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1 Introduction
The use of �nite families of multi-indices with appropriate properties to investigate the associated truncated
moment problems appears in several works, as for instance in [8, 9], and more recently in [17, 18]. In this
work, we deal with the concept of a hereditary family of multi-indices, which happens to be compatible with
our techniques, developped in some older works for ordinary truncated moment problems (see [14–16] etc.).

As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex numbers, positive integers, in-
tegers and non-negative integers, respectively. For a �xed integer n ∈ N, the Cartesian product Zn+ is said to
be the set of multi-indices of lenght n.

Let k = (k1, . . . , kn) ∈ Zn+, and t = (t1, . . . , tn) ∈ Rn be arbitrary. Then tk means the monomial tk1
1 . . . tknn ,

and |k| = k1 + . . . + kn. By B(Rn) we denote the set of all Borel subsets of Rn. In the set Zn+ we consider the
order relation ”≤“ given by k ≤ p whenever kj ≤ pj , j = 1, . . . , n, where k = (k1, . . . , kn), p = (p1, . . . , pn).

Let K be an arbitrary subset of Zn+, and let PnK be the complex vector space spanned by the set of mono-
mials {tk : k ∈ K}. Let Γ = (γk)k∈K be an arbitrary set of real numbers. The K-truncated moment problem
consists of �nding necessary and su�cient condition in terms of Γ, insuring the existence of a non-negative
measure µ onB(Rn) such that each monomial tk is µ-integrable, and

γk =
∫

tkdµ(t), k ∈ K. (1)

Equivalently, for the assignment tk 7→ γk, which induces a linear functional on PnK, say ΛK, one looks for a
non-negative measure µ onB(Rn) such that ΛK(p) =

∫
p(t)dµ(t) for all p ∈ PnK.

The moment problems with respect to a given set of multi-indices K can be stated in a more abstract
context, for functions more general that polynomials. Let us introduce such a convenient framework.

Let (Ω,S) be ameasurable space, that is,Ω is an arbitrary (nonempty) set andS is a σ-algabra of subsets
ofΩ. Let alsoF be a vector space consisting ofS-measurable complex-valued functions onΩ, invariant under
complex conjugation. Assume that we have a linear map Λ : F 7→ C. A natural question is to investigate the
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existence of a positive measure µ on Ω such that

Λ(f ) =
∫
Ω

f (ω)dµ(ω), f ∈ F.

Thanks to an argument originating in [12], in many situations of interest we may restrict ourselves to the
case when the space F is �nite dimensional. The �nite dimensionality of the space F leads to the possibility
to replace an existingmeasure µ by another one consisting of a �nite number of atoms, via an argument going
back to [13] (see also [1]).

An extremal condition, �rstly stated for polynomial moment problem (see [5]) is still very useful in our
more general framework. Speci�cally, it insures the uniqueness of the representing measure when such a
measure exists (see Proposition 1). Concerning the existence of a representingmeasure, we present twomain
results. For the �rst one, we use the concept of idempotent element, introduced in [15], which plays a central
role in our development. In hereditary function spaces having a �nite number of generators, the existence
of representing measures is characterized by the existence of orthogonal bases consisting of idempotents,
satisfying a certain ”multiplicativity condition“ (see Theorem 1).

The concept of dimensional stability (discussed in [14]) goes back to the concept of �atness, introduced
in [3] in the context of spaces of polynomials. This property is used to prove anothermain results of this paper
(see Theorem 2).

The author is indebted to S. M. Zagorodnyuk (Kharkov) for several useful discussions on this subject.

2 Hereditary Function Spaces

2.1 Hereditary Sets of Indices

Let us �rst de�ne the maps Sj : Zn+ 7→ Zn+ via the formulas

Sj(k1, . . . , kj , . . . , kn) = (k1, . . . , kj + 1, . . . , kn), (k1, . . . , kj , . . . , kn) ∈ Zn+ , (2)

for all j = 1, . . . , n, which are, in fact, mutually commuting shifts.
The following type of sets of indices also appears in other works, sometimes under di�erent names, as-

sociated with di�erent techniques (see [8, 9, 18] etc.).

De�nition 1. A subsetK ⊂ Zn+ is said to be hereditary if for every k ∈ K and r ∈ Zn+ such that r ≤ k, we have
r ∈ K.

Example 1. (1) LetK = Km = {k ∈ Zn+ : |k| ≤ m}, for some �xed m ∈ N. ThenK is hereditary.
(2) LetK = Kd = {k ∈ Zn+ : k ≤ d}, where d ∈ Zn+ is �xed. ThenK is hereditary.
(3) Let k1, . . . , kr be �xed elements of Zn+. Then the set

r⋃
j=1
{k ∈ Zn+ : k ≤ kj}

is hereditary.

Lemma 1. LetKj ⊂ Zn+ (j = 1, 2) be hereditary. ThenK = K1 + K2 ⊂ Zn+ is also hereditary.

The easy proof is left to the reader. This lemma shows that the family of hereditary sets contains also the sets
obtained by adding and combining those from Example 1.

Remark 1. Let K ⊂ Zn+ be a hereditary �nite set. We de�ne, by recurrence, the sets of indices Kr = {Spk :
|p| ≤ r, k ∈ K, r ≥ 0}, soK0 = K, and S = (S1, . . . , Sn) is given by formula (2). Note that we haveK0 ⊂ K1 ⊂
K2 ⊂ · · · . In fact,Kr = {SpSk0, |p| ≤ r, k ∈ K} for all r ≥ 0. Moreover, the setK∞ = ∪r≥0Kr is also hereditary.
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2.2 Function Spaces

Let (Ω,S) be a measurable space, and let also MS(Ω) be the algebra of all complex-valued S-measurable
functions on Ω (that is, f −1(B) ∈ S for each f ∈ MS(Ω) and all Borel sets B ∈ B(C)). In fact, in most of
the cases we may restrict ouselves to the case when Ω is a Hausdor� space and S is the σ-algabra of all
Borel subsets of Ω and, when working with �nite atomic measures, even to the case when Ω is an arbitrary
(nonempty) set andS is a family of all subsets of Ω.

For convenience, and following [14–16], a vector subspaceF ⊂MS(Ω) such that 1 ∈ F and if f ∈ F, then
f̄ ∈ F, is said to be a function space.

Fixing a function spaceF, letF(2) be the vector space spanned by all products of the form fgwith f , g ∈ F,
which is itself a function space. We have F ⊂ F(2), and F = F(2) when F is an algebra.

For any vector subspace T ⊂ F invariant under complex conjugation, the symbol RT will designate the
”real part“ of T, that is {f ∈ T; f = f̄}.

Important examples of function spaces are associated with the space Pn of all polynomials in n ≥ 1 real
variables, denoted as above by t1, . . . , tn, with complex coe�cients. For every integer m ≥ 0, let Pnm be the
subspace of Pn consisting of all polynomials p with deg(p) ≤ m, where deg(p) is the total degree of p. Both
Pnm and Pn are function spaces (of continuous functions) on Rn. In fact, Pnm = PnKm

, with Km as in Example
1(1). Similarly, Pnd = PnKd

, with PnKd
as in Example 1(2) is also a function space.

Let F be a function space and let Λ : F(2) 7→ C be a linear map with the following properties:

(1) Λ(f̄ ) = Λ(f ) for all f ∈ F(2);
(2) Λ(|f |2) ≥ 0 for all f ∈ F;
(3) Λ(1) = 1.

Adapting some terminology from [10] to our context (see also [14–16]), a linear map Λwith the properties
(1)-(3) is said to be a unital square positive functional, brie�y a uspf.

Every uspf Λ : F(2) 7→ C satis�es the Cauchy-Schwarz inequality

|Λ(fg)|2 ≤ Λ(|f |2)Λ(|g|2), f , g ∈ F.

A simple example of a uspf is given by a probability measure µ and a function space F on (Ω,S), con-
sisting of square µ-integrable functions. Then the map F(2) 3 f 7→

∫
Ω fdµ ∈ C is a uspf, as one can easily see.

Fixing a function space F and a uspf Λ : F(2) 7→ C, we have a semi-inner product given by the equality

〈f , g〉0 = Λ(f ḡ), f , g ∈ F.

Then we set
IF = {f ∈ F; 〈f , f 〉0 = 0} = {f ∈ F;Λ(|f |2) = 0},

which is a vector subspace of F. Moreover, the quotientHF := F/IF is an inner product space, with the inner
product given by

〈f̂ , ĝ〉 = Λ(f ḡ), (3)

where f̂ = f + IF is the equivalence class of f ∈ F modulo IF .
When the quotient HF is �nite dimensional, it is actually a Hilbert space, which will be said to be the

Hilbert space associated to (F, Λ). This will be the case in most of the results of this work.

When the function space F and a uspf Λ : F(2) 7→ C are given, we shall use the notation IF , HF , f̂ , with
the meaning from above, if not otherwise speci�ed.
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Problem 1. The (abstract) moment problem for a given uspf Λ : F(2) 7→ C, where F is a �xed function space
on (Ω,S), means to �nd necessary and su�cient conditions insuring the existence of a probability measure
µ, de�ned on S, such that F consists of square µ-integrable functions and Λ(f ) =

∫
Ω fdµ, f ∈ F(2). When

such a measure µ exists, it is said to be a representing measure of Λ (with support) in Ω.

In the classical moment problem on spaces of polynomials, the role of the uspf Λ is played by the so-called
Riesz functional (see for instance [7]).

In some special cases, a uspf Λ : F(2) 7→ C may have an atomic representing measure in Ω, which (in
this text) means that there exists a �nite subset ΩΛ = {ω1, . . . , ωd} ⊂ Ω consisting of distinct points, and
positive numbers λ1, . . . , λd, with λ1 + · · · + λd = 1, such that Λ(f ) =

∑d
j=1 λj f (ωj) for all f ∈ F(2).

When we want to specify the number of points {ω1, . . . , ωd}, the corresponding atomic measure will be
called a d-atomic representing measure (of Λ in Ω). Of course, in this case we can write Λ(f ) =

∫
Ω f (ω)dµ(ω),

where µ is a probability measure de�ned on a σ-algebraS containingΩΛ and its subsets, such that µ({ωj}) =
λj j = 1, . . . , d, supported by ΩΛ. In particular, we may take asS the family of all subsets of Ω.

When F is �nite dimensional, more generally if HF is �nite dimensional, and the uspf Λ on F(2) has an
arbitrary representing measure, then one expects that this measure may be replaced by an atomic one. Such
a property goes back to Tchakalo� (see Corollary 2 in [13]).

An extremality condition insures the uniqueness of an atomic representing measure, when such a repre-
senting measure does exist. The following result is in the spirit of [5] (see also Proposition 2 from [16]).

Proposition 1. Let F be a function space on Ω, and let Λ : F(2) 7→ C be a uspf. Assume that the associated
Hilbert spaceHF is �nite dimensional. Then there exists at most one d-atomic representing measure of the uspf
Λ, with support in Ω, having d := dimHF atoms.

Proof. If the uspf Λ has a d-atomic representing measure in Ω with d := dimHF atoms, say µ, with �nite
support Z ⊂ Ω, it follows that the map HF 3 f̂ 7→ f |Z ∈ L2(Z, µ) is a unitary operator. Indeed, we have
only to note that the map f̂ 7→ f |Z from HF into L2(Z, µ) is correctly de�ned, linear and injective. It is also
surjective because the dimension ofHF equals the dimension of L2(Z, µ). As we have ‖f̂‖2 =

∫
Z
|f |2dµ for all

f̂ , this map is actually a unitary transformation.
Now assume that there exists another d-atomic representing measure of Λ in Ω, with support Ξ :=

{ξ1, . . . , ξd}. As in the previous case, the map f̂ 7→ f |Ξ induces a unitary operator fromHF onto L2(Ξ, ν).
We now extend µ (resp. ν) toΩ by setting µ(Ω \Z) = 0 (resp. ν(Ω \Ξ) = 0). If ζ ∈ Z\Ξ, for the characteristic

function χ of the set {ζ} (de�ned on Ω) we must have

0 = ̸
∫
Ω

χdµ = 〈χ, 1〉0 =
∫
Ω

χdν = 0,

which is impossible, so Z ⊂ Ξ. A similar argument shows that Ξ ⊂ Z. Therefore, Z = Ξ. In fact, this argument
shows that the weights of both measures at a given point in the support must be the same.

2.3 Generators of Function Spaces

Let F be a a function space on Ω. Let also K ⊂ Zn+ be a subset containing 0 = (0, . . . , 0), and let θ =
(θ1, . . . , θn) be an n-tuple of elements of RF.

If the family {θα : α ∈ K} spans the space F, we say that the function space F is K-generated by θ. In
addition, if the setK is hereditary, we say that the function space F is hereditary.

Obviously, when K is �nite, the space F is of �nite dimension, and if K = {k : |k| ≤ 1}, the space F is
K-generated by θ if and only if F is the span of {θ1, . . . , θn}. Moreover, if F isK-generated by θ, then F(2) is
K2-generated by θ, whereK2 = K + K.



68 | Florian-Horia Vasilescu

As a matter of fact, if F is a function space on Ω that is K-generated by an n-tuple θ = (θ1, . . . , θn) of
elements of RF, we must have the equality, F = {p ◦ θ; p ∈ PnK}, where θ is regarded as a function from Ω
into Rn, where PnK is the complex space of polynomialsK-generated by t = (t1, . . . , tn).

2.4 Idempotents

In the following we recall the concept of an idempotent (see [15, 16]), and present some of its properties.
We �x a function space F and a uspf Λ : F(2) 7→ C, having a �nite dimensional associated Hilbert space

HF, whose norm is denoted by ‖*‖. We denote byRHF the real Hilbert space given by the quotientRF/RIF.

De�nition 2. An element ι ∈ RHF is said to be an idempotent (associated to F) if

‖ι‖2 = 〈ι, 1̂〉. (4)

We set ID(HF) := {ι ∈ RHF; 〈ι, 1̂〉 = ‖ι‖2 ≠ 0}, that is, the family of all nonnull idempotents ofHF.

The following result is a version of Lemma 4 from [15].

Lemma 2. If {η1, . . . , ηd} ⊂ RHF is an orthonormal basis with 〈ηj , 1̂〉 = ̸ 0, j = 1, . . . , d, the set
{〈η1, 1̂〉η1, . . . 〈ηd , 1̂〉ηd} is an orthogonal basis ofHF consisting of idempotents. Moreover,

〈η1, 1̂〉η1 + · · · + 〈ηd , 1̂〉ηd = 1̂,

where d = dimHF.

As noticed in [15], in the spaceHF there are in�nitely many orthogonal bases consisting of idempotents.

Corollary 1. There are functions b1, . . . , bd ∈ RF such that ‖bj‖2
0 = 〈bj , 1〉0 > 0, 〈bj , bk〉0 = 0 for all j, k =

1, . . . , d, j ≠ k, and every f ∈ F can be uniquely represented as

f =
d∑
j=1
〈bj , 1〉−1

0 〈f , bj〉0bj + f0,

with f0 ∈ IF and d = dimHF.

3 Relative Multiplicativity
As done in [15, 16], we can also characterize the existence of a representingmeasure for unital square positive
functionals in this context. The following is a basic concept, which generalizes a corresponding one from [15],
De�nition 3.

De�nition 3. Let F be a hereditary function space K-generated by θ = (θ1, . . . , θn) ⊂ RF, endowed with a
uspfΛ : F(2) 7→ C. Assume that the spaceHF is �nite dimensional, and letB = {b̂1, . . . , b̂d}be anorthogonal
basis inHF consisting of idempotent elements. We say that the tuple θ isB-multiplicative if

Λ(θpbj)Λ(θqbj) = Λ(bj)Λ(θp+qbj), (5)

whenever p + q ∈ K, j = 1, . . . , d.

The next result is an extension of Theorem 2 from [15] (and of Theorem 8 from [16] as well).

Theorem 1. Let F be a hereditary function spaceK-generated by θ = (θ1, . . . , θn) ⊂ RF, and endowed with a
uspf Λ : F(2) 7→ C. Assume that the spaceHF is �nite dimensional.

The uspf Λ has a uniquely determined representing measure on Ω consisting of d := dimHF atoms if and
only if there exists an orthogonal basis B = {b̂1, . . . , b̂d} of HF, consisting of idempotent elements, such that
θ isB-multiplicative, and δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is the dual basis ofB.
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Proof. Let B = {b̂1, . . . , b̂d} be an orthogonal basis of HF consisting of idempotent elements. Hence, every
element f̂ ∈ HF has a unique representation of the form f̂ =

∑d
j=1〈b̂j , 1̂〉−1〈f̂ , b̂j〉b̂j, via Corollary 1.

We consider on HF the linear functionals δj(f̂ ) = 〈b̂j , 1̂〉−1〈f̂ , b̂j〉, j = 1, . . . , d, so f̂ =
∑d

j=1 δj(f̂ )b̂j for
all f̂ ∈ H. In particular, δj(b̂j) = 1 and δj(b̂k) = 0 for all j, k = 1, . . . , d, j ≠ k. In other words, the set
∆ := {δ1, . . . , δd} is the dual basis ofB.

Next, we de�ne the functions f̂∆ : ∆ 7→ C by f̂∆(δ) = δ(f̂ ) for all f̂ ∈ HF and δ ∈ ∆. Setting H∆ :=
{f̂∆; f̂ ∈ HF}, we have a linear map HF 3 f̂ 7→ f̂∆ ∈ H∆, which is surjective by de�nition, and injective
because f̂∆ = 0 implies f̂ = 0. In other words, the map HF 3 f̂ 7→ f̂∆ ∈ H∆ is a linear isomorphism. In
addition, f̂∆ =

∑d
k=1 f̂∆(δj)b̂k∆ for all f̂ ∈ HF. In fact, the function b̂k∆ is the characteristic function of the set

{δk}, k = 1, . . . , d.
Setting C(∆) := {ϕ : ∆ 7→ C} regarded as a �nite dimensional C*-algebra, we must have H∆ = C(∆) as

linear spaces, because both have the samedimension,which is equal to the dimension ofHF. In addition,H∆
also has a multiplicative structure, so that H∆ and C(∆) are isomorphic as C*-algebras. Indeed, the product
of two functions fromH∆, say f̂∆ =

∑d
j=1 δj(f̂ )b̂j ∆, ĝ∆ =

∑d
j=1 δj(ĝ)b̂j ∆, is given by

f̂∆ ĝ∆ =
d∑
j=1

δj(f̂ )δj(ĝ)b̂j ∆ ,

which coincideswith the product of C(∆). In particular, f̂∆ ĝ∆ is an element ofH∆, and the C*-algebra structure
of C(∆) is inherited byH∆.

We now assume that θ isB-multiplicative, and that δ(θ̂) ∈ θ(Ω), δ ∈ ∆.
We note that the spaceHF is spanned by the family {θ̂k : k ∈ K}, by hypothesis, so the vector spaceH∆

is spanned by the family {θ̂k∆ : k ∈ K}, while the C*-algebra H∆ is generated by the family {θ̂1∆ , . . . , θ̂n∆}.
We need a more explicit relation between these families, obtained by using (6), which will be proved in the
following. Because we have

Λ(θpbj)Λ(θqbj) = Λ(bj)2δj(θ̂p)δj(θ̂q) =

Λ(bj)Λ(θp+qbj) = Λ(bj)2δj(θ̂p+q)

whenever p + q ∈ K and j = 1, . . . , d, via (5), we infer that

θ̂p∆ θ̂q∆ = θ̂p+q∆ ,

whenever p + q ∈ K. Hence, by recurrence, we deduce that

θ̂k∆ = (θ̂∆)k, k ∈ K. (6)

The hypothesis δ(θ̂) ∈ θ(Ω), δ ∈ ∆, allows us to �nd a point ζj ∈ Ω such that θ(ζj) = δj(θ̂) for each
j = 1, . . . , d.

Let f ∈ F be a �xed element. As F isK-generated by θ, there exists a polynomial p, with complex coe�-
cients of the form P(t) =

∑
k∈K ckt

k such that f = p ◦ θ. Then we have f̂ = p ◦ θ̂, and so f̂∆ = p ◦ θ̂∆, via (6).
Hence, we must have

δj(f̂ ) = f̂∆(δj) = p(θ̂∆(δj)) = (p ◦ θ)(ζj) = f (ζj), j = 1, . . . , d.

Now, if f , g ∈ F, because f =
∑n

j=1 δj(f̂ )bj + f0, f =
∑n

k=1 δk(ĝ)b+g0, via Corollary 1, with f0, g0 ∈ IF, we
obtain

Λ(fg) =
n∑

j,k=1
δj(f̂ )δk(ĝ)Λ(bjbk) =

n∑
j=1

δj(f̂ )δj(ĝ)Λ(bj).

Next, using the computations from above, if ϕ =
∑

l∈L flgl is an arbitrary element in F(2), with fl , gj ∈ F

for all l ∈ L, L �nite, we have

Λ(ϕ) =
∑
l∈L

Λ(flgl) =
∑
l∈L

d∑
j=1

Λ(bj)fl(ζj)gl(ζj) =
d∑
j=1

Λ(bj)ϕ(ζj). (7)
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Moreover, Λ(bj) > 0 for all j and
∑d

j=1 Λ(bj) = 1, by Lemma 2. Consequently, the uspf Λ has a representing
measure on Ω. In addition, this measure is uniquely determined by Proposition 1.

Conversely, assume that there exists a �nite family {ζ1, . . . , ζd} ⊂ Ω, consisting of distinct points, such
that

Λ(ϕ) =
d∑
j=1

λjϕ(ζj), ∀ϕ ∈ F(2),

where λj > 0 for all j,
∑d

j=1 λj = 1, and d = dimHF.
Set Z = {ζ1, . . . , ζd}, and let C(Z) = {h : Z 7→ C}, regarded as a C*-algebra. As we must have IF =

{f ∈ F; f |Z = 0}, there exists a map ρ : HF 7→ C(Z) given by f̂ 7→ f |Z, which is correctly de�ned, linear,
and injective. In fact, this map is also surjective, because dimHF = dimC(Z). We denote by χk ∈ C(Z) the
characteristic function of the set {ζk}, and by b̂k ∈ RHF the element with ρ(b̂k) = χk , k = 1, . . . , d. Then
the set B := {b̂1, . . . , b̂d} is a family of orthogonal idempotents in HF, which is actually a basis. Moreover,
bj(ζj) = 1 and bk(ζj) = 0 for all j, k = 1, . . . , d, j ≠ k.

Setting δj(f̂ ) = f (ζj), f ∈ F, j = 1, . . . , d, and ∆ := {δ1, . . . , δd}, we infer that ∆ is the dual basis of B,
and we have

δj(θ̂k) = θk(ζj) = (θ1(ζj)k1 · · · θn(ζj)kn ) = δj(θ̂k),

whenever k ∈ K and j = 1, . . . , d, showing that θ is B-multiplicative. In addition, the obvious equality
δj(θ̂) = θ(ζj), j = 1, . . . , d, concludes the proof of Theorem 1.

Corollary 2. Let F be a function space on Ω, spanned by the n-tuple θ. A uspf Λ : F(2) 7→ C has a uniquely
determined representing measure on Ω consisting of d := dimHF atoms if either

(1) there exists an orthogonal basisB ofH consisting of idempotent elements such that δ(θ̂) ∈ θ(Ω), δ ∈ ∆,
where ∆ is the dual basis ofB, or

(2) θ(Ω) = Rn .

Proof. Because F is spanned by θ, the property (5) is automatically ful�lled. To get the assertion (1) from
the statement we need the inclusion δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is the dual basis of B, in order to apply
the previous theorem, while to get (2), such an inclusion is always true, for an arbitrary orthogonal basis
consisting of idempotents.

4 Dimensional Stability and Consequences
In this section we intend to extend and recapture, in the present context, some results regarding the dimen-
sional stability, developed in [14]. We also recall that the concept of dimensional stability in function spaces
of polynomials, as approached in [14], is equivalent to that of �atness, due to Curto and Fialkow (see [3, 4]).

Remark 2. Let F be a function space, and let Λ : F(2) 7→ C be a uspf. We assume that the quotient space
HF = F/IF is �nite dimensional, so it is a Hilbert space. Let also G be a function subspace of F, so Λ|G(2) is a
uspf. If IG andHG are de�ned by replacing F by G, we have an isometry

HG 3 g + IG 7→ g + IF ∈ HF . (8)

In particular,HG is also a Hilbert space, and dimHG ≤ dimHF.
We say that the uspf Λ is dimensionally stable at G if dimHG = dimHF. In this case, the isometry (8)

is surjective, that is, (8) is a unitary transformation. This is equivalent to the fact that for every f ∈ F there
exists a g ∈ G such that f − g ∈ IF. Note that if f ∈ RF, we can choose g ∈ RG such that f − g ∈ RIF, because
IF = RIF + iRIF.

The next result is in the spirit of Lemma 5 from [16].
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Lemma 3. Let F be a function space, let Λ : F(2) 7→ C be a uspf, and let θ = {θ1, . . . , θn} be in RF. Let also G

be a function subspace of F such that θjG ⊂ F for all j = 1, . . . , n, and that Λ is dimensionally stable at G. Then
(
∑n

j=1 θjIF) ∩ F ⊂ IF. In particular, θjIG ⊂ IF for all j = 1, . . . , n.

Proof. Let f =
∑n

j=1 θj fj ∈ F with fj ∈ IF for all j = 1, . . . , n, and let g ∈ G. Then

|Λ(fg)| ≤
n∑
j=1
|Λ(θj fjg)| ≤

n∑
j=1

(Λ(|fj|2)1/2(Λ(|θjg|2)1/2 = 0.

by the Cauchy-Schwarz inequality.
Next, let h ∈ G be such that f̄ − h ∈ IF, which exists because of the dimensional stability of Λ at G. Then

Λ(|f |2) = Λ(�) + Λ(f (f̄ − h)) = 0

by the previous computation and the Cauchy-Schwarz inequality. Therefore f ∈ IF.
The last assertion is obvious.

Remark 3. We keep the notation and assumptions of Lemma 3. First of all, let J : HG 7→ HF be the unitary
transformation given by (8). Then we de�ne some operators Mj : HG 7→ HF by the equalities Mj(g + IG) =
θjg + IF for all j = 1, . . . ,m and g ∈ G, which are correctly de�ned, via Lemma 3. Next, we may consider on
the Hilbert spaceHF the linear operators Tj = MjJ−1 for all j = 1, . . . , n. Note that, �xing f ∈ F and choosing
g ∈ G such that f − g ∈ IF, we have Tj(f + IF) = θjg + IF for all j.

As noticed in Remark 2, if f ∈ RF we can choose g ∈ RG such that f − g ∈ RIF. Therefore, Tj(RHF) ⊂
RHF for all j = 1, . . . , n.

Proposition 2. The linear maps Tj , j = 1, . . . , n, are self-adjoint operators, and T = (T1, . . . , Tn) is a com-
muting tuple onHF.

Proof. Let fk ∈ F and gk ∈ G be such that fk − gk ∈ IF (k = 1, 2). Then

〈T*j (f1 + Im), f2 + Im〉 = 〈f1 + Im , θjg2 + Im〉 = 〈f1, θjg2〉0

= 〈θjg1, f2〉0 = 〈Tj(f1 + Im), f2 + Im〉,

via Lemma 3 and Remark 3. Hence T1, . . . , Tn are self-adjoint.
We prove now that T1, . . . , Tn mutually commute. It su�ces to show that MjJ−1Mk = MkJ−1Mj for all j, k =
1, . . . , n. To show this, �x a function f ∈ G. Thus Mj(f + IG) = θj f + IF. We can choose gj ∈ G such that
θj f − gj ∈ IF. Therefore, J−1(θj f + IF) = gj + IG, and Mk(gj + IG) = θkgj + IF.

Similarly,Mk(f+IG) = θk f+IF, andwecan choose gk ∈ G such that θk f−gk ∈ IF, soMj(gk+IG) = θjgk+IF.
To complete the proof, it su�ces to show that θkgj − θjgk ∈ IF . Indeed, note that θjθk f − θjgk ∈ θjIF and
θkθj f − θkgj ∈ θkIF. Consequently,

θkgj − θjgk ∈ (θkIF + θjIF) ∩ F ⊂ IF ,

via Lemma 3. Consequently, T1, . . . , Tn mutually commute.

Remark 4. Let G be a hereditary function space K-generated by θ = (θ1, . . . , θn) ⊂ RG, where K ⊂ Zn+ is
�nite. We set F =

∑n
j=0 θjG, where θ0 = 1. It is clear that F is a hereditary function spaceK+-generated by θ,

with K+ = {Wjk : k ∈ K, j = 0, 1, . . . , n}, where W0 is the identity and, for j = 1, . . . , n, Wj are the maps
de�ned by relation (2).

Next, let Λ : F(2) 7→ C be a uspf, and assume that Λ is dimensionally stable at G. We want to show that
Tk(1 + IF) = θk + IF for all k ∈ K+.

If k ∈ K, so θk ∈ G, because of Remark 3 it follows that Tj(1 + IF) = θj + IF, whence, inductively,
Tk(1 + IF) = θk + IF.

If k ∈ K+, we may assume, with no loss of generality, that k = Wjp for some p ∈ K and j ∈ {1, . . . , n}.
Then, using the previous assertion and Remark 3, we deduce that

Tk(1 + IF) = TjTp(1 + IF) = Tj(θp + IF) = θk + IF .
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In particular, if P is a polynomial of the form P(t) =
∑

k∈K+
cktk, we must have P(T) =

∑
k∈K+

ckTk. In
addition, if f̂ ∈ HF is an arbitrary element, because F is K+-generated, and so there exists a polynomial
Pf ∈ PnK+

such that f = Pf (θ), we must have f̂ = Pf (T)(1 + IF).
Note also that, if P ∈ Pn is arbitrary, there exists a polynomial QP ∈ PnK+

such that P(T) = QP(T), because
P(T) belongs to the C*-algebra generated by the n-tuple T.

The following assertion is now obtained as an application of Theorem 1. See also Theorem 2.11 and Corollary
2.13 from [14] (proved in a di�erent way), as well as Corollary 7.11 from [3] or Theorem 9 from [16].

Theorem 2. Let G be a hereditary function space K-generated by θ = (θ1, . . . , θn) ⊂ RG, where K ⊂ Zn+ is
�nite. Let also F =

∑n
j=0 θjG (θ0 = 1), and let Λ : F(2) 7→ C be a uspf such that Λ is dimensionally stable at G.

Then we have:
(1) there exists an orthogonal basis B = {b̂1, . . . , b̂d} of HF consisting of idempotent elements such that

θ = (θ1, . . . , θn) isB-multiplicative;
(2) the uspf Λ has a d-atomic representing measure with support in Ω, where d := dimHF, if and only if

δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is the dual basis ofB;
(3) if the uspf Λ has an atomic representing measure with support in Ω, this atomic measure is uniquely

determined.

Proof. (1) First of all, note thatHF = {p(T)1̂; p ∈ PnK+
}, via Remark 4.

Next, we want to apply Theorem 1 to show that there exists an orthogonal basisB = {b̂1, . . . , b̂d} ofHF

consisting of idempotent elements, such that θ isB-multiplicative.
We �rst consider the commuting n-tuple T = (T1, . . . , Tn), consisting of self-adjoint operators, acting

in HF, given by Proposition 2. The spectral theorem for n-tuples of commuting self-adjoint operators (see
for instance [2]) implies the existence of commuting self-adjoint projections Ej = E({ξ (j)}), j = 1, . . . , d, such
that h(T) =

∑d
j=1 h(ξ (j))Ej for every function h : σ(T) 7→ C, where σ(T) := {ξ (1), . . . , ξ (d)} is the joint spectrum

of T, which coincides with the support of E. Moreover, if the function h is real-valued, the operator h(T) is
self-adjoint. In addition, because the spaceRH is invariant under T1, . . . , Tn (see Remark 3), it must be also
invariant under h(T), whenever h is real-valued. In particular, RHF is invariant under Ej , j = 1, . . . , d.

We now construct an orthogonal family {b̂1, . . . , b̂d} ofHF consisting of idempotents. Because
∑d

j=1 Ej
is the identity on HF, setting b̂j = Ej1̂ ∈ RHF , j = 1, . . . , d, we obtain a decomposition 1̂ =

∑d
j=1 b̂j. As

Ej = ̸ 0, we must have Ej ĝ = ĝ ≠ 0 for some ĝ = q ◦ θ + Im = q(T)(1 + Im), with q ∈ PnK+
, via Remark 4.

Assuming b̂j = 0, we would obtain Ej ĝ = ĝ = q(T)b̂j = 0, which is not possible. Therefore, b̂j ≠ 0 for all
j = 1, . . . , d. Note also that 〈b̂j , 1̂〉 = 〈b̂j , b̂j〉 > 0, so b̂j is an idempotent for all j = 1, . . . , d. In other words,
{b̂1, . . . , b̂d} is an orthogonal family inHF consisting of idempotent elements.

To show thatB = {b̂1, . . . , b̂d} is a basis ofHF it su�ces to show that dim(HF) = d. For, we consider the
sub-C*-algebra CT generated by T in the C*-algebra of all linear (automatically bounded) operators acting in
HF. Therefore, we must have CT = {p(T); p ∈ Pn}. In fact, choosing an element p(T) with p ∈ Pn, we may
replace p by a polynomial q ∈ PnK+

, such that p(T) = q(T), by Remark 4. Consequently, CT = {p(T); p ∈ PnK+
}.

As mentioned above, the spectral theorem allows us to write

p(T) =
d∑
j=1

p(ξ (j))Ej , p ∈ PnK+ .

In particular, {E1, . . . , Ed}, which is clearly a linearly independent family of operators, is actually an alge-
braic basis of (the linear space) CT . Note also that

p(T)1̂ =
d∑
j=1

p(ξ (j))b̂j , p ∈ Pnm .

Therefore, using the equalityHF = {p(T)1̂; p ∈ Pnm}mentioned above, we deduce that dim(HF) = dim(CT) =
d. In particular, B = {b̂1, . . . , b̂d} is an orthogonal basis of H, consisting of idempotents. In addition, con-
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sidering the measure ν(*) = 〈E(*)1̂, 1̂〉 on σ(T), and putting λj = 〈Ej1̂, 1̂〉 = 〈b̂j , 1̂〉, we have

〈θp, bj〉0〈θq, bj〉0 = 〈Tp1̂, Ej1̂〉〈Tq1̂, Ej1̂〉 =∫
{ξ (j)}

tpdν(t)
∫

{ξ (j)}

tqdν(t) = λ2
j (ξ (j))p(ξ (j))q =

λj
∫

{ξ (j)}

tp+qdν(t) = λj〈θp+q, bj〉0

whenever p + q ∈ K+, and j = 1, . . . , d. In other words, θ is B-multiplicative, which concludes the assertion
(1) from the statement.

To obtain the assertion (2) from the statement, we recall that the dual basis ∆ := {δ1, . . . , δd} of B is
given by δj(f̂ ) = 〈b̂j , 1̂〉−1〈f̂ , b̂j〉, j = 1, . . . , d. In particular,

δj(θ̂k) = λ−1
j 〈EjTk1̂, 1̂〉 =

∫
{ξ (j)}

tkdν(t) = ξ (j)
k , j, k = 1, . . . , d.

Theorem 1 shows that the uspf Λ ofHF has a representing measure on Ω consisting of d := dimHF atoms if
and only if δ(θ̂) ∈ θ(Ω), δ ∈ ∆, which concludes the proof of (2).

(3) An explicit form of the integral representation whose existence is given in (2) is obtained as for equa-
tion (7). Speci�cally, choosing ζj ∈ Ω such that ξ (j) = δj(ζj), j = 1, . . . , d, we deduce the equality

Λ(ϕ) =
d∑
j=1

λjϕ(ζj), ϕ ∈ F(2),

providing a (d-atomic) representing measure for Λ.
Let µ be this representing measure, with support Z := {ζ1, . . . , ζd} and weights λj = µ(ξ (j)), j = 1, . . . , d.

Assume that Λ has another atomic representing measure in Ω, say ν, with support Σ := {σ1, . . . , σg} ⊂ Ω.
Then necessarily, g ≥ d = dim(HF), and the mapHF 3 f̂ 7→ f |Σ ∈ L2(Ξ, ν) is an isometry.

Let Bj be the linear operator on L2(Σ, ν) given by Bjh = θjh for all j = 1, . . . , n and h ∈ L2(Σ, ν). Then
B = (B1, . . . , Bn) is an n-tuple of commuting self-adjoint operators. With T = (T1, . . . , Tn) as before, �xing
f̂ ∈ HF with f ∈ F, and choosing g ∈ G with h := f − g ∈ IF, so Tj f̂ = θ̂jg, (f − g)|Σ = 0, and (θjg)|Σ =
(θj f )|Σ = Bj(f |Σ). In other words, identifying the Hilbert space HF with the (Hilbert) subspace {f |Σ; f ∈ F},
we see that Bj is an extension of the operator Tj for all j = 1, . . . , n. In particular, the spectral measure E of T
is the restriction of the spectral measure EB of B toHF.

We now consider the elements EB({σj})(1|Σ), which must belong to HF, because HF is invariant un-
der EB. Therefore, setting ĉj = EB({σj})(1|Σ) = E({σj})1̂, j = 1, . . . , g, as in the previous part of the proof,
{ĉ1, . . . , ĉg} is an orthogonal family of nonnull idempotent elements of HF. Consequently, we must have
g = d, and so dim(L2(Ξ, ν)) = d. We may now apply Proposition 1, to get the assertion (3).

Remark 5. Fixing aK-generated spaceGby a family θ = (θ1, . . . , θn) ⊂ RG, we have a sequence of hereditary
function spaces {Fr : r ≥ 0} given by

Fr =
n∑
j=0

θjFr−1 (θ0 = 1, r ≥ 1),

where F0 = G.

The next result is an extension of Theorem2.6 from [14] (see also Theorem 10 from [16], and their predecessors,
namely Theorem 7.8 and Corollary 7.9 from [3]).

Theorem 3. Let G be a hereditary function space K-generated by θ = (θ1, . . . , θn) ⊂ RG in Ω, where K ⊂ Zn+
is �nite. Let also Fr =

∑n
j=0 θjFr−1 (θ0 = 1, r ≥ 1), where F0 = G. We �x a uspf Λ : F(2) 7→ C, supposed to be
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dimensionally stable at G, where F = F1. Also set F∞ to be the space ∪r≥0Fr. Then F∞ is a function space with
F(2)
∞ = F∞, and the uspf Λ can be uniquely extended to a uspf Λ∞ : F∞ 7→ C, having a d-atomic measure in Ω,

where d = dim(HG).

Proof. Using the arguments from the proof of Theorem 2, we have

Λ(ϕ) =
d∑
j=1

λjϕ(ζj), ϕ ∈ F(2).

Next, it is easily seen that each Fr (r ≥ 0) is a function space, Kr-generated by θ, where Kr = {Sjk : k ∈
Kr−1} (r ≥ 1, j = 1, . . . , n), withK0 = K andK1 = K+.

A direct extension of this formula allows us to de�ne

Λ∞(ψ) =
d∑
j=1

λjψ(ζj), ψ ∈ F∞,

which is a uspf on F∞. We want to show that Λ∞ is uniquely determined.
Let Λ′

∞, Λ′′
∞ be two uspf F∞, both of them extending Λ. For r ≥ 1, let Fr = {p ◦ θ; p ∈ PnKr

}, I′r = {f ∈
Fr;Λ′(|f |2) = 0}, I′′r = {f ∈ Fr;Λ′′(|f |2) = 0}. Clearly, IF ⊂ I′r ∩ I′′r for all r ≥ 1.

We shall show by induction with respect to r that for every element f ∈ Fr there is an element fr ∈ G,
such that f − fr ∈ I′r ∩ I′′r . The assertion is obvious for r = 1, via the stability at G.

Assume the property true for an r ≥ 1, and let us prove it for r + 1. It su�ces to prove it for an element of
the form f = θp, with p ∈ Kr+1. In this case there exists a number j ∈ {1, . . . , n} and a multi-index k ∈ Kr

such that θp = θjθk. By the induction hypothesis, we can �nd a function fk ∈ G such that θk − fk ∈ I′r ∩ I′′r .
Therefore, θp − θj fk ∈ I′r+1 ∩ I′′r+1, by the Cauchy-Schwarz inequality. Further, θj fk ∈ F and so we can �nd a
function fj,k ∈ G such that θj fk − fj,k ∈ I1, via the stability at G. Consequently,

θp − fp = θp − θj fk + θj fk − fj,k ∈ I′r+1 ∩ I′′r+1 + I1 = I′r+1 ∩ I′′r+1,

where fp = fj,k.
Finally, noting that for every r ≥ 1 there exists an s ≥ r such that F(2)

r ⊂ Fs, and so for every f ∈ F(2)
r we

can �nd an element fs ∈ G such that f − fs ∈ I′s ∩ I′′s , we deduce that

Λ′(f ) = Λ(f − fs) = Λ′′(f ),

showing the uniqueness of the extensions Λ′, Λ′′ of the uspf Λ.

Remark 6. From theproof of the previous theorem,wededuce thatHr := Fr/Ir(r ≥ 1) are unitarily equivalent
Hilbert spaces. This assertion is true even for r = ∞.

The author is indebted to the referee for correctig several misprints. The referee also noted that a precursor
of our Problem 1 is what M. S. Livshic called a ”generalized moment problem“, in the framework of the real
line. For some details, one can see N. I. Akhiezer’s book ”The classical moment problem“, Oliver & Boyd, 1965
(especially the pages 153-154).
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