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Within the framework of f(R, T ) theories of gravity, we investigate the hydrostatic equilibrium of
anisotropic neutron stars with a physically relevant equation of state (EoS) for the radial pressure.
In particular, we focus on the f(R, T ) = R + 2βT model, where β is a minimal coupling constant.
In the slowly rotating approximation, we derive the modified TOV equations and the expression for
the relativistic moment of inertia. The main properties of neutron stars, such as radius, mass and
moment of inertia, are studied in detail. Our results revel that the main consequence of the 2βT term
is a substantial increase in the surface radius for low enough central densities. Nevertheless, such
a term slightly modifies the total gravitational mass and moment of inertia of the slowly rotating
stars. Furthermore, the changes are noticeable when anisotropy is incorporated into the stellar fluid,
and it is possible to obtain higher masses that are consistent with the current observational data.

I. INTRODUCTION

Despite the great success of General Relativity (GR) in
predicting various gravitational phenomena tested in the
solar system [1] and in strong-field situations (such as the
final stage of compact-object binaries [2, 3]), it could not
help to identify the nature of dark energy and other puz-
zles. In other words, there are still many open problems
in modern cosmology and it is well known that GR is not
the only theory of gravity [4]. Indeed, it has been shown
that GR is not renormalizable as a quantum field theory
unless higher-order curvature invariants are included in
its action [5, 6]. Furthermore, GR requires modifications
at small time and length scales or at energies comparable
with the Planck energy scales. In that regard, it has been
argued that the early-time inflation and the late-time ac-
celerated expansion of the Universe can be an effect of
the modification of the geometric theory formulated by
Einstein [7–10].

One of the simplest ways to modify GR is by re-
placing the Ricci scalar R in the standard Einstein-
Hilbert action by an arbitrary function of R, this is, the
so-called f(R) theories of gravity [11, 12]. Extensive
and detailed reviews on the cosmological implications
of such theories can be found in Refs. [13–16]. On the
other hand, at astrophysical level, these theories basically
change the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions and hence the astrophysical properties of compact
stars, such as mass-radius relations, maximum masses, or
moment of inertia are somehow altered. See Ref. [17] for
a broad overview about relativistic and non-relativistic
stars within the context of modified theories of gravity
formulated in both metric and metric-affine approaches.

In most of the works reported in the literature about
internal structure of compact stars in GR and modified
theories of gravity it is very common to assume that such
stars are made up of an isotropic perfect fluid. Never-
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theless, there are strong arguments indicating that the
impact of anisotropy (this is, unequal radial and tangen-
tial pressures) cannot be neglected when we deal with
nuclear matter at very high densities and pressures, for
instance, see Refs. [18–24] and references therein. In that
regard, it has been shown that the presence of anisotropy
can lead to significant changes in the main characteris-
tics of compact stars [21–23, 25–31]. Within the frame-
work of extended theories of gravity, it is also important
to mention that non-rotating anisotropic compact stars
have been recently studied by some authors in Refs. [32–
50]. In addition, in the context of scalar-tensor theory
of gravity, slowly rotating anisotropic neutron stars have
been investigated in Ref. [51].

Harko and collaborators [52] have proposed a gener-
alization of f(R) modified theories of gravity in order
to introduce a coupling between geometry and matter,
namely f(R, T ) gravity, where T denotes the trace of the
energy-momentum tensor. Indeed, the simplest and most
studied model involving a minimal matter-gravity cou-
pling is given by f(R, T ) = R+2βT gravity. The cosmo-
logical aspects of this model have been recently explored
in Refs. [53–57], while other authors have investigated
the astrophysical consequences of the 2βT term on the
equilibrium structure of isotropic [58–65] and anisotropic
[37–42] compact stars. A characteristic of this model is
that R = 0 outside a compact star, and hence the ex-
terior spacetime is still described by the Schwarzschild
exterior solution. As a result, it has been shown that
for high enough central densities the contributions of the
2βT term are irrelevant, whereas below a certain cen-
tral density value the radius of an isotropic compact star
undergoes substantial deviations from GR [62, 63].

To determine the equilibrium configurations and mo-
ment of inertia of slowly rotating anisotropic stars up to
first order in the angular velocity, we will employ a phys-
ically motivated functional relation σ (defined as the dif-
ference between radial and tangential pressure) for the
anisotropy profile known in the literature as quasi-local
ansatz [25]. Moreover, we will follow a procedure anal-
ogous to that carried out by Hartle in GR [66] in order
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to obtain the modified version of the differential equation
which governs the difference between the angular velocity
of the star and the angular velocity of the local inertial
frames.

To achieve our results, the present work is organized
as follows: In Sec. II we briefly review f(R, T ) gravity
and we present the corresponding relativistic equations
for the f(R, T ) = R + 2βT model. In Sec. III we de-
rive the modified TOV equations for anisotropic stellar
configurations by adopting a non-rotating and slowly ro-
tating metric. Section IV presents a well-known EoS to
describe neutron stars as well as the anisotropy ansatz.
In Sec. V we discuss our numerical results, and finally,
our conclusions are presented in Sec. VI. In this paper
we will use a geometric unit system and the sign conven-
tion (−,+,+,+). However, our results will be given in
physical units.

II. BASIC FORMALISM OF f(R, T ) GRAVITY

A more general formulation of f(R) modified theories
of gravity consists in the inclusion of an explicit gravity-
matter coupling by means of an arbitrary function of the
Ricci scalar R and the trace of the energy-momentum
tensor T . Thus, the modified Einstein-Hilbert action in
f(R, T ) gravity is given by [52]

S =
1

16π

∫
f(R, T )

√
−gd4x+

∫
Lm
√
−gd4x, (1)

where g is the determinant of the spacetime metric gµν
and Lm denotes the Lagrangian density for matter fields.
The corresponding field equations in f(R, T ) gravity can
be obtained from the variation of the action (1) with
respect to the metric:

fR(R, T )Rµν −
1

2
f(R, T )gµν + [gµν�−∇µ∇ν ]fR(R, T )

= 8πTµν − (Tµν + Θµν)fT (R, T ), (2)

where Rµν is the Ricci tensor, Tµν the energy-momentum
tensor, fR ≡ ∂f/∂R, fT ≡ ∂f/∂T , � ≡ ∇µ∇µ is the
d’Alembertian operator with ∇µ standing for the covari-
ant derivative, and the tensor Θµν is defined in terms of
the variation of Tµν with respect to the metric, namely

Θµν ≡ gαβ
δTαβ
δgµν

= −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
. (3)

Just as in f(R) gravity [11, 12], in f(R, T ) theories the
Ricci scalar is also a dynamical entity which is described
by a differential equation obtained by taking the trace of
the field equations (2), this is

3�fR(R, T ) +RfR(R, T )− 2f(R, T )

= 8πT − (T + Θ)fT (R, T ), (4)

where we have denoted Θ = Θ µ
µ . In addition, the four-

divergence of Eq. (2) yields [67]

∇µTµν =
fT (R, T )

8π − fT (R, T )

[
(Tµν + Θµν)∇µ ln fT (R, T )

+∇µΘµν −
1

2
gµν∇µT

]
. (5)

In order to obtain numerical solutions that describe
compact stars, one has to specify the particular model of
f(R, T ) gravity. In that regard, we consider the simplest
model involving a minimal matter-gravity coupling pro-
posed by Harko et al. [52], i.e. f(R, T ) = R+ 2βT grav-
ity, which has been the most studied model of f(R, T )
gravity at both astrophysical and cosmological scale. As
a consequence, Eqs. (2), (4) and (5) can be written as
follows

Gµν = 8πTµν + βTgµν − 2β(Tµν + Θµν), (6)

R = −8πT − 2β(T −Θ), (7)

∇µTµν =
2β

8π − 2β

[
∇µΘµν −

1

2
gµν∇µT

]
, (8)

where Gµν is the Einstein tensor.

III. MODIFIED TOV EQUATIONS

A. Non-rotating stars

We shall assume that the matter source is described
by an anisotropic perfect fluid with energy density ρ, ra-
dial pressure pr and tangential pressure pt. Under theses
assumptions, the energy-momentum tensor is given by

Tµν = (ρ+ pt)uµuν + ptgµν − σkµkν , (9)

with uµ being the four-velocity of the fluid and which
satisfies the normalization property uµu

µ = −1, kµ is a
unit radial four-vector so that kµk

µ = 1, and σ ≡ pt− pr
is the anisotropy factor.

In addition, we consider that the interior spacetime
of the spherically symmetric stellar configuration is de-
scribed by the standard line element

ds2 = −e2ψdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (10)

where xµ = (t, r, θ, φ) are the Schwarzschild-like coordi-
nates, and the metric potentials ψ and λ are functions
only of the radial coordinate in a hydrostatic equilib-
rium situation. Consequently, we can write uµ = e−ψδµ0 ,
kµ = e−λδµ1 and the trace of the energy-momentum ten-
sor (9) takes the form T = −ρ+ 3pr + 2σ.

Within the context of anisotropic fluids in f(R, T )
gravity, the most adopted choice in the literature for
the matter Lagrangian density is given by Lm = P,
where P ≡ (pr + 2pt)/3. For more details about this
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choice, see Refs. [37–40, 42]. Under this consideration,
Θµν = −2Tµν + Pgµν and Eqs. (6), (7) and (8) become

Gµν = 8πTµν + βTgµν + 2β(Tµν − Pgµν), (11)

R = −8πT − 2β(3T − 4P), (12)

∇µTµν =
2β

8π + 2β
∂ν

(
P − 1

2
T

)
. (13)

For the metric (10) and energy-momentum tensor (9),
the non-zero components of the field equations (11) are
explicitly given by

1

r2
d

dr
(re−2λ)− 1

r2
= −8πρ+ β

[
−3ρ+ pr +

2

3
σ

]
,

(14)

e−2λ
(

2

r
ψ′ +

1

r2

)
− 1

r2
= 8πpr + β

[
−ρ+ 3pr +

2

3
σ

]
,

(15)

e−2λ
[
ψ′′ + ψ′2 − ψ′λ′ + 1

r
(ψ′ − λ′)

]
= 8π(pr + σ) + β

[
−ρ+ 3pr +

8

3
σ

]
, (16)

where the prime represents differentiation with respect
to the radial coordinate. Moreover, Eq. (13) implies that

dpr
dr

=− (ρ+ pr)ψ
′ +

2

r
σ

+
β

8π + 2β

d

dr

[
ρ− pr −

2

3
σ

]
. (17)

Eq. (14) leads to

re−2λ = r −
∫
r2
[
8πρ+ β

(
3ρ− pr −

2

3
σ

)]
dr, (18)

or alternatively,

e−2λ = 1− 2m

r
, (19)

where m(r) represents the gravitational mass within a
sphere of radius r, given by

m(r) = 4π

∫ r

0

r̄2ρ(r̄)dr̄

+
β

2

∫ r

0

r̄2
[
3ρ(r̄)− pr(r̄)−

2

3
σ(r̄)

]
dr̄. (20)

At the surface, where the radial pressure vanishes,
M ≡ m(rsur) is the total mass of the anisotropic compact
star. From our anisotropic version (20), here we can see
that by making σ = 0 one recovers the mass function for
the isotropic case given in Ref. [63]. In view of Eq. (19),
from Eq. (15) we obtain

ψ′ =

[
m

r2
+ 4πrpr +

βr

2

(
−ρ+ 3pr +

2

3
σ

)]
×
(

1− 2m

r

)−1
, (21)

and hence the relativistic structure of an anisotropic com-
pact star within the context of f(R, T ) = R+2βT gravity
is described by the modified TOV equations:

dm

dr
= 4πr2ρ+

βr2

2

(
3ρ− pr −

2

3
σ

)
, (22)

dpr
dr

=− ρ+ pr
1 + a

[
m

r2
+ 4πrpr +

βr

2

(
3pr − ρ+

2

3
σ

)]
×
(

1− 2m

r

)−1
+

a

1 + a

dρ

dr

+
2

1 + a

[
σ

r
− a

3

dσ

dr

]
, (23)

dψ

dr
=

1

ρ+ pr

[
−(1 + a)

dpr
dr

+ a
dρ

dr
+ 2

(
σ

r
− a

3

dσ

dr

)]
,

(24)

where we have defined a ≡ β/(8π + 2β). As expected,
the modified TOV equations in the isotropic scenario are
retrieved when pr = pt [63]. Furthermore, when the min-
imal coupling constant vanishes (this is, β = 0), we can
recover the standard TOV equations for anisotropic stars
in GR [23].

Given an EoS for the radial pressure pr = pr(ρ) and
an anisotropy relation for σ, Eqs. (22) and (23) can be
integrated by guaranteeing regularity at the center of the
star and for a given value of central energy density. In
addition, according to Eq. (12), we notice that R = 0 in
the outer region of the star. This means that we can still
use the Schwarzschild vacuum solution to describe the
exterior spacetime so that the interior solution is matched
at the boundary r = rsur to the exterior Schwarzschild
solution. Thus, the system of equations (22)-(24) can be
solved by imposing the following boundary conditions

m(0) = 0, ρ(0) = ρc, ψ(rsur) =
1

2
ln

[
1− 2M

rsur

]
.

(25)

B. Slowly rotating stars

In the slowly rotating approximation [66], i.e., when
rotational corrections appear at first order in the angu-
lar velocity of the stars Ω, the spacetime metric (10) is
replaced by its slowly rotating counterpart [66, 68]

ds2 =− e2ψ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2)

− 2ω(r, θ)r2 sin2 θdtdφ, (26)

where ω(r, θ) stands for the angular velocity of the lo-
cal inertial frames dragged by the stellar rotation. In
other words, if a particle is dropped from rest at a great
distance from the rotating star, the particle would expe-
rience an ever increasing drag in the direction of rotation
of the star as it approaches. In fact, here it is convenient
to define the difference $ ≡ Ω− ω as the coordinate an-
gular velocity of the fluid element at (r, θ) seen by the
freely falling observer [66].



4

Since Ω is the angular velocity of the fluid as seen by an
observer at rest at some spacetime point (t, r, θ, φ), one
finds that the four-velocity up to linear terms in Ω is given
by uµ = (e−ψ, 0, 0,Ωe−ψ). To this order, the spherical
symmetry is still preserved and it is possible to extend
the validity of the TOV equations (22)-(24). Neverthe-
less, the 03-component of the field equations contributes
an additional differential equation for angular velocity
ω(r, θ). By retaining only first-order terms in the angu-
lar velocity, we have T03 = −[$(ρ + pt) + ωpt]r

2 sin2 θ
and hence Eq. (11) gives the following expression

G03 =−
[
2(4π + β)(ρ+ pt)$ + 8πωpt

+β

(
−ρ+

1

3
pr +

8

3
pt

)
ω

]
r2 sin2 θ, (27)

or alternatively,

eψ−λ

r4
∂

∂r

[
e−(ψ+λ)r4

∂$

∂r

]
+

1

r2 sin3 θ

∂

∂θ

[
sin3 θ

∂$

∂θ

]
= 4(4π + β)(ρ+ pt)$. (28)

Following the procedure carried out by Hartle in GR
[66] and Staykov et al. in R2-gravity [68], we expand $
in the form

$(r, θ) =

∞∑
l=1

$l(r)

(
−1

sin θ

dPl
dθ

)
, (29)

where Pl are Legendre polynomials. In view of Eq. (29),
we can write

∂

∂θ

[
sin3 θ

∂$

∂θ

]
=
∑
l

$l(r)

[
(cos2 θ − sin2 θ)

dPl
dθ

− sin θ cos θ
d2Pl
dθ2

− sin2 θ
d3Pl
dθ3

]
=
∑
l

$l(r) [l(l + 1)− 2] sin2 θ
dPl
dθ

,

(30)

where we have used the Legendre differential equation

d2Pl
dθ2

+
cos θ

sin θ

dPl
dθ

+ l(l + 1)Pl = 0. (31)

Thus, after substituting Eqs. (29) and (30) into (28),
we get

eψ−λ

r4
d

dr

[
e−(ψ+λ)r4

d$l

dr

]
− l(l + 1)− 2

r2
$l

= 4(4π + β)(ρ+ pt)$l. (32)

At great distances from the stellar surface, where
spacetime must be asymptotically flat, the solution of
Eq. (32) assumes the form $l(r) → c1r

−l−2 + c2r
l−1.

Furthermore, the dragging angular velocity is expected

to be ω → 2J/r3 (or alternatively, $ → Ω − 2J/r3) for
r → ∞, where J is the angular momentum carried out
by the star (see Ref. [69] for more details). Therefore, by
comparison we can see that all coefficients in the Legen-
dre expansion vanish except for l = 1. This means that
$ is a function of r only, and Eq. (32) reduces to

eψ−λ

r4
d

dr

[
e−(ψ+λ)r4

d$

dr

]
= 4(4π + β)(ρ+ pt)$, (33)

and taking into account that e−(ψ+λ) = 1 at the edge of
the star and beyond, the last equation can be integrated
to give[
r4
d$

dr

]
rsur

= 4(4π + β)

∫ rsur

0

(ρ+ pt)r
4eλ−ψ$dr. (34)

From Eq. (34) we can obtain the relativistic moment
of inertia of a slowly rotating anisotropic compact star in
f(R, T ) = R+ 2βT gravity by means of expression

I =
2

3
(4π + β)

∫ rsur

0

(ρ+ pr + σ)eλ−ψr4
($

Ω

)
dr, (35)

and hence the angular momentum J = IΩ can be written
as

J =
2

3
(4π + β)

∫ rsur

0

ρ+ pr + σ√
1− 2m/r

(Ω− ω)e−ψr4dr. (36)

It can be seen that the above result then reduces to the
pure general relativistic expression when β = 0. Further-
more, when both parameters β and σ vanish, Eq. (36)
reduces to the expression given in Ref. [69] for isotropic
compact stars in Einstein gravity. Analogously as in GR,
the differential equation (33) will be integrated from the
origin at r = 0 with an arbitrary choice of the central
value $(0) and with vanishing slope, i.e., d$/dr = 0.
Once the solution for $(r) is found, we can then com-
pute the moment of inertia via the integral (35).

IV. EQUATION OF STATE AND ANISOTROPY
ANSATZ

Just as the construction of anisotropic compact stars
in GR, to close the system of Eqs. (22)-(24), one needs to
specify a barotropic EoS (which relates the radial pres-
sure to the mass density by means of equation pr = pr(ρ))
and also assign an anisotropy function σ since there is
now an extra degree of freedom pt. Alternatively, it is
possible to assign an EoS for radial pressure and another
for tangential pressure. For instance, an approach for
the study of anisotropic fluids has been recently carried
out within the context of Newtonian gravity in Ref. [70]
and in conventional GR [71], where both the radial and
tangential pressures satisfy a polytropic EoS.

In this work, we will follow the first procedure de-
scribed in the previous paragraph in order to deal
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with anisotropic neutron stars within the framework of
f(R, T ) gravity. Indeed, for radial pressure we use a well-
known and physically relevant EoS which is compatible
with the constraints of the GW170817 event (the first de-
tection of gravitational waves from a binary neutron star
inspiral [72]), namely, the soft SLy EoS [73]. This EoS
is based on the SLy effective nucleon-nucleon interaction,
which is suitable for the description of strong interactions
in the nucleon component of dense neutron-star matter.
Such unified EoS describes both the neutron-star crust
and the liquid core (which is assumed to be a “minimal”
npeµ composition), and it can be represented by the fol-
lowing analytical expression

ζ(ξ) =
a1 + a2ξ + a3ξ

3

1 + a4ξ
f(a5(ξ − a6))

+ (a7 + a8ξ)f(a9(a10 − ξ))
+ (a11 + a12ξ)f(a13(a14 − ξ))
+ (a15 + a16ξ)f(a17(a18 − ξ)), (37)

where ζ ≡ log(pr/dyn cm−2), ξ ≡ log(ρ/g cm−3), and
f(x) ≡ 1/(ex + 1). The values ai are fitting parameters
and can be found in Ref. [74].

In addition, we adopt the anisotropy ansatz proposed
by Horvat et al. [25] to model anisotropic matter inside
compact stars, namely

σ = αprµ = αpr(1− e−2λ), (38)

with µ(r) ≡ 2m/r being the compactness of the star. The
advantage of this ansatz is that the stellar fluid becomes
isotropic at the origin since µ ∼ r2 when r → 0. It is also
commonly known as quasi-local ansatz in the literature
[25], where α controls the amount of anisotropy inside
the star and in principle can assume positive or negative
values [23, 25, 33, 50, 51, 75, 76]. Note that in the Newto-
nian limit, when the pressure contribution to the energy
density is negligible, the effect of anisotropy vanishes in
the hydrostatic equilibrium equation. Regardless of the
particular functional form of the anisotropy model, here
we must emphasize that physically relevant solutions cor-
respond to pr, pt ≥ 0 for r ≤ rsur.

V. NUMERICAL RESULTS AND DISCUSSION

Given an EoS for the radial pressure, we numerically
integrate the modified TOV equations (22)-(24) with
boundary conditions (25) from the stellar center to the
surface r = rsur where the radial pressure vanishes. In
addition, we have to specify a particular value for the cou-
pling constant β and for anisotropy parameter α which
appears in Eq. (38). For instance, for a central mass den-
sity ρc = 2.0×1018 kg/m3 with SLy EoS (37), Fig. 1 illus-
trates the mass function and anisotropy factor as func-
tions of the radial coordinate for β = −0.01 and several
values of α. The left plot reveals an increase in gravita-
tional mass and a decrease in radius as α increases. More-
over, from the right plot we can see that the anisotropy

vanishes at the center (which is a required condition in
order to guarantee regularity), is more pronounced in the
intermediate regions, and it vanishes again at the stellar
surface.

For the anisotropy function (38), the left panel of Fig. 2
displays the mass-radius relations for anisotropic neutron
stars with SLy EoS in f(R, T ) = R+2βT gravity for three
particular values of the coupling constant β and different
values of α. Here the total gravitational mass of each
configuration is given by M = m(rsur), and the isotropic
case in Einstein gravity has been included for compari-
son purposes by a black solid line. The mass-radius re-
lation exhibits substantial deviations from GR mainly
in the low-mass region. On the other hand, anisotropy
introduces considerable changes only in the high-mass re-
gion. We remark that the 2βT term together with the
presence of anisotropies (with positive values of α) al-
low us to obtain maximum masses bigger than 2.0M�.
As a consequence, the introduction of anisotropies in
f(R, T ) = R+ 2βT gravity gives rise to massive neutron
stars that are in good agreement with the millisecond
pulsar observations [77, 78]. From NICER and XMM-
Newton data [79], the radius measurement for a 1.4M�
neutron star is 12.45 ± 0.65 km and, according to the
mass-radius diagram, our results consistently describe
this star when β = −0.01 (see blue curves). Further-
more, it should be noted that the parameter β = −0.01
is the one that best fits the mass-radius constraint from
the GW170817 event (see the filled cyan region). Nev-
ertheless, the massive pulsar J0740+6620 (whose radius
is 12.35 ± 0.75 km [79]) could be described only when
β = −0.03 and α = 0.4.

It is worth commenting that the value of the parame-
ter α could be constrained, but that will depend on the
particular compact star observed in the Universe. For in-
stance, the range α ∈ [−0.4,−0.2] consistently describes
the millisecond pulsar J1614-2230 regardless of the value
of β. However, for highly massive neutron stars whose
masses are greater than 2.0M�, positive values of α will
be required. For PSR J0740+6620, whose gravitational
mass is 2.08M�, the best value for α is 0.2. In fact, this
constraint will depend not only on the modified theory
of gravity but also on the equation of state adopted for
the radial pressure.

According to the right panel of Fig. 2, the parameter
β slightly modifies the total gravitational mass, however,
the effect of anisotropy introduces more relevant changes.
To better analyze the effects that arise as a result of the
modification of Einstein’s theory as well as the incorpo-
ration of anisotropies, in Fig. 3 we show the behavior
of the surface radius as a function of the central den-
sity. From the left plot we can conclude that the radius
is significantly altered due to the 2βT term in the low-
central-density region, while anisotropy slightly modifies
the radius of the stars. The right plot corresponds to the
pure general relativistic case and it can be observed that
the radius undergoes more significant modifications with
respect to its isotropic counterpart if the values for |α|
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FIG. 1. Radial behaviour of the mass function (left panel) and the anisotropy factor (right panel) in the framework of
f(R, T ) = R+ 2βT gravity for β = −0.01 and different values of α. SLy EoS (37) is valid from 1011 kg/m3 up to the maximum
density reachable within neutron stars [73], and in these plots we have considered ρc = 2.0× 1018 kg/m3. The isotropic case is
recovered when the anisotropy parameter vanishes (this is, α = 0). We can observe that the gravitational mass increases and
the radius decreases as α increases. In addition, the anisotropy is more pronounced in the intermediate regions and vanishes
at the stellar center as expected.

are larger than those considered in the left plot.

Eq. (33) is first solved in the interior region from the
center to the surface of the star by considering an arbi-
trary value for$ and with vanishing slope at r = 0. Then
the same equation is solved in exterior spacetime from the
surface to a sufficiently far distance from the star where
$(r)→ Ω. In Fig. 4 we display the radial profile of these
solutions for the central mass density considered above.
We observe that $(r) is an increasing function of the ra-
dial coordinate, whereas ω(r) is a decreasing function and
hence the largest rate of dragging of local inertial frames
always occurs at the stellar center. Furthermore, appre-
ciable effects (mainly in the interior region of the stellar
configuration) can be noted on frame-dragging angular
velocity due to the inclusion of anisotropies.

Once $(r) is known for each stellar configuration, we
can then determine the moment of inertia by means of
Eq. (35). Figure 5 presents the moment of inertia as a
function of the total gravitational mass in GR and within
the context of f(R, T ) = R+ 2βT gravity for β = −0.01.
It can be observed that the moment of inertia undergoes
irrelevant changes from GR, however, it can change sig-
nificantly due to anisotropies in the high-mass region.

VI. CONCLUSIONS

In this work we have investigated slowly rotating
anisotropic neutron stars in f(R, T ) = R + 2βT grav-
ity, where the degree of modification with respect to GR
is measured by the coupling constant β. The modified
TOV equations and moment of inertia have been derived
within the context of anisotropic fluids by retaining only

first-order terms in the angular velocity as measured by
a distant observer (Ω). Notice that, within this linear
approximation, the moment of inertia can be calculated
from the structure of a non-rotating configuration since
the TOV equations describing the static background are
still valid. In addition, we have adopted the anisotropy
ansatz proposed by Horvat and collaborators [25], where
appears a dimensionless parameter α which measures the
degree of anisotropy within the neutron star.

We have analyzed the consequences of the extra term
2βT together with anisotropies on the properties of neu-
tron stars such as radius, mass, frame-dragging angular
velocity and moment of inertia. Indeed, our results re-
veal that the radius deviates considerably from GR in
the low-central-density region, however, the total gravi-
tational mass and the moment of inertia undergo slight
modifications due to the influence of the effects generated
by the minimal matter-gravity coupling. Furthermore,
the presence of anisotropy generates substantial changes
both in the mass and in the moment of inertia with re-
spect to the isotropic case. The appreciable effects due
to the inclusion of anisotropy occur mainly in the higher-
central-density region, this is, for large masses (near the
maximum-mass configuration).
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FIG. 3. Surface radius as a function of the central mass density. On the left panel, different styles and colors of the curves
correspond to different values of the parameters β and α as in Fig. 2. The most substantial deviations from GR take place at
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