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Abstract. We develop a notion of stochastic rewriting over marked
graphs – i.e. directed multigraphs with degree constraints. The approach
is based on double-pushout (DPO) graph rewriting. Marked graphs are
expressive enough to internalize the ‘no-dangling-edge’ condition inher-
ent in DPO rewriting. Our main result is that the linear span of marked
graph occurrence-counting functions – or motif functions – form an al-
gebra which is closed under the infinitesimal generator of (the Markov
chain associated with) any such rewriting system. This gives a general
procedure to derive the moment semantics of any such rewriting system,
as a countable (and recursively enumerable) system of differential equa-
tions indexed by motif functions. The differential system describes the
time evolution of moments (of any order) of these motif functions under
the rewriting system. We illustrate the semantics using the example of
preferential attachment networks; a well-studied complex system, which
meshes well with our notion of marked graph rewriting. We show how
in this case our procedure obtains a finite description of all moments of
degree counts for a fixed degree.

Keywords: Stochastic Processes, Moment Semantics, Reversible Com-
puting, Graph Rewriting, Rule-Based Systems

1 Introduction

To explain the purpose of this paper, we start with a simple case of stochastic
Petri net (PN) using the following pair of reactions:

A
k0−−⇀ 2A (ρ0)

A
k1−−⇀ ∅ (ρ1)

⋆ This is a revised version of an invited paper presented at RC ’14. The original publica-
tion is available at Springer via http://dx.doi.org/10.1007/978-3-319-20860-2_

1 This work was sponsored by the European Research Council (ERC) under the
grants DOPPLER (587327) and RULE (320823).
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http://dx.doi.org/10.1007/978-3-319-20860-2_1
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The PN has a single species (or place) A and two reactions (or transitions)
modelling the birth and death of cells. Given a mother cell, reaction ρ0 will
produce one daughter cell. Reaction ρ1 models the death of cells. The firing rate
of the reactions is given by the law of mass action and depends on the number N
of cells present in the system as well as the rate constants k0, k1 of the reactions:

θ0 = k0N, θ1 = k1N.

The physical interpretation of the law of mass action states roughly that the
propensity of a reaction is proportional to the concentration of the reactants,
that is, the occupants of the left-hand side (LHS) of the reaction. We get a
more computational interpretation by treating reactions such as ρ0 and ρ1 as
rewrite rules over the state space of the PN. In order to apply a rule, we first
need to pattern-match its LHS against the current state of the PN. The PN
itself can then be seen as a labelled transition system, where transitions are rule
applications, that is, they are identified by a rule together with an associated
match of the LHS in the current state. If we assign the same constant transition
rate to all applications of a given rule, the overall firing rate of that rule is exactly
the product of said rate constant and the number of matches of the LHS in the
current state. Returning to our birth and death model, the activity of the rule ρ0
is k0 times the number of ways one can match a single cell in a population of N ,
which is just k0N . These transitions and associated rates define a continuous-
time Markov chain (CTMC), which provides the stochastic semantics of the PN.
The CTMC is often expressed as a so-called master equation (ME), a system of
differential equations describing the time evolution of the probability of finding
the PN in a particular state [27].

As far as PNs go, the birth and death model is simple. Yet, because ρ0 creates
cells, its state space is countably infinite, and so is the number of equations in the
ME. Nonetheless, the average evolution of the number of cells can be compactly
described by the single rate equation (RE)

d
dt

E(N) = k0 E(N)− k1 E(N).

Indeed, the average occurrence count of any species in a given PN can always be
approximated by a finite set of REs, providing us with a differential semantics
for PNs [27,17].

1.1 Our goal

In this paper, we wish to investigate similar REs but for models of dynamic
networks that are more richly structured than PNs. We are looking for the
following two ingredients:

1. a simple formal language that is flexible enough to capture a broad class of
network dynamics

2. a method to generate REs for motif functions for any model of the above
class
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Regarding point 1, we propose a notion of stochastic marked graph rewriting
which follows the general guidelines of the theory of graph transformation sys-
tems (GTS) [16,7,15,29,6,25]. Stochastic processes are modelled as rewrite rules
over directed multigraphs with marks allowing for pre- and post-conditions on
node degrees. Marked graphs double as a simple query language for identifying
subgraphs subject to degree constraints. This provides a formal modeling frame-
work in which we develop the method of point 2. We show how to generate (in
general) countable systems of ordinary differential equations (ODEs) describing
the mean evolution of marked graph motifs counts, or any higher-order statistics
thereof. In fact, these ODEs completely describe the dynamics of the moments of
marked graph observables. We therefore refer to them as the moment semantics
of the rewrite system.

1.2 Preferential Attachment

We can elaborate on our basic birth and death model to illustrate these ideas. In
the following, unless stipulated otherwise, graph is short for directed multigraph.

We start by endowing the model with a network structure. While the PN
model allows us to track the evolution of a population over time, it does not cap-
ture mother-daughter relationships among cells. We now extend the PN model
to a simple GTS that will do exactly that. The state of the PN is replaced by
a directed multigraph with cells as nodes and edges pointing from daughters to
mothers; the reactions of the PN are replaced by graph rewrite rules. This ex-
tension allows us to track “genealogical patterns” such as the number of sibling
relationships. The updated rules of the birth and death model are

A
k0−−⇀ A ^ A′ (α0)

A
k1−−⇀ ∅ (α1)

The birth rule α0 introduces a new node A′ (the daughter indicated by a prime)
and a new edge A ^ A′ representing the mother-daughter relationship; the
death rule α1 is identical to its counterpart ρ1 from the PN model.

We can express sibling relationships through the motif

A′
_ A ^ A′′

Tracking the number of such motifs amounts to counting the number of sub-
graphs in the state of our system that are isomorphic to the sibling graph.

So far, the sole purpose of edges in our model is to track relationships. This
does not do justice to the expressive power of our rewrite formalism. In particu-
lar, there is no reason edges should not also influence the dynamics of the model.
Let us add a third rule to illustrate this principle.

A′
_ A

k2−−⇀ A′
_ A ^ A′′ (α2)

On their own, the rules α0, α1 model the evolution of a culture of rather uniform
cells: any cell can divide or die at any time. Rule α2, on the other hand, reflects
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the fact that some cells may be more prolific than others: if a cell already has a
daughter, it is likely to divide again. This positive feedback, known as preferential
attachment (PA) or the Matthew effect, appears in many real-world complex
systems and has been extensively studied [3,4,11,12].

At a first glance, the preferential attachment rule α2 looks rather innocuous.
It seems to be just a special case of the birth rule α0. However, having a closer
look at the right-hand side (RHS) of α2, we realise that this rule directly creates
siblings. Hence, we should expect a high k2/k0 ratio to increase the occurrence
of siblings dramatically.

Just as for the simpler PN system, we can employ an RE to describe the
evolution of the average number of sibling relationships over time. The RE con-
sists in the following system of ordinary differential equations (ODE), with S, N
and E counting siblings, cells (single nodes) and mother-daughter relationships
(single edges), respectively:

d
dt

E(S) = 2(k0 + k2)E(E) + 2k2 E(S)− 3k1 E(S)
d
dt

E(N) = k0 E(N) + k2 E(E)− k1 E(N)
d
dt

E(E) = k0 E(N) + k2 E(E)− 2k1 E(E)

It is easy enough to convince ourselves that (in the absence of parallel edges) this
system of ODEs does indeed describe the evolution of the preferential attach-
ment process: the equations for N and E follow the law of mass action (modulo
symmetry factors); the equation for S essentially says that one needs to create
daughters in order to create siblings. Note also the positive feedback of E on it-
self: thanks to the positive dependency of S on E, a high k2/k0 ratio will indeed
lead to an explosion in siblings. With these intuitions in mind, a clever modeller
could certainly have come up with these equations. Yet, this manual process is
error-prone and does not scale well. The combinatorics involved are non-trivial:
as we will see later, more complex models can involve hundreds or thousands of
equations. This prompts the need for tools to automate the derivation of REs
from GTS similar to those available for PNs.

Consider now a more complex motif (which can be expressed directly using
marked graphs). Define Ni(G) as the number of nodes in the graph G that have
in-degree exactly i (i.e. mothers with exactly i daughters). Note that Ni does
indeed more than counting subgraphs: contrary to what one might think, Ni

does not count the number of subgraphs in G that consist of a central node
with i incident edges (i.e. i-stars) as that would also cover all the nodes in G
with in-degree larger than i. In particular, N2 is not the sibling pattern. Instead,
we think of Ni as counting the number of matches of the single-node graph A
in G, subject to the condition that the matching node have exactly i incident
edges. For reasons that will become clear later, we call such pairs of graphs and
associated degree conditions marked graphs. Perhaps surprisingly, we can write
REs even for marked graph observables. The RE system for Ni, i ∈ N (which is
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Fig. 1. Mean number of vertices with in-degree 3 (N3) for various k0, k1, k2.

derived explicitly in the next Section) is given by the following system of ODEs:

d
dt

E(Ni) = (k0 + k2(i− 1))E(Ni−1)− (k0 + k1(i+ 1) + k2i)E(Ni) for i ≥ 1
d
dt

E(N0) = k0 E(N) + k2 E(E)− (k0 + k1)E(N0)

Combined with the equations above for E and N , we have a set of equations
which allows for a complete determination of the mean number of nodes of a
given degree (with the size of the system being linear in the degree).

Fig. 1 shows the solutions of the RE for the case of i = 3 and various
combinations of rates k0, k1, k2. Note that the mean number of degree-three
nodes is unbounded for low death rates, decays for high death rates, but reaches
an equilibrium if the rates are suitably balanced. Yet it is unclear from these
results alone (i) if N3 converges in variance, and (ii) if its distribution around
the mean is skewed. To answer (i) and (ii) we need to look at the higher-
order moments of Ni. Luckily, we can derive ODEs not just for the mean but
for arbitrary higher-order moments of marked graph observables. Due to the
combinatorics involved, the resulting system of ODEs consists of 2097 equations!
We therefore confine ourselves to presenting a plot (Fig. 2) summarising its
solutions for the choice k0 = 1, k1 = 2 and k2 = 2 of rates,4 which shows that,
despite the mean reaching an equilibrium, the skew and variance of Ni diverge
over time. Clearly, the manual derivation of such an RE is beyond hope. We
therefore developed a small, proof-of-concept tool for generating the REs in this
example. The source code of our tool is freely available [1], and demonstrates
that our construction can indeed be automated.

4 It took approx. half a minute to generate the 2097 equations and another 33 minutes
to solve them using GNU/Octave on a Intel Core i7 CPU.
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Fig. 2. The first three moments for the number of vertices with in-degree 3 (N3) when
k0 = 1, k1 = 2, k2 = 2. The mean E(N3) converges while the other moments may not.

1.3 A Sketch of the Solution

Let us briefly sketch our solution of the problem. Given amarked graph observable
[G̃](X), meaning a function counting the occurrences of the marked graph G̃ in
the state X, we generate an ODE which describes the rate at which the mean
occurrence count E([G̃](X(t))) changes over time. Careful inspection reveals
that terms in the ODE are derived from the set of minimal gluings (MG) of the
pattern G̃ with the LHS and RHS of the extant rules describing X(t). (Note that
the construction can thus be made incremental in the set of rules considered.)
In particular, each term in [G̃]’s ODE depends on the current state only via
expressions of the form E([H̃]) for H̃ a pattern defining a new observable. This
key property is referred to in the main part as jump-closure of graph observables.
Each fresh observable [H̃] can then be submitted to the same treatment.

To obtain higher-order moments, we exploit the commutative algebra struc-
ture of the linear space of pattern observables. We can compute E([G̃][H̃]),
i.e. covariances, etc. by expressing the product [G̃][H̃] as a linear combination of
motifs corresponding to the (minimal) gluings of G̃ and H̃. Though finite, the
number of terms in the resulting expression is subject to the potentially high
combinatorics of repeated pattern gluing.

As the generation of moment semantics is a symbolic procedure we can pursue
it in principle to any order. This means that the order of the approximation is no
longer limited to the humanly computable, and can be pushed further to acquire
more accurate dynamics.
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1.4 Related Work

Rate equations, and more generally mean field theories (MFT), are ubiqui-
tous in the study of complex dynamics. Examples include, walkers on bio-
polymers [18,35]; models of epidemic spreading [21]; and of the evolution of
social networks [13]. These examples witness both the power and universality of
MFTs, and the fact that they are pursued in a seemingly ad hoc, and case-by-
case fashion.

Conversely, various tools have been developed to automate the generation
and solution of the ME and REs for the case of PNs [19,36,30]. But they suffer
the limited expressivity of PNs as discussed above.

This paper follows ideas on applying the methods of abstract interpretation
to the differential semantics of site graph rewriting [22,8,20]. From the GTS
side, the theory of site graph rewriting had long been thought to be a lucky
anomaly until a recent series of work showed that most of its ingredients could
be made sense of, and given a much larger basis of applications, through the
use of algebraic graph-rewriting techniques [23,2,24]. These latter investigations
motivated us to try to address these questions at a higher level of generality [9].
Another more remote influence is Lynch’s finite-model theoretic approach to rate
equations [32].

1.5 Outline

The paper is organised as follows: §2 introduces the algebraic blueprint to build
moment semantics and the notion of jump-closure of an algebra of observ-
ables; preferential attachment networks are used as an illustration; §3 introduces
marked graphs and develops a formal stochastic graph transformation (GTS)
framework based on double-pushout (DPO) rewriting of marked graphs; marks
on graphs serve as simple application conditions and give rise to an algebra of
marked graph observables, which are shown to be jump-closed with respect to
the Markov chains generated by marked rewrite rules in §4; this is sufficient to
derive the associated moment semantics.

2 The Blueprint of Moment Semantics

In this section we establish sufficient conditions for the existence of moment
semantics for observables of suitable stochastic processes. These conditions pro-
vide the foundation on which we develop the moment semantics of concrete class
of graphical rule-based systems in §3. We start with the necessary probabilistic
preliminaries.

2.1 Markov Chains, Master Equation

Let S be an at most countable set, and write R
S for the vector space of real

sequences indexed by S. We think of S as the state space of some process and
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of elements of R
S as real-valued observables on that process. Let Xt, t ≥ 0

be a continuous-time Markov chain (CTMC) with state-space S and row-finite
rate matrix Q; we say an S × S matrix is row-finite if it has only finitely many
non-zero coefficients per row. Write px(t), or simply px, for the probability of
Xt being at x, and let p(t), or simply p, be the vector in R

S with coordinates
px. Note that Q is a linear operator on R

S . The evolution of p can be described
by the forward equation, also known as the master equation (ME), which is the
following linear ordinary differential equation (ODE) with values in R

S [33,27]:

d
dt
pT = pTQ (1)

In explicit coordinate form:

d
dt
px =

∑

y pyqyx − px
∑

y qxy.

The ME has unique (minimal non-negative) solutions at all times and for all
initial conditions [33]. One caveat is that for explosive Xt, which have non-zero
probability to complete countably many jumps in finite time, the resulting p is
a sub-probability.

Example 1 (CTMC of the PA example). For the case of preferential attachment,
we take the state space S to be a countable set of finite directed graphs G with
finite node and edge sets VG, EG. We associate rate matrices Qi, i = 0, 1, 2 to
each of the rules αi, where the rate qiGH of transitioning from a graph G to a
graph H via the rule αi, is given by the number of ways in which the LHS of
αi occurs as an isomorphic subgraph in G in such a way that replacing said
subgraph with the RHS of αi in G produces H:

q0GH = |{n ∈ VG | H = G+(n)}|

q1GH = |{n ∈ VG | H = G−(n)}|

q2GH = |{e ∈ EG | H = G+(t(e))}|

where t(e) denotes the target node of the edge e, and G+(n), G−(n) are the
graphs obtained, respectively, by adding a new node to G and connecting it to
n, and by removing the node n and its edges from G. The overall rate matrix Q
is given by Q =

∑

i kiQi.

2.2 ODEs of Means

The rate matrix Q defines a linear transformation on R
S as follows:

(Qf)(x) =
∑

y qxy(f(y)− f(x)). (2)

Since the sum above is finite, Qf is indeed a well-defined element of RS . We call
Qf the jump of f relative to Q. Intuitively, Qf is the expected rate of change in
f given that the process sits at x. This interpretation of Q as a linear operator
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on observables (rather than probabilities) is similar to predicate transformer
semantics [5].

Given an observable f , we write Ep(f) := pT f for the expected value of f
according to p. From the (1) we can derive formally the following:

d
dt

Ep(f) = d
dt
pT f = pTQf = Ep(Qf), (3)

giving us an equation for the rate of change of the mean of f(Xt). As such this
equation is not very useful, RS being an even larger index set than S. Indeed,
unless S is finite, RS does not even have a countable basis. But, suppose we are
given a linear subspace A of RS which (i) has a countable basis B, and (ii) is
jump-closed in the sense that QB ⊆ A . Jump-closure means that for g in B,
one can write its jump Qg as:

Qg =
∑

h∈B
ag,hh,

with finitely many non-zero coefficients ag,h. By substituting this expression
in (3), we get a linear ODE indexed by B:

d
dt

Ep(g) =
∑

h∈B
ag,h Ep(h). (4)

Note that the dependence in the probability distribution p(t) of Xt has vanished!
Thanks to jump-closure, (4) completely bypasses the probabilistic behaviour of
the model, and predicts directly the mean evolution of the processes gt for g in
B. The mean of any other observable f in A can then be expressed as a linear
combination of the solutions of (4).

The vector space R
S can be equipped with the product topology. A linear

map on R
S is continuous for that choice of topology iff it is row-finite. By a result

of Shkarin [34, Theorem 2.3], any row-finite linear system of differential equations
over RS has solutions defined at all times and for all initial conditions. As B is
countable, Shkarin’s Theorem guarantees all-time (but, in general, non-unique)
solutions for (4).

Example 2 (REs for Preferential Attachment). We will illustrate this idea by
deriving the REs for the fixed-degree node-counting observable Ni from §1. We
start by computing the jump of Ni with respect to Q0 as given in Example 1.
Expanding the definition of Q0 in (2) and simplifying a bit, we get

(Q0Ni)(G) =
∑

n∈VG

(Ni(G
+(n))−Ni(G)).

It is easy to verify that, for all i ≥ 1, the difference under the sum is equal to
−1 if n has in-degree i, to 1 if n has in-degree (i− 1), and to 0 otherwise. Hence
the above simplifies to

Q0Ni = Ni−1 −Ni, for i ≥ 1.

Proceeding similarly for Q1Ni and Q2Ni, one obtains

QNi = (k0 + k2(i− 1))Ni−1 − (k0 + k1(i+ 1) + k2i)Ni
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Fig. 3. The eleven graph patterns (S3 +S3), G1, . . . , G9 and S3 corresponding to base
observables of the vector space containing ([S3])

2. Dotted nodes and edges represent
negative existence conditions, i.e. ths absence of an additional edge; later to be repre-
sented by marks (see next Section).

for i ≥ 1, suggesting {Ni}i∈N as a candidate for the basis B. However, the
jump of N0 depends on two additional observables, namely N(G) = |VG| and
E(G) = |EG|, counting the number of nodes and edges, respectively, in G:

QN0 = k0N + k2E − (k0 + k1)N0.

Expressing N as the infinite sum N =
∑∞

i=0 Ni does not solve the problem as a
linear combination may only involve a finite number of vectors. Similarly, it is
not clear how one would express the observable E in terms of Ni. Fortunately,
the jumps of N and E do not involve any additional observables:

QN = k0N + k2E − k1N

QE = k0N + k2E − 2k1E

and we conclude that B = ∪iBi with Bi = {N,E}∪{Nk}
i
k=0 form a jump-closed

basis which indexes the RE for the Ni motifs. In this favourable case, each finite
Bi spans a finite-dimensional subspace which is already jump-closed. Hence,
solutions of the RE exist and are unique for all times and initial conditions.

2.3 Higher-Order Moments

So far, we have only considered the mean evolution of observables f in A . One
might also be interested in higher-order statistics of f , such as its standard
deviation or skewness. Suppose then that A = lin(B) is a subspace of RS as
above, and additionally, that A is closed under (pointwise) product. One can
write the powers of any f in A , as a linear combination

fn =
∑

h∈B
bf,h,nh, n ≥ 1,

where only finitely many of the coefficients bf,h,k are non-zero. Thus, solutions
of (4) already describe arbitrary moments of observables. (Considerations on the
existence and uniqueness of solutions remain the same.)
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Example 3 (Higher moments of Ni). Suppose we want to compute the variance
of Ni with respect to p, that is,

Vp(Ni) = Ep

(

(Ni −Ep(Ni))
2
)

= Ep

(

(Ni)
2
)

−Ep(Ni)
2.

We already have an RE describing the mean of Ni, and we need one for the
second moment of Ni, Ep((Ni)

2). To apply the above idea, it is enough to find a
sub-algebra A which contains B and has a countable basis; the linear span of B

alone does not work as we cannot even express the square N2 of its “simplest”
observable N as a linear combination in Bi.

At this point it is worth making the following observation: all of the ob-
servables we have considered so far count the occurrences of degree-constrained
graph patterns, that is, given a graph G, they count the number of subgraphs in
G that are isomorphic to a fixed graph, subject to conditions fixing the degrees of
some nodes. For example, the observableNi(G) counts the number of occurrences
of the single-node graph in G that have in-degree i, while the observable E(G)
counts the number of single-edge graphs with no additional conditions. Later,
we call such graph-counting functions marked graph observables and prove that
they span a sub-algebra of RS . (A proof of this fact along with a more detailed
account of marked graph observables is given in §3.3.)

To illustrate this point, consider first the simple node-counting observable
N . Writing A for the single-node pattern (with no extra conditions), A+ A for
its disjoint union, the two-node pattern, and [P ] for the observable counting the
pattern P , we can express the second moment of N as the sum

Ep(N
2) = Ep

(

([A])2
)

= Ep([A+A] + [A])

= Ep([A+A]) +Ep([A]) = Ep([A+A]) +Ep(N).

Intuitively, we can write the product of any two pattern observables [P1], [P2]
as a sum over all possible overlaps of P1 and P2 (including the trivial one). In
the case of the pattern A, there are just two such overlaps, namely the trivial
one, A+A, and the complete overlap A. We make this intuition precise in §3.3
by introducing the notion of minimal gluings.

A more complex example is the pattern Sk, which we define to be the k-star,
that is, the graph consisting in a hub node n with k neighbours m1, . . . ,mk,
each connected to the hub through a spoke (mi, n). Furthermore, we impose the
condition on Sk that the in-degree of its hub be exactly k. The motifs Nk and
[Sk] are related through the equation [Sk] = k!Nk, where the factor k! is due
to the internal symmetries of Sk. Hence it is enough to express Ep(([Sk])

2), to
complete the example.

To find this expression, we proceed as in the simple case above and compute
all overlaps of S3 with itself (Fig. 3). The square [Sk]

2 can then be expressed as

[S3]
2 = [S3 + S3] + 9[G1] + 36[G2] + 9[G4] + 36[G5]

+ 6[G6] + 18[G7] + 6[G9] + 36[G3] + 18[G8] + 6[S3].

where the patterns (S3 + S3), G1, . . . , G9 and S3 are those shown in Fig. 3
(in that order). The combinatorial integer coefficients are the multiplicities of
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non-isomorphic overlaps resulting in the same graph; e.g. we can obtain G1 in
9 = 3× 3 different ways, as each copy of S3 must decide independently which of
its three peripheral nodes to share with the other copy.

For more complex patterns, such as Sk, the manual enumeration of over-
laps becomes difficult due to the combinatorics involved. They are therefore
best automated. To this end, we developed a small, proof-of-concept tool [1] for
generating ODEs of higher-order moments of Sk. In fact, the equation and dia-
grams in this example and those of the previous section have been automatically
generated.

We can summarise the above discussion.
Suppose given a triple (S,Q,A ), with S an at most countable set, Q a row-

finite S×S rate matrix, and A a linear sub-space of RS with a countable basis B

such that QB ⊆ A (jump-closure). We can define a linear ODE system indexed
by B:

d
dt

Ep(g) =
∑

h∈B
ag,h Ep(h),

with finitely many non-zero coefficients ag,h. The ODE can be described more
concisely as d

dt
X = QT

B
X with QB the restriction of Q to B (which exists by

jump closure), and X(t) ∈ R
B. One sees this to be just the master equation (1)

restricted to B.
If in addition A is a sub-algebra of RS , by linear combinations, we can derive

from the above equations for any moment formed over B.
It remains now to build an interesting example of this situation. In the next

section we develop our concrete graphical framework of stochastic rule-based
systems and associated observables, for which moment semantics can be built.

3 Reversible Stochastic Graph Rewriting

We turn now to the GTS framework for which we will derive moment semantics
as outlined in §2. We build on a well-known approach from algebraic graph
rewriting, namely the double pushout (DPO) approach [7,28]. The reasons for
this choice are twofold: first, we profit from a solid body of preexisting work, and
second, it allows for an “axiomatic” presentation abstracting over the details of
the graph-like structures that are being rewritten. Indeed, while we only treat
the case of directed multigraphs (graphs with an arbitrary number of directed
edges between any two nodes), the theory generalizes to DPO rewriting in other
adhesive categories [29] with negative application conditions [14,26].

We start with preliminaries on directed multigraphs, followed by a brief sum-
mary of the DPO approach and its stochastic semantics [25]. Next, we introduce
marked graphs as a means to add simple application conditions to graph rewrite
rules. We establish two key properties of marks: firstly, we show that marks are
sufficient to internalize the reversibility conditions inherent in DPO rewriting
into rewrite rules; secondly, marked graphs give rise naturally to a class of ob-
servables over graphs with the algebraic structure outlined in §2. As we will see
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in §4, such observables are jump-closed with respect to CTMCs defined by any
finite set of marked rewrite rules.

3.1 Graph-Theoretic Preliminaries and DPO Rewriting

A finite directed multigraph (henceforth simply graph) G consists of a finite set of
nodes VG, a finite set of edges EG, and source and target maps sG, tG : EG → VG.
Amorphism f : G→ H between graphsG andH is a pair of maps fV : VG → VH ,
fE : EG → EH on edges and nodes, such that for every edge e in EG,

sH(fE(e)) = fV (sG(e)) and tH(fE(e)) = fV (tG(e)).

The graphs G and H are called the domain and codomain of f , respectively.
Given a pair f : F → G, g : G→ H of morphisms, their composition (g ◦ f) : F →
H is defined as (g ◦ f) = (gV ◦ fV , gE ◦ fE). A graph morphism f : G → H is a
monomorphism, or simply a mono, if fV and fE are injective; it is a graph
inclusion if both fV and fE are inclusion maps, in which case G is a subgraph
of H and we write G ⊆ H. Every morphism f : G → H defines a subgraph
f(G) ⊆ H called the direct image (or just the image) of f in H, such that
Vf(G) = fV (VG) and Ef(G) = fE(EG). Finally, a graph morphism f : G → H
is an isomorphism, or simply an iso, if fV and fE are bijections. Given an iso
f : G→ H, we say that G is isomorphic to H and write G ≃ H.

Graph morphisms provide us with a notion of pattern matching on graphs.
We restrict pattern matching to monos: a match of G in H is a mono f : G→ H.
This restriction ensures that f(G) ≃ G if f is a match, that is, matches of G
in H identify subgraphs in H that are isomorphic to G. It is easy to verify that
the composition of two matches is again a match. We write [G;H] for the set of
matches of G in H.

The main ingredient for graph rewriting are rewrite rules. A rule α : L ⇀ R
with left-hand side (LHS) L and right-hand side (RHS) R is a pair α1 : K → L,
α2 : K → R where both α1 and α2 are monos. Given a rule α : L ⇀ R, we define
its inverse α† : R ⇀ L as (α1, α2)

† = (α2, α1).

By combining matches and rules, we obtain derivations, the basic rewrite
steps of a GTS. We first describe them informally. Fig. 4 shows a derivation
with a match f : L → G on the left and a rule α : L ⇀ R on top. The match f
identifies the subgraph in G that is to be modified, while the rule α describes
how to carry out the modification. In order to obtain the comatch g : R→ H on
the right, one starts by removing nodes and edges from f(L) which do not have
a preimage under f ◦α1 (colored red in the figure). This operation is allowed
only if it leaves no edges dangling in G, that is, a node may be removed only if
all its incident edges are also removed. To complete the derivation, one extends
the resulting match h : K → D by adjoining to D the nodes and edges in R that
do not have a preimage under α2 (colored green in the figure). The two monos
β1 and β2 witness, respectively, the deletions from G and additions to D, and
form the corule of the derivation.
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L K R

G D H

f h

α1 α2

g

β1 β2

Fig. 4. A simple derivation or rewrite step: one starts with a match f for the left-hand
side L of the rule in G; then, one constructs D by deleting nodes in G which correspond
to nodes in L with no preimage in K; finally, one adds nodes and edges found in R but
not in K.

f

α1

h

β1

f ′

α1

Fig. 5. The pair f , α1 of monos has a POC, while the pair f ′, α1 does not.

Derivations constructed in this way have the defining property of being dou-
ble pushouts (DPO): they consist of a pair of pushout squares (PO) of graph
morphisms [7,28].

There are certain points worth noting. Firstly, not every pair f : L → G,
α : L ⇀ R of compatible matches and rules gives rise to a derivation. The reason
is that the required left-hand PO does not exist for every pair f : L → G,
α1 : L → K of monos. A suitable pair h : K → D, β1 : D → G of monos, called
pushout complement (POC) of f and α1, exists iff the removal of nodes from G
does not result in dangling edges. Fig. 5 illustrates this point. If a POC h, β1

exists for f , α1, then it is unique up to (unique) iso on D. Secondly, given a pair
h : K → D, α2 : K → R of monos, the right-hand PO always exists, and the
corresponding pair g : R → H, β2 : D → H of monos is unique up to (unique)
iso on H. Thirdly, if there is a derivation of g from f by α, then by symmetry,
there is also a derivation of f from g via α†.

Importantly, derivations compose and split (Fig. 6). Given a derivation of
g1 from f1 by α with corule γ (the top DPO) and a derivation of g2 from f2
by γ with corule β (the bottom DPO), one obtains a composite derivation of
g = g2 ◦ g1 from f = f2 ◦ f1 via α with corule β, by pasting together the two DPO
diagrams. Conversely, derivations split along factorizations of matches: given the
outer and top derivations of g from f and g1 from f1 via α, with corules β and
γ, respectively, there is, for every f2 such that f = f2 ◦ f1, a unique bottom
derivation with rule γ, comatch g2 and corule β, such that g = g2 ◦ g1.

Whenever there is a derivation with match f , comatch g and rule α, we
say g is α-derivable from f and write f ⇒α g. A pair of matches f : G → H,
f ′ : G→ H ′ of a graph G is said to be isomorphic if there is an iso u : H → H ′

such that f ′ = u ◦ f . It follows directly from the above discussion that the binary
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L K R

E C F

G D H

f1

f

h1

α1 α2

g1

g

f2 h2

γ1 γ2

g2

β1 β2

Fig. 6. A vertical composition of derivations.

relation ⇒α is (i) partial, in that not every match of the LHS of α extends to a
derivation, (ii) functional up to iso, that is, if f ⇒α g and f ⇒α g′ then g ≃ g′,
and (iii) injective up to iso, that is, if f ⇒α g and f ′ ⇒α g then f ≃ f ′.

The fact that derivations are only defined up to iso is convenient as it allows
us to invert them without paying attention to the concrete naming of nodes and
edges. Indeed, the inverse of ⇒α is just (⇒α)

−1 = (⇒α†). On the other hand,
when defining the stochastic semantics of rule-based systems, it is more conve-
nient to restrict ⇒α to a properly functional relation. To this end, we fix once
and for all a (countable) set G of representatives from every isomorphism class
of graphs, and denote by α(f) and f(α), for any given rule α : L ⇀ R and match
f ∈ dom(⇒α), the unique comatch α(f) : R → H and corule f(α)1 : D → G,
f(α)2 : D → H of the unique derivation for which both D and H are in G . Note
that the partial maps α(−) and α†(−) need not be inverses. Indeed, if α involves
node deletions, one cannot choose α(−) and α†(−) such that α†(α(f)) = f for
all f ∈ dom(⇒α) because the node and edge sets of the respective codomains
differ in general.

Given a rule α : L ⇀ R, define the rate matrix Qα over G as

qαGH = |{f ∈ [L;G] | f ∈ dom(⇒α) and α(f) ∈ [R;H]}| for G 6= H,

qαGG =
∑

H 6=G

−qαGH otherwise.

Given a finite set of rules R and a rate map k : R → R
+, let

Q(R, k) =
∑

α∈R

k(α)Qα.

This defines a CTMC over G . As R is finite, the rate matrixQ(R, k) is row-finite.

3.2 Marked Graphs

So far, our notion of pattern matching is rather limited. While monos identify
(isomorphic) images of a “pattern” (i.e. their domain) in other graphs, they
provide no way of imposing additional conditions on the image of the pattern.
We have seen examples in §1 and §2 where such conditions were used to count the
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L̃ K̃ R̃

G̃ D̃ H̃

f̃ h̃

α̃1 α̃2

g̃

β̃1 β̃2

Fig. 7. A marked derivation.

number of nodes with a particular in-degree. But conditions are also useful for
rewriting: by equipping the LHS and RHS of rules with conditions, one obtains
more expressive rewrite formalisms. A particular case which has been studied
in the DPO setting is that of negative application conditions (NAC), where the
set of derivations under a rule α is restricted to instances where the match
and comatch respect conditions associated with the LHS and RHS of α [14,26].
In this section, we extend graphs with simple degree conditions which we call
marks. Marks can be seen as a very simple type of NAC. Yet, they are expressive
enough to cover the example patterns5 form §1 and §2, and to internalize the
dangling-edge conditions seen in the previous section into the LHS of rules.

A marked graph G̃ is a graph G together with a marking predicate MG ⊆ VG

over nodes. We say a node x ∈ VG is marked if x ∈MG and unmarked otherwise.
We write MG for the complement VG\MG of the marking MG. We say a marked
graph G̃ is complete if all its nodes are marked, that is, MG = VG.

A marked morphism f̃ : G̃ → H̃ is a graph morphism f : G → H that pre-
serves marks, that is, fV (MG) ⊆MH . Marked morphisms compose as their un-
derlying graph morphisms. The definitions of subgraphs, inclusions and monos
generalize straightforwardly to marked graphs and morphisms. It is easy to see
that isos reflect marks, that is, a marked morphism f̃ : G̃ → H̃ is a marked iso
if its underlying graph morphism f is an iso and fV (MG) = MH . We define
the marking of the direct image f̃(G̃) of a marked morphism f̃ : G̃ → H̃ by
Mf̃(G̃) = fV (MG), that is, marks on nodes in f(H) that are provided only by H̃

are not considered part of the marking of f̃(G̃). Fig. 7 shows a marked version
of Fig. 4 where marked nodes are colored in dark gray, unmarked nodes in white.
The graphs in the bottom row of Fig. 7 are complete while those in the top row
are not. All morphisms in the figure are marked monos.

We interpret marks as conditions on node degrees: a marked match of G̃
in H̃ is a marked mono f̃ : G̃ → H̃ that preserves and reflects the degrees
of marked nodes, that is, for all x ∈ MG, indegH(fV (x)) = indegG(x) and
outdegH(fV (x)) = outdegG(x). Given a marked graph G̃, and an unmarked

5 Strictly speaking, the example patterns in §1–2 require a slightly more expressive
type of NACs than the one described in this section. In particular, they require sepa-
rate conditions on in and out-degrees of nodes, where as we only consider conditions
on the overall node degree here. However, the theory extends straight-forwardly to
the case where in and out-degrees are represented by separate markings. We have
implemented the more general case in [1].
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match f : G → H, we say f extends to a marked match f̃ : G̃ → H̃ if there is
at least one marking on H for which f̃ is a marked match. Such an extension
will exist iff nodes marked in G̃ are mapped by f to nodes of same degree in H.
The composition of marked matches is again a marked match. We write [G̃; H̃]
for the set of marked matches of G̃ in H̃. All the morphisms in Fig. 7 except β̃1

and β̃2 are marked matches.
By allowing rules to be marked, we obtain a simple form of NACs. Marks in

the LHS act as preconditions on a rule, marks in the RHS as postconditions. We
further restrict the type of morphisms that may appear in rules to rigid monos:
we say a marked mono f̃ : G̃→ H̃ is rigid if every node in H̃ is marked unless it
is the image of an unmarked node in G̃, that is, MH = fV (MG). A marked rule
α̃ : L̃ ⇀ R̃ is a pair α̃1 : K̃ → L̃, α̃2 : K̃ → R̃ of rigid marked monos. We say α̃ is
minimally marked if MK = ∅. We write α̃† for the inverse (α̃2, α̃1) of a marked
rule α̃. The rules α̃ and β̃ in Fig. 7 are marked but only α̃ is minimally marked.
(Minimally marked rules are used later to embed normal DPO rewriting into
our marked graph rewriting.)

The rigidity condition on rules ensures that rules are well-behaved in the
following way: given a marked rule α̃ : L̃ ⇀ R̃ with underlying (unmarked) rule
α and an unmarked match f : L→ G of its LHS,

1. there is a g such that f ⇒α g if f extends to a marked match, and
2. g extends to a marked match iff f does.

The first point internalizes the no-dangling-edge condition into rules and roughly
corresponds to a notion of type safety: if both the rule α and its “argument” f
are “well-marked”, then α can be applied safely to f . The second point is remi-
niscent of a predicate transformer semantics: the marking on R̃ is the “strongest
postcondition” given the marking on the LHS L̃. Conversely, the marking on L̃
is the “weakest precondition” given R̃. Note that, by symmetry, the same holds
for α̃† so that the pre and postcondition uniquely determine each other.

A PO of a pair f̃ : G̃→ H̃, f̃ ′ : G̃→ H̃ ′ of marked morphisms, is a commut-
ing square of marked morphisms (see (5) below), where the underlying graph
morphisms form a PO (6), and MF = gV (MH) ∪ g′V (MH′).

G̃ H̃ ′

H̃ F̃

f̃ ′

f̃ g̃′

g̃

(5)
G H ′

H F

f ′

f g′

g

(6)

A marked derivation is a DPO of marked monos such as in Fig. 7, with f̃ , g̃, h̃
marked matches and α̃, β̃ marked rules. We call g̃ the marked comatch and β̃
the marked corule of the derivation.

POs of marked monos have interesting properties when one mono is rigid.

Lemma 1. A pair of marked monos f̃ : G̃ → H̃, g̃ : H̃ → F̃ where f̃ is rigid,
has a POC if g̃ is a marked match. (If in addition, G̃ is markless, then g̃ must
be a marked match for a POC to exist.)
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Lemma 2. Let (5) be a PO of marked monos, with f̃ ′ rigid. Then

1. g̃ is rigid,
2. f̃ is a marked match iff g̃′ is,
3. the pair f̃ , g̃ is the unique (up to unique iso) POC of f̃ ′, g̃′ and

MH = g−1
V (MF \ g

′
V (MH′)) ∪ fV (MG).

The two lemmas above are sufficient to establish the properties of marked rules
outlined before; besides they also allow one to prove that marked derivations
compose and split along marked matches (which is key to the proof in the next
section).

Write f̃ ⇒α̃ g̃ if g̃ is α̃-derivable from f̃ . Just as its unmarked counterpart,
the binary relation ⇒α̃ is functional and injective up to iso. However, contrary
to ⇒α, the relation ⇒α̃ is also total (by Lemma 1). We fix again a (countable)
set G̃ of representatives from every isomorphism class of marked graphs. Given
any marked rule α̃ : L̃ ⇀ R̃ and match f̃ : L̃ → G̃, the definitions of the maps
α̃(−) and f̃(−), as well as the G̃ × G̃ rate matrix Qα̃ associated with α̃, are
completely analogous to those for the unmarked case.

At this point, the reader might be wondering whether the restrictions imposed
on marked rules cause any loss of expressivity with respect to unmarked DPO
rewriting. They do not. Indeed, one can build an embedding of unmarked DPO
rewriting in the marked variant. We start by noticing that for every (unmarked)
graph G there is a unique complete marked graph G̃K , and for every (unmarked)
rule α : L ⇀ R there is a unique minimally marked rule α̃min : L̃min ⇀ R̃min. To
every match f : L → G of an LHS L in some G corresponds a unique marked
mono f̃ : L̃min → G̃K . By Lemma 1, there is a derivation f ⇒α g for some
g : R→ H iff f̃ is a marked match and by Lemma 2 this uniquely determines an
extension g̃ : R̃min → H̃K of g to a marked match. Note that due to the rigidity
of α̃min, the codomain H̃K of g̃ must be complete.

Although we have only presented the case of directed multigraphs, marked
stochastic DPO rewriting also straight-forwardly extends to other graph-like
structures, such as typed graphs or hypergraphs. Another example is that of
PNs, when seen as rewriting discrete typed graphs (graphs with no edges). Since
nodes in a discrete graph have degree zero, any match trivially extends to a
marked match.

3.3 Minimal Gluings and the Algebra of Marked Graph Observables

Given a marked graph G̃ in G̃ , define the marked graph observable [G̃] : G̃ → N

to be the integer-valued function [G̃](H̃) = |[G̃; H̃]| counting the number of
occurrences (i.e. marked matches) of G̃ in any given graph H̃ in G̃ . Marked graph
observables turn out to be the natural choice of observable functions over which
to construct moment semantics for marked DPO rewriting. In this section, we
present their algebraic structure, establishing the connection to the framework
developed in §2. To do so, we first need to introduce a key ingredient: minimal
gluings (MG).
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µ̃1

η̃1
ũ

µ̃2

η̃2

Fig. 8. Left: a gluing η̃ of the marked graphs L̃ and R̃ from Fig. 7 and the corresponding
MG µ̃. Right: the codomains of the MGs in L̃∗ L̃ ordered by (non mono) marked graph
morphisms among them.

Given a pair of subgraphsG1 ⊆ H,G2 ⊆ H of a graphH, the union ofG1 and
G2 inH is the unique subgraphG1∪G2 ofH, such that V(G1∪G2) = VG1

∪VG2
and

E(G1∪G2) = EG1
∪EG2

. The union G̃1 ∪ G̃2 ⊆ H̃ of a pair of marked subgraphs

G̃1 ⊆ H̃, G̃2 ⊆ H̃ has G1 ∪ G2 as its underlying graph and MG1
∪ MG2

as
its marking. A gluing η̃ of a pair G̃1, G̃2 of marked graphs is a pair of marked
matches η̃1 : G̃1 → Ũ , η̃2 : G̃2 → Ũ with common codomain cod(η̃) = Ũ . We say
η̃ is minimal if cod(η̃) = η̃1(G̃1)∪ η̃2(G̃2). Two gluings η̃ and µ̃ are isomorphic if
there is a marked iso ũ : cod(η̃)→ cod(µ̃), such that µ̃1 = ũ ◦ η̃1 and µ̃2 = ũ ◦ η̃2.
Write G̃1 ∗≃ G̃2 for the set of isomorphism classes of minimal gluings of G̃1

and G̃2, and G̃1 ∗ G̃2 for a choice of representatives from each class in G̃1 ∗≃ G̃2

such that cod(µ̃) ∈ G̃ for all µ̃ in G̃1 ∗ G̃2. It is easy to verify the following:

Lemma 3. Let G̃1, G̃2 be marked graphs, then (i) G̃1 ∗ G̃2 has O(2N+M ) el-
ements, with N = |VG1

| + |VG2
|, M = |EG1

| + |EG2
|, and (ii) for every glu-

ing η̃ of G̃1 and G̃2, there is a unique MG µ̃ in G1 ∗ G2 and marked match
ũ : cod(η̃)→ cod(µ̃) such that η̃1 = ũ ◦ µ̃1 and η̃2 = ũ ◦ µ̃2.

Fig. 8 shows a gluing η̃ and its corresponding MG µ̃ on the left, and the
codomains of a set of minimal self-gluings on the right.

Thanks to MGs, marked graph observables form an algebra.

Theorem 1. Let B be the set of marked graph observables. The linear space

A = lin(B) spanned by B is a sub-algebra of RG̃ , that is, poly(A ) = A .

Proof. As A is a linear subspace of RG̃ , it suffices to show that B is closed under
product. First, note that the product of any two marked graph observables [G̃1]
and [G̃2] in B counts exactly the number of gluings G̃1 → H̃ ← G̃2 of marked
matches in some common H̃ ∈ G̃ . By Lemma 3, we can express such products
as a (finite) linear combination of observables [cod(µ̃)] corresponding to the
(codomains of) the MGs under G̃1 and G̃2:

[G̃1](H̃)[G̃2](H̃) = |[G̃1; H̃]| · |[G̃2; H̃]| = |{G̃1
η̃1

−−→ H̃
η̃2

←−− G̃2 | η̃ a gluing}|

=
∑

µ̃∈G̃1∗G̃2

[cod(µ̃)](H̃).

Since cod(µ̃) ∈ G̃ for all µ̃ in G̃1 ∗ G̃2, the result is again in A . ⊓⊔
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Note that the set G̃ contains the empty graph ∅, which makes A a unitary
algebra with unit [∅].

4 Jump-Closure of Marked Graph Observables

We now have all the ingredients in place to derive moment semantics for (DPO-
based) marked graph rewriting. The set G̃ forms a countable state space over
which we generate CTMCs from finite sets of marked rules and associated rate
maps. The space A spanned by marked graph observables provides us with a

candidate sub-algebra of RG̃ . It remains to show that A is jump-closed with
respect to the CTMCs generated by marked rules.

Theorem 2. Let R be a finite set of marked rules with associated rate map
k : R → R

+, and B the set of marked graph observables. The linear subspace

A of RG̃ spanned by B is closed under the action of the infinitesimal generator
Q(R, k). In particular, for each marked rule α̃ : L̃ ⇀ R̃ in R and marked graph
G̃ in G̃ , we have

Qα̃[G̃] =
∑

µ̃∈R̃∗G̃

[cod(α̃†(µ̃1))]−
∑

µ̃∈L̃∗G̃

[cod(µ̃)].

Proof. Let F̃ be some marked graph in G̃ and α̃ : L̃ ⇀ R̃ a rule in R. By (2)
and the definition of Qα̃, we have

(Qα̃[F̃ ])(G̃) =
∑

H̃∈G̃

qα̃
G̃H̃

([F̃ ](H̃)− [F̃ ](G̃))

=
∑

f̃∈[L̃;G̃]

|[F̃ ; cod(α̃(f̃))]| −
∑

f̃∈[L̃;G̃]

|[F̃ ; G̃]|.

Recall that α̃(f̃) denotes the representative comatch derived from f̃ by α̃, and
hence cod(α̃(f̃)) is just the marked graph derived from G̃ via α̃ and f̃ . The action
of Qα̃ at G̃ thus naturally decomposes into two terms Q+

α̃ and Q−
α̃ describing,

respectively, the production and consumption of instances of F̃ . By Lemma 3,
the consumption term Q−

α̃ is equal to

Q−
α̃ [F̃ ](G̃) = |[L̃; G̃]| · |[F̃ ; G̃]| =

∑

µ̃∈L̃∗F̃

|[cod(µ̃); G̃]|

which is a linear combination of a finite number of elements in B.
Applying the same decomposition Lemma 3 to the production term Q+

α̃ , we
obtain a more complicated expression:

Q+
α̃ [F̃ ](G̃) =

∑

µ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ũ ∈ [cod(µ̃); cod(α̃(f̃))] | ũ ◦ µ̃1 = α̃(f̃)}|.
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To simplify this expression, we use properties of marked derivations seen in §3.2.
First, recall that the relation ⇒α̃ between marked matches under L̃ and R̃
has ⇒α̃† as its inverse. The first match µ̃1 of any MG µ̃ in R̃ ∗ F̃ thus has
a preimage α̃†(µ̃1) under ⇒α̃, as well as an associated corule µ̃1(α̃

†). Write µ̃†
1

for α̃†(µ̃1), α̃
†
µ for µ̃1(α̃

†), and Ũ , Ũ† for the codomains of µ̃1, µ̃
†
1. Recall that

α̃†
µ : Ũ ⇀ Ũ† is again a marked rule, and hence there is an associated map α̃†

µ(−)

between matches under Ũ and Ũ †. As α̃(f̃)⇒α̃† f̃ , the fact that derivations split
along factorizations of matches means that α̃†

µ(−) restricts to a bijection

{ũ ∈ [Ũ ; cod(α̃(f̃))] | ũ ◦ µ̃1 = α̃(f̃)} ≃ {ṽ ∈ [Ũ†; G̃] | ṽ ◦ µ̃†
1 = f̃}

which allows us to simplify our previous expression for Q+
α̃ [F̃ ] to

Q+
α̃ [F̃ ](G̃) =

∑

µ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ũ ∈ [Ũ ; cod(α̃(f̃))] | ũ ◦ µ̃1 = α̃(f̃)}|

=
∑

µ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ṽ ∈ [Ũ †; G̃] | ṽ ◦µ†
1 = f̃}| =

∑

µ̃∈R̃∗F̃

|[Ũ†; G̃]|.

This is again a linear combination of a finite number of elements in B, concluding
the proof of Theorem 2. ⊓⊔

Before we move on, a few remarks about the above theorem and its proof are in
order. Firstly, the theorem is a statement about marked graph observables rather
than individual derivations. Although the observables in question depend on the
LHS and RHS of rules, the explicit dependency of (2) on the rate matrix Qα̃

has vanished along with the corresponding dependencies on derivations in the
definition of Qα̃. This is made possible by two key insights from §3.2 and §3.3,
namely (i) that rules internalize application conditions and hence every marked
match of an LHS extends to a derivation, and (ii) that application conditions in
rules can be combined algebraically, by means of minimal gluings, with those in
marked graph observables.

Secondly, the proof makes use of reversibility of derivations in several places.
Nevertheless, Theorem 2 also holds for CTMCs generated by a significant class
of irreversible graph transformation systems. In particular, our approach extends
to single pushout (SPO) and sesqui-pushout (SqPO) rewriting, both of which
deal with irreversible derivations [31,15,6]. In both cases the rigidity constraints
on (marked) rules need to be relaxed as they would otherwise force rules to be
reversible. For Theorem 2 to hold, it is sufficient to restrict rules to spans of
monos and impose a strongest postcondition on their RHS (note that the latter
does not restrict the expressivity of rules). Although⇒α̃† is no longer the inverse
of ⇒α̃ in this setting, it can still be used to split derivations “backwards” along
factorizations of comatches, leading to a bijection argument akin to that in the
above proof.

Combining Theorems 1 and 2, we obtain the moment semantics for any finite
rule set R and associated rate map k. In particular, the expected value of a
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marked graph observable G̃ will satisfy the following differential equation:

d
dt

Ep([G̃]) =
∑

α̃∈R

k(α̃)
∑

µ̃∈R̃(α̃)∗G̃

Ep([cod(α̃
†(µ̃1))])−

∑

α̃∈R

k(α̃)
∑

µ̃∈L̃(α̃)∗G̃

Ep([cod(µ̃)])

(7)

where L̃(α̃) and R̃(α̃) denote, respectively, the LHS and RHS of the marked rule
α̃. Since, poly(A ) = A , ODEs for the higher moments can be generated by the
exact same procedure.

The number of terms in (7) depends on the size of the relevant sets of left
and right-hand MGs, which is worst-case exponential in the size of the graphs
involved (Lemma 3). In practice, one often finds many pairs of irrelevant MGs,
the terms of which cancel out exactly. This reduces the effective size of the
equations but not the overall complexity of generating them.

Second, as said in §1.3, the repeated application of (7) will lead to an infinite
expansion in general. In practice, the system of ODEs needs to be truncated. For
concrete models, static analysis might help finding invariants in the underlying
rewrite system and find a finite closure even for models where the set of reachable
states is demonstrably infinite [10]. We have seen a simple example in §1.

5 Conclusion

Consider again the example of preferential attachment presented in the first two
sections. In this case, we can automatically derive systems of ODEs that are
finite; however, we have to cope with the combinatorial blow-up. This bring us
to the most exciting direction for future work: mean field approximations of
moment semantics. In the literature, one often finds graphical approximation
techniques based on conditional independence assumptions to control the size
of patterns used in observables, such as so-called pair approximation [13,21]. It
is known that these methods can be more accurate than naive truncation of
ODEs. In a natural next step, we would like to understand if and how these can
be brought inside our formal approach.
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