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A'JSTRACT 

If x,xl'.:~ 2 ) .•. ~Xn are independent real valued scalar :candom Yariables, either 

discrete or absolutely continuous and having connnon probability density function 

k 
f(· 1 ~) where!= (e 1,e2, ... ,ek) E e c E, then a method of moments estimator for 

~ based on :;~ 1 ; x2 , •.• > Xn is a solution of the system of equations mj = E 9 ~~j; 
n . -1 

j = 1,2) ... ,k, where m. = J t X •• The method is attributed to Karl Pearson 
J n i=l 2 

but, although intuitively appealing, has little theoretical justification. In 

particular there are simple cases in ~1hich moment estimators ar'.= not even func-

tions of a minimal sufficient statistic. 

To insure that estimators ·)e functions of a minimal sufficient statistic one 

might, instead of applying the principle to the ra~·! moments, suggest setting the 

components of a minimal sufficient statistic equal to their expectations. This is 

sensible only if there is a minimal sufficient statistic of fixed dimension (in-

dependent of the sample size). In particular if ff(·le), 8 E 8} is a regular ,.... ,... 

Koopman-Pitman-Dannois (exponential) family of distributions and e is the natural 

parameter space, so that He may write 

f(xl3) = c(9)h(x) e - -

k 

L: 9.t.(x) 
j=l J J 

then a minimal suffici·2nt statistic for the family is 

n n n 
' T T ) (1 \"' t ('- ) 1 ~ t (cr \ 1 }'" ..._ 1,_ )' 

T = I,Tl' 2>'''' 1' e .n i=·ll '~1. > ) 2 ••. ;, ••• ,--- ~ '"'k~A. J 
' n i=l 1 n i=l 1 
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The estimation scheme suggested above would then seek 9 satisfying 

T = E T 
j e j -

_ :::9tj(x) 

-

-
j = 1,2, ... ,k. 

'i!e prove that under mild regularity conditions, a solution to this system is in 

fact a maximum likelihood estimator for e . 
.-.J 

Although the theorem does not provide a mechanism for simplifying the cal-

culation of maximum likelihood estimators, it does have pedagogic merit in that 

it strengthens the intuitive appeal of maximum likelihood estimation. Although 

the mathamatics behind the proof is largely availa~)le in the literature, the 

authors have not seen the result stated in the present context. 
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SUMMA.RY 

Some aspects of the Peal~son··Fisher controversy concerning the method of 

moments and the method of maximum likelihood are reviewed. In the multiparameter 

exponential family, a modification of the method of moments which requires the 

estimators to 1Je functions of the minimal sufficient statistic is discussed. It 

is shown that these modified estimators are in fact the maximum lil~elihood 

estimators. Although the mathematics underlying the result is widely available 

in the literature, the authors have not seen it stated in the present context. 

ICe~ord~_: ESTll-11\TION> EXPONENTIAL FAMILY, r2THOD OF MAXUIDM LIKELIHOOD, 

MSTHOD OF MOM.El~TS 

The oldest principle for estimation of the para.meter(s) of a pro~Jability 

distribution is that em!Jodied in the "method of moments 11
• Suppose that 

(x1> :;~ 2 ; .•• ,Xn) is a ranC.om sample from the distribution of a real valued (perhaps 

multi variate) random variahle X (either discrete or a1Jsolutely continuous) having 

probability density function f(·'1) "!-There 2.:::: (el,92, ••• ,ek) E e c ~\ Then an 

estimator for e determined ~JY the method of moments is a solution to the system ,.... 

of equations = t~/n, j = 1,2, •.• ,k. 
l. 
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Text~Jooks generally attrDute the method of moments to Karl Pearson, credit-

ing a series of papers ~Jeginning in 1894 (1894, 1898, 1902, and others), but 

Fishel~ (1937) notes that the "principle'' of equating moments dates !Jack to :Jessel 

and Gauss and vras largely developed by Thiele (1903). 

Besides its intuitive appeal, the advantage of the method is that it often 

leads to comparatively simple calculations. Furthermore, the estimators inherit 

the large-sample properties of the sample moments and so under mild conditions, 

moment estimators are asymptotically normal vrith mean differing from the parameter 

values by terms of order n-1. Unfortunately the large-sample variance (or multi-

variate analog) is in general not minimal so that the asymptotic efficiency is 

often considerably less than unity. 

The significance of this weakness was hotly de'Jated in the statistical 

literature, primarily by Pearson and Fisher. In his classic paper (1922)on the 

foundations of statistics, Fisher advocated the maximum likelihood method and 

demonstrated its superiority to the method of moments. The debate became vicious 

vlhen a paper by Koshal (1933) offering suggestions for improvement of moment 

estimators by maximum likelihood techniques prompted a bitter attack by Pearson 

(1936) charging Koshal and Fisher with collusion. The paper v1as written shortly 

before Pearson's death and so the de1Jate ended with fisher's equally forceful 

reply (1937). The tenor of the debate can be seen in the following passage from 

that paper: 

Though the occasion of this paper is Pearson's attack on Koshal, 
it has been impossible to treat the matter in due perspective Hithout 
a general criticism of methods originating vlith Pearson, which have 
been 'ddely disseminated. The intrinsic worth of those methods has long 
appeared to me to have been gravely exaggerated. Pearson opens his paper 
with the italicized query "Hasting your time fitting curves by moments, 
eh?" thus expressing in his own words anciS'tyle the scepticiSi:il with which 
he felt his procedures were ~Jeing regarded by others. The question he 
raised seems to me not at all premature, but rather overdue. 
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That Fisher's response was not merely emotional is evidenced by the fact that the 

intensity of his feeling on the matter did not dissipate with time; for in 1950 

Fisher vTrote 

Pearson '"as an old man \'lhen it occurred to him to attack Koshal, 
but it would be a mistake to regard either the errors or the venom of 
that attack as a sign of failing po-v1ers. In both respects it is very 
much like what he had done repeatedly since the ~Jeginning of the century. 
If peevish intolerance of free opinion in others is a sign of senility> 
it is one which he had developed at an early age. Unscrupulous mani
pulation of factual material is also a striking feature of the whole 
corpus of Pearsonian writings, and in this matter some bLwne does seem 
to attach to Pearson's contemporaries for not exposing his arrogant 
pretensions. 

A shortcoming of the method of moments which in our view is even more 

fundamental than its inefficiency is that it produces estimators uhich are not 

necessarily functions of a minimal sufficient statistic. This shortcoming is 

evidenced in some important special cases. For example, the moment estimator 

for the parameter of the Rayleigh distribution based on a random sample 

(~s_> ••• , Xn), (n ;;;: 2) is a function of ( .E Xi ) 2 whereas the minimal sufficient 

statistic is E ~. 
l. 

For the two-parametel~ Ga.tmna distribution (n ~ 3) the moment 

estimators are functions of ( E X11 E x~) whereas the minimal sufficient statistic 

To insure that estimators be functions of a minimal sufficient statistic, 

one might modify the method of moments by replacing the moment equations Dy 

equations in which the components of a minimal sufficient statistic are set equal 

to their expectations. This moment-type estimation procedure makes sense only 

if there is a minimal sufficient statistic of fixed dimension independent of the 

sample size; or equivalently if the family of underlying distributions is an 

exponential (F"'opman-Pitman-Darmois) family. It is shown that this modification 
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of the method of moments produces estimators which are identical to the maximum 

likelihood estimators; thus partially reconciling the differences 0etween Pearson 

and Fisher. 

Specifically, the family of distributions is assumed to be of the form 

f(x!e) 
. ,-v 

= c(e)h(x) ex£~ e.t.(x)--
fV i--1 J J -1 

r 

where the set on which the density, or equivalently h(x), is positive does not 

(l) 

In this representation, e is called the natural para-

meter and ®, the space of values of 9 for which (1) is a proper distribution is -
called the natural parameter space. The spaceS is convex (see Lehmann (1959), 

p. 51) and it is assumed that 9 contains an open set in Ek. Furthermore; it is 

assumed that the components of~= (t1 (x);•••,tk(x)) are such that no linear 

combination of t 1 (x), ..• ,tk(x) is constant for all x. The above two properties 

are nonrestrictive; for if either were not in effect then the exponent of (l) 

could be v1ritten in a form involving fe\ver than k components. One consequence of 

these assumptions is that each 9 E S determines a distinct distribution in the -
family (1). 

It is important to realize that the natural parameters are not necessarily 

in one-to-one correspondence with the parameters of interest. In particular, there 

are situations for which the1·e are points in S \vhich do not correspond to possible 

values of the parameters of interest. For example, the no1~al (T,T2 ) distribution 

has a one-dimensional parameter of interest iJut a two-dimensional natural para-

meter. The natural parameter space associated with t = (x,x2 ) is the lower half-... 
plane, S = [(~,oo) X (-oo,O)], but points e in 8 which correspond to values ofT ,.., 

must lie on the curve ef + e2 = 0. As a second example, the bivariate normal 
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(O,O,l>l,p) distribution has a one-dimensional parameter of interest but a three-

dimensional natural parameter. The natural parameter space associated with 

t = (x.2;2cy',y2) is 9 = ((""0)0) X (-cc,cc) X (-eo,O)], but points 9 in El which - ' -
correspond to values of p must have a1 = a3 · 

In the remainder of this study vre restrict attention to situations in which 

the parameters of interest ~ are in one-to-one correspondence with the natural -
parameters a . If X = (x1> ••• , X ) is a random sample :from a distribution of the 

,.., """ n 

form (1), then a minimal sufficient statistic is 

n n 

T = (T1, •.• ,Tk) = (!. r t 1 (x. L ... ,!. r tk(x. )) 
""" ·· n i=l ~ n i=l 1. 

Under the moment-type estimation procedure suggested a;)ove "~<Je would estimate e 

by e satisfying ,.... 

(2) 

The parameters of interest, 1) = g(9), would then ~)e estimated by 1i' = g(e'), where 
I'.J ,-..,J ~ ~ 

g is assumed to 1)e one-to-one. The expectations :Q;a (1:) are a familiar part of 

discussions of the exponential family. For instance, it is well known (see 

Lehmann (1959), p. 58) that 

Eft .(x)l = - 0.tn c(e)/oe. , 
!-J .J - J 

j = l, ... 'k 
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tvhere c(e) is the constant "\'lhich ensures that (1) be a proper density. -
Theorem. :for the family 9.£ distri~mtions (1)) the ~ment~e estimator for e 

..... 

o'Jtained as a solution to the ~uations (2) !~ the maximum likel~hood estimator. 

Proof. The logarithm of the likelihood function is given by 

tn L(e) = n tn c(e) ......, ,.... 

k n 
+ L: e. l: t . (x. ) 

j=l J i=l J 1 

and the set of first and second-order derivatives are 

n 

cfn L(e)/~9. = n oLn c(e)/ae. + ~ tj(x.) 
...., J ,.... J i=l 1 

n 

l: .tn h(x .. ) 
i=l 1 

j = l, •.• ,k 

ll t?tn c(e)/oe.aeA J 
,.... J J/J 

j,t = l, .•• ,k 

Under the assumption that no linear combination of t 1 (x), .•• ,tk(x) is 

constant for all x, the variance-covariance matrix for t is positive definite. 

It then follows from (3) that the equations 

otn L(e )/oe. = o , 
,_ J 

j=lJ .•• ,k 

admit a unique solution e uhich maximizes the likelihood. But from (3) it is seen 

that these equations are identical to (2). 

The fact that fo1· the family of distributions ( 1), the likelihood equations 

yield the unique maximum likelihood estimator for 9; was first established by ,.... 
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Huzurbazar ( 1949). At one point in his argument, Huzur~Jazar suggests replacing 

T by its expectation. However, this appears to have ~Jeen used strictly as a 
~ 

technique of proof. To the ~Jest of our lmm1ledge there has been no formal 

discussion of the use of equations (2) as an analogy to the method of moments. 

To illustrate the result noted above, we consider the two-parameter family 

of Gamma distributions with proba~Jility densities 

( 1 = [,.,v/r(") ]e-a:xxv-1. f x;a.,v, ..... v , x > o, a > OJ v > 0. 

A natural parameterization is 9 = (e~,v) \'lith®= [(O,co) X (O,co)] and c(ct,v) 
~ 

= a.v/r(v), and the corresponding~= (t1 (x), t 2 (x)) = (-x,tnx). The moment-type 

estimators are obtained as a solution to equations (2), vJhich vlith (3) reduce to 

X= E9 (X) = - otn c(a,v)/oa = v/a 

and 

(i:nif) :::: E9 (tnX) = - otn c(a,v)/ov = w(v)-log(a) 

""' 

where w ( v) = dtnr ( v )/ d'V is the digamma function. The al)ove equations are pre-

cisely those obtained when maximizing the likelihood function (cf. Choi and Wette, 

(1969)). TJy contrast, the classical moment estimators are obtained as a solution 

to 

X = E(X) = v/a (~) = E(X2 ) = v(v+l)/a2 . 

As observed earlier, this solution will not "be a function of the minimal 

sufficient statistic. 



vfuen the k components of!= (t1(x)) .•• ,tk(x)) are linearly independent 

homogeneous polynomials of degree at most k, the moment-type estimator for e 
~ 

obtained as a solution to equations (2) is identical to the classical moment 

estimator. This result is noted in Fisher (1922, p. 356) in the special case 

when k = 4. It is clear that for families of the form (1) this is the only 

situation in which the moment-type estimator and the classical moment estimator 

of e are the same. 
~ 
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