2 jk

γpq

]

ǫql

2ηwk2cu

[

∆w
qq

]2
δpuδqv, (E.39)

where δmn is the Kronecker delta, the symbol ∆a
mn is defined by

∆a
mn =



















0 for m 6= n

a for m = n = 0
a

2
for m = n > 0

(E.40)

and γpq =
√

(pπ/l)2 + (qπ/w)2 − k2 is the propagation constant. Note that the two Kro-

necker deltas in equation (E.39) imply that the admittance between different basis functions

is identically zero. The only non-zero terms are the ones with (p, q) = (u, v), that is, this

admittance matrix is diagonal.

Admittance between transverse components

Since the transverse basis functions are identical to the longitudinal basis functions of a slot

of length w and width l that is rotated an additional 90◦, the admittance −〈~m1t
pq|
←→
G m

m|~m1t
uv〉

between the transverse basis functions in the lower slot is found by interchanging l and w
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in the expression (E.39) for the admittance between the longitudinal components:

− 〈~m1t
pq|
←→
G m

m|~m1t
uv〉 = coth (γpqt)

[

(pπ

w

)2 γpq
jk

+
(qπ

l

)2 jk

γpq

]

ǫqw

2ηlk2cu

[

∆l
qq

]2
δpuδqv, (E.41)

where γpq =
√

(pπ/w)2 + (qπ/l)2 − k2.

Admittance between longitudinal and transverse components

The admittance between transverse and longitudinal basis functions in the lower aperture

is given by

−〈~m1l
pq|
←→
G m

m|~m1t
uv〉 = −

1

4

∑

u

1

sinh (γuzt)

∫∫

S1

[

~H+
u (~r)e

γuzt/2 − ~H−
u (~r)e

−γuzt/2
]

· ~m1l
pq(~r)dS·

∫∫

S1

[

~H−
u (~rs)e

γuzt/2 − ~H+
u (~rs)e

−γuzt/2
]

· ~m1t
uv(~rs)dSs.

(E.42)

Using the expressions (E.37) and (3.30) for the modes and basis functions, respectively, it

is easily found

− 〈~m1l
pq|
←→
G m

m|~m1t
uv〉 =

[

γpq
jk
− jk

γpq

]

coth (γpqt)pq
π2

wk2cu

∆l
pv∆

w
qu

ηl
(−1)p, (E.43)

where γpq =
√

(pπ/l)2 + (qπ/w)2 − k2.

Admittance between transverse and longitudinal components

The last reaction integral in the self admittance of a slot in the wall thickness region is

〈~m1t
pq|
←→
G m

m|~m1l
uv〉. Due to reciprocity, this is given by

〈~m1t
pq|
←→
G m

m|~m1l
uv〉 = 〈~m1l

uv|
←→
G m

m|~m1t
pq〉, (E.44)

which was calculated in the section just above. These two matrices are thus each other’s

transposes.
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E.5.2 Mutual admittance between apertures in the slot cavity

region

In the previous section the self admittance of a slot in the wall thickness region was

calculated, and in this section the mutual admittance between the slots is evaluated. The

mutual admittance will here be evaluated from slot 2 to slot 1, i.e. the admittance is

calculated when the basis functions in the lower slot are weighed with the field from the

basis functions in the upper slot. The admittance calculated the other way around can be

found from reciprocity, but due to symmetry this will be identical to the one calculated

below.

The mutual admittance −〈~m1
i |
←→
G m

m|~m2
j〉 takes on four distinct forms, depending on whether

the basis functions are longitudinally or transversely directed. These are treated in turn

below.

Mutual admittance between longitudinally directed basis functions

Using the expression (E.36) for the Green’s function, the mutual admittance between

longitudinally directed basis functions is

−〈~m1l
pq|
←→
G m

m|~m2l
uv〉 = −

1

4

∑

u

1

sinh (γuzt)

∫∫

S1

[

~H−
u (~r)e

γuzt/2 − ~H+
u (~r)e

−γuzt/2
]

· ~m1l
pq(~r)dS·

∫∫

S2

[

~H+
u (~rs)e

γuzt/2 − ~H−
u (~rs)e

−γuzt/2
]

· ~m2l
uv(~rs)dSs.

(E.45)

Substituting the expressions (E.37) for the waveguide modes and (3.30) for the basis func-

tions into the above equation gives

− 〈~m1l
pq|
←→
G m

m|~m2l
uv〉 =

1

sinh (γpqt)

[

(pπ

l

)2 γpq
jk

+
(qπ

w

)2 jk

γpq

]

ǫql

2ηwk2cu

[

∆w
qq

]2
δpuδqv (E.46)
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Mutual admittance between longitudinal and transverse basis functions

The admittance −〈~m1l
pq|
←→
G m

m|~m2t
uv〉 is found by the same procedure as above, the only dif-

ference being that ~m2l
uv is replaced by ~m2t

uv. The result is

− 〈~m1l
pq|
←→
G m

m|~m2t
uv〉 =

[

γpq
jk
− jk

γpq

]

1

sinh (γpqt)
pq

π2

wk2cu

∆l
pv∆

w
qu

ηl
(−1)p, (E.47)

where γpq =
√

(pπ/l)2 + (qπ/w)2 − k2.

Mutual admittance between transverse and longitudinal basis functions

The admittance −〈~m1t
pq|
←→
G m

m|~m2l
uv〉 is identical to −〈~m2t

pq|
←→
G m

m|~m1l
uv〉 due to the symmetrical

geometry, and this is identical to −〈~m1l
uv|
←→
G m

m|~m2t
pq〉 due to reciprocity. This is exactly what

was calculated in the previous section and given by (E.47). So

− 〈~m1t
pq|
←→
G m

m|~m2l
uv〉 = −〈~m1l

uv|
←→
G m

m|~m2t
pq〉. (E.48)

In terms of matrices, this means that these two admittance matrices are each other’s

transposes.

Mutual admittance between transverse basis functions

The mutual admittance between transverse basis functions is found from

−〈~m1t
pq|
←→
G m

m|~m2t
uv〉 = −

1

4

∑

u

1

sinh (γuzt)

∫∫

S1

[

~H−
u (~r)e

γuzt/2 − ~H+
u (~r)e

−γuzt/2
]

· ~m1t
pq(~r)dS·

∫∫

S2

[

~H+
u (~rs)e

γuzt/2 − ~H−
u (~rs)e

−γuzt/2
]

· ~m2t
uv(~rs)dSs.

(E.49)

When the expressions (E.37) and (3.30) for the modes and basis functions are substituted
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into this expression, it reduces to

− 〈~m1t
pq|
←→
G m

m|~m2t
uv〉 =

1

sinh (γpqt)

[

(pπ

w

)2 γpq
jk

+
(qπ

l

)2 jk

γpq

]

ǫqw

2ηlk2cu

[

∆l
qq

]2
δpuδqv, (E.50)

where γpq =
√

(pπ/w)2 + (qπ/l)2 − k2 and k2cu = (pπ/w)2 + (qπ/l)2.

This concludes the discussion on the admittances in the waveguide and wall thickness

regions.

E.6 Summary

This appendix dealt solely with evaluating the self and mutual admittances of slots in

the infinite waveguide region and slot cavity region, as well as the coupling between basis

functions and waveguide modes. The admittances are matrices, where each element is

a reaction integral corresponding to a specific basis function in a slot weighed with the

magnetic field generated by another basis function in (possibly) another slot, and the po-

sition of the elements in this matrix depends on in which order the basis function are

enumerated. Four different kinds of reaction integrals occur in the admittance matrices:

admittances between longitudinal components, admittances between transverse and lon-

gitudinal components, admittances between longitudinal and transverse components and

finally admittances between transverse components.
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