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Abstract

Marshall-Olkin exponential distribution has been studied by Salah,
et al. [6]. In this paper, we derive several recurrence relations satis-
fied by the single moments and product moments of progressive type-II
censored order statistics from Marshall-Olkin exponential distribution.
These relations may then be used to compute all means, variances and
covariances of progressive type-II censored ordered statistics based on
Marshall-Olkin exponential distribution for arbitrary censoring scheme.
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1 Introduction

Censored sampling arises in a life-testing experiment when ever the exper-
imenter doesn’t observe (either intentionally or unintentionally) the failure
times of all units placed on a life-test. For example consider a life-testing
experiment where n items are kept under observation, these items could be
systems, computers, individuals in a clinical trial, in reliability study experi-
ment, so that the removal of units from the experimentation is pre-planned and
intentional, and is done in order to provide saving in terms of time and cost
associated with testing.The data obtained from such experiments are called
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censored data. There are many types of censoring scheme, here we mention
some of them, let us consider n unites are placed on a life-test then, type-I
(time) censoring: Suppose it is decided to terminate the experiment at a pre-
determined time t , so that only failure time of these items that failed prior to
this time recorded, the data so obtained from this process constitute a type-I
censored sample. Type-II censoring: If the experiment is terminated at the
rth failure, that is at time Xr:n, we obtain type-II censored sample, here r is
fixed, while Xr:n the duration of the experiment is random. Many articles
in this literature have discussed inferential method under type-I and type-II
censoring for various parametric families of distributions, for more details, see
for example, Balakrishnan and Cohen [9], Pradhan and Kundu [2] and Sultan
et al. [3].

A generalization of type-II censored sample is a progressive type-II
right censoring: Suppose n units taken from the same population are placed
on a life test. At the first failure time of one of the n units, a number R1

of the surviving units is randomly withdrawn from the test, at the second
failure time, another R2 surviving units are selected at random and taken out
of the experiment, and so on. Finally at the mth failure, the remaining Rm =
n−m−R1−R2− ...−Rm−1 unit are removed. In this scheme (R1, R2, ..., Rm)
is pre-fixed. The resulting m order failure times, which denote by

X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X(R1,R2,...,Rm)

m:m:n ,

are referred to as progressive type-II right censored order statistics. The special
case when R1 = R2 = ... = Rm−1 = 0, so that Rm = n − m this scheme
reduces to the conventional type-II censoring scheme, also when R1 = R2 =
... = Rm = 0, so that m = n , then no censoring happen ( complete data
case). For more detailed discussion about progressive censoring, one may refer
to Balakrishnan and Aggarwala [11]. If the failure times are based on an
absolutely continuos distribution function F with probability density function
(pdf) f, the joint probability density function of the progressive censored failure
times X1:m:n, X2:m:n, ..., Xm:m:n, is given by

fX1:m:n,...,Xm:m:n(x1, x2, ..., xm) = A(n,m− 1)mi=1f(xi)[1− F (xi)]
Ri ,

−∞ < x1 < x2 < ... < xm <∞, (1)

where f(.), F (.) are, respectively, pdf and the cumulative distribution func-
tion (cdf) of the random sample and

A(n,m− 1) = n(n− 1−R1)(n− 2−R1−R2)...(n−m+ 1−R1− ...−Rm−1).

The purpose of this paper is to consider progressive type-II censored data
from the Marshall-Olkin exponential distribution , for simplicity, denoted by
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MOE distribution. The cdf of MOE distribution is given as follows:

F (x) = 1− αe−x

(1− (1− α)e−x)
, 0 ≤ x <∞, α > 0. (2)

And its pdf is given as follows:

f(x) =
αe−x

(1− (1− α)e−x)2
, 0 ≤ x <∞, α > 0. (3)

When α = 1, the MOE distribution reduces to the standard exponential
distribution, and when α = 2, the MOE distribution reduces to the half logistic
distribution. Note that the cdf and the pdf given in Eqs. (2) and (3) are
respectively for the standard MOE distribution for more details see, Salah [5].

From Eqs.(2) and (3) one can be readily seen the following three relations

f(x) = [1− F (x)] +
1− α
α

[1− F (x)]2 , α > 0, (4)

f(x) = F (x) [1− F (x)] +
1

α
[1− F (x)]2 , α > 0, (5)

f(x) =
1

α

[
1 + (α− 2)F (x) + (1− α)F 2(x)

]
, α > 0. (6)

We use these relations in the next sections in order to establish several recur-
rence relations satisfied by the single and the product moments of the progres-
sive type-II right censored order statistics.

Rest of the paper is organized as follows: In Section 2, we derive several
new recurrence relations satisfied by the single moments of progressive type-
II right censored order statistics from the MOE distribution. In Section 3,
we derive and establish some recurrence relations satisfied by the product
moments of progressive type-II right censored order statistics from the MOE
distribution. Finally, in Section 4, we show how the recursive computational
used for computing the single and product moment in recursive algorithm.

2 Recurrence Relations for Single Moments

The moments of order statistics have been recursively derived see, Salah, et al.
[6], for a complete sample. In this section, we establish several new recurrence
relations satisfied by the single moments of progressive type-II right censored
order statistics from the MOE distribution. These recurrence relations may
be used to compute the means, variances and covariances of MOE progressive
type-II right censored order statistics for all sample sizes n and all censoring
schemes (R1, R2, ..., Rm),m ≤ n.
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Let X1, X2, ..., Xn be a random sample from the standard MOE dis-
tribution with cdf and pdf given in Eqs. (2 ) and (3) respectively. The cor-
responding progressive type-II right censored order statistics with censoring
scheme (R1, R2, ..., Rm),m ≤ n will be

X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X(R1,R2,...,Rm)

m:m:n .

The single moments of the progressive type-II right censored order statistics
from the MOE distribution can be written as follows see, Balakrishnan and
Aggarwala,[11]

µ
(R1,R2,...,Rm)(k)

i:m:n = E[X
(R1,R2,...,Rm)(k)

i:m:n ]

= A(n,m− 1)

∫
0<x1<x2<...<xm<∞

xki f(x1)[1− F (x1)]
R1

×f(x2)[1− F (x2)]
R2 ...f(xm)[1− F (xm)]Rmdx1...dxm,

(7)

where f(.) and F (.) are given respectively in Eqs. (2),(3), and A(n,m− 1)
as defined in Eq. (1). When k = 1, the superscript in the notation of the
mean of the progressive type-II right censored order statistics may be omitted
without any confusion. The single moments of the progressive type-II right
censored order statistics given in Eq. (7) satisfies the following recurrence
relations.

Theorem 2.1 For 2 ≤ m ≤ n and k ≥ 0, we have

µ
(R1+1,R2,...,Rm)(k+1)

1:m:n+1 =
(n+ 1)α

n (1− α) (R1 + 2)
[(k + 1)µ

(R1,...,Rm)(k)

1:m:n − (R1 + 1)µ
(R1,...,Rm)(k+1)

1:m:n

−(n−R1 − 1)µ
(R1+R2+1,R3,...,Rm)(k+1)

1:m−1:n ]

−(n−R1 − 1)

(R1 + 2)
µ
(R1+R2+2,R3,...,Rm)(k+1)

1:m−1:n+1 ,

α > 0, α 6= 1. (8)

Proof. From Eq.(7) and Eq.( 4) we have

µ
(R1,R2,...,Rm)(k)

1:m:n = A(n,m− 1)

∫
0<x2<...<xm<∞

L(x2)f(x2)[1− F (x2)]
R2 ...

×f(xm)[1− F (xm)]Rmdx2...dxm, (9)

where

L(x2) =

∫ x2

0

xk1[1− F (x1)]
R1+1dx1 +

1− α
α

∫ x2

0

xk1[1− F (x1)]
R1+2dx1.
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By integrating the right hand side of the last equation by parts, we obtain

L(x2) =
xk+1
2

k + 1
[1− F (x2)]

R2+1 +
R1 + 1

k + 1

∫ x2

0

xk+1
1 f(x1)[1− F (x1)]

R1dx1

+
1− α
α

xk+1
2

k + 1
[1− F (x2)]

R2+2 +
(R1 + 2) (1− α)

(k + 1)α

∫ x2

0

xk+1
1 f(x1)[1− F (x1)]

R1+1dx1.

(10)

Substituting Eq. (10) in Eq. (9) and using the definition of the single moment
given in Eq. (7) we simply have

µ
(R1,R2,...,Rm)(k)

1:m:n = (n−R1 − 1)
1

k + 1
µ
(R1+R2+1,...,Rm)(k+1)

1:m−1:n +
n (n−R1 − 1)

n+ 1

1− α
(k + 1)α

×µ(R1+R2+2,...,Rm)(k+1)

1:m−1:n+1 +
R1 + 1

k + 1
µ
(R1,R2,...,Rm)(k+1)

1:m:n

+
n (R1 + 2) (1− α)

(n+ 1) (k + 1)α
µ
(R1+1,...,Rm)(k+1)

1:m:n+1 .

The result follows.

Corollary 2.1 For α = 2, we have

µ
(R1,R2,...,Rm)(k)

1:m:n =
1

k + 1
[(R1 + 1)µ

(R1,R2,...,Rm)(k+1)

1:m:n + (n−R1 − 1)µ
(R1+R2+1,...,Rm)(k+1)

1:m−1:n ]

− n

2 (n+ 1) (k + 1)
[(n−R1 − 1)µ

(R1+R2+2,...,Rm)(k+1)

1:m−1:n+1

+(R1 + 2)µ
(R1+1,R2,...,Rm)(k+1)

1:m:n+1 ].

Corollary 2.2 For α = 1,we have

µ
(R1,R2,...,Rm)(k+1)

1:m:n =
n−R1 − 1

R1 + 1
µ
(R1+R2+1,...,Rm)(k+1)

1:m−1:n − k + 1

R1 + 1
µ
(R1,...,Rm)(k)

1:m−1:n .

Theorem 2.2 For m = 1, n = 1, 2, ..., and k ≥ 0, we have

µ
(n)(k+1)

1:1:n+1 =
α

1− α
[
k + 1

n
µ
(n−1)(k)
1:1:n − µ(n−1)(k+1)

1:1:n ], α > 0, α 6= 1. (11)

If α = 1, we have

µ
(n−1)(k+1)

1:1:n =
k + 1

n
µ
(n−1)(k)
1:1:n . (12)
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Proof. Let m = 1, n = 1, 2, ..., and k ≥ 0. Using Eqs. (7) and (4) we obtain

µ
(R1)(k+1)

1:1:n = n

∫ ∞
0

xk1[1− F (x1)]
R1+1dx1 + n

α

1− α

∫ ∞
0

xk1[1− F (x1)]
R1+2dx1.

Integrating the last equation by parts, to get

µ
(R1)(k)

1:1:n =
n

k + 1
µ
(R1)(k+1)

1:1:n +
1− α
α

n

k + 1
µ
(R1+1)(k+1)

1:1:n+1 . (13)

The results in Eqs. (11) and (12) follow directly from Eq.(13).

Theorem 2.3 For 2 ≤ i ≤ m− 1, m ≤ n and k ≥ 0 we have

µ
(R1,...,Ri+1,...,Rm)(k+1)

i:m:n+1 =
α

1− α
1

Ri + 2

A(n+ 1, i− 1)

A(n, i− 1)
[(k + 1)µ

(R1,R2,...,Rm)(k)

i:m:n

+(n−R1 − ...−Ri−1 − i+ 1)µ
(R1,...,Ri−2,Ri−1+Ri+1,Ri+1...,Rm)(k+1)

i−1:m−1:n

− (Ri + 1)µ
(R1,R2,...,Rm)(k+1)

i:m:n

−(n−R1 − ...−Ri − i)µ(R1,...,Ri−1,Ri+Ri+1+1,Ri+2...,Rm)(k+1)

i:m−1:n

−1− α
α

A(n, i)

A(n+ 1, i− 1)
µ
(R1,...,Ri−1,Ri+Ri+1+2,Ri+2...,Rm)(k+1)

i:m−1:n+1

+
1− α
α

A(n, i− 1)

A(n+ 1, i− 2)
µ
(R1,...,Ri−2,Ri−1+Ri+2,Ri+1...,Rm)(k+1)

i−1:m−1:n+1 ],

α > 0, α 6= 1. (14)

Proof. From Eqs.(7) and (4) we may write

µ
(R1,R2,...,Rm)(k)

i:m:n = A(n,m− 1)0<x1<...<xi−1<xi+1<...<xmI(xi+1)f(x1)[1− F (x1)]
R1

×...f(xi−1)[1− F (xi−1)]
Ri−1f(xi+1)[1− F (xi+1)]

Ri+1

×...f(xm)[1− F (xm)]Rmdx1...dxi−1dxi+1...dxm, (15)

where

I(xi+1) =

∫ xi+1

xi−1

[
xki [1− F (xi)]

Ri+1 +
1− α
α

xki [1− F (xi)]
Ri+2

]
dxi.

Integration by parts leads to

I(xi+1) =
xk+1
i+1

k + 1
[1− F (xi+1)]

Ri+1 −
xk+1
i−1

k + 1
[1− F (xi−1)]

Ri+1

+
Ri + 1

k + 1

∫ xi+1

xi−1

xk+1
i f(xi)[1− F (xi)]

Ridxi

+
1− α
α

[
xk+1
i+1

k + 1
[1− F (xi+1)]

Ri+2 −
xk+1
i−1

k + 1
[1− F (xi−1)]

Ri+2

]

+
1− α
α

Ri + 2

k + 1

∫ xi+1

xi−1

xk+1
i f(xi)[1− F (xi)]

Ri+1dxi. (16)
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Upon substituting Eq. (16) in Eq. (15) and re-arranging the resulting equation
we get Eq. (14).

Corollary 2.3 For α = 2, we have

µ
(R1,...,Ri+1,...,Rm)(k+1)

i:m:n+1 =
2

Ri + 2

A(n+ 1, i− 1)

A(n, i− 1)
[− (k + 1)µ

(R1,R2,...,Rm)(k)

i:m:n

−(n−R1 − ...−Ri−1 − i+ 1)µ
(R1,...,Ri−2,Ri−1+Ri+1,Ri+1,...,Rm)(k+1)

i−1:m−1:n

+ (Ri + 1)µ
(R1,R2,...,Rm)(k+1)

i:m:n

+(n−R1 − ...−Ri − i)µ(R1,...,Ri−1,Ri+Ri+1+1,Ri+2,...,Rm)(k+1)

i:m−1:n

− A(n, i)

2A(n+ 1, i− 1)
µ
(R1,...,Ri−1,Ri+Ri+1+2,Ri+2,...,Rm)(k+1)

i:m−1:n+1

+
A(n, i− 1)

2A(n+ 1, i− 2)
µ
(R1,...,Ri−2,Ri−1+Ri+2,Ri+1,...,Rm)(k+1)

i−1:m−1:n+1 ].

Corollary 2.4 For α = 1, we have

µ
(R1,R2,...,Rm)(k+1)

i:m:n =
1

Ri + 1
[(k + 1)µ

(R1,R2,...,Rm)(k)

i:m:n

−(n−R1 − ...−Ri − i)µ(R1,...,Ri−1,Ri+Ri+1+1,Ri+2,...,Rm)(k+1)

i:m−1:n

+(n−R1 − ...−Ri−1 − i+ 1)µ
(R1,...,Ri−2,Ri−1+Ri+1,Ri+1,...,Rm)(k+1)

i−1:m−1:n ].

Theorem 2.4 For 2 ≤ m ≤ n and k ≥ 0 we have

µ
(R1,...,Rm−1,Rm+1)(k+1)

m:m:n+1 =
αA(n+ 1,m− 1)

(1− α) (Rm + 2)A(n,m− 1)
[(k + 1)µ(R1,R2,...,Rm)(k)

m:m:n

− (Rm + 1)µ(R1,R2,...,Rm)(k+1)

m:m:n

+(n−R1 − ...−Rm−1 −m+ 1)µ
(R1,...,Rm−2,Rm−1+Rm+1)(k+1)

m−1:m−1:n

+
1− α
α

A(n,m− 1)

A(n+ 1,m− 2)
µ
(R1,...,Rm−2,Rm−1+Rm+2)(k+1)

m−1:m−1:n+1 ],

α > 0, α 6= 1. (17)

Proof. Arguments similar to those in previous theorems, give us:

µ(R1,R2,...,Rm)(k)

m:m:n = A(n,m− 1)0<x1<...<xm−1<∞I(xm)f(x1)[1− F (x1)]
R1

×...f(xm−1)[1− F (xm−1)]
Rm−1dx1...dxm−1, (18)

where

I(xm) =

∫ ∞
xm−1

xkm[1− F (xm)]Rm+1dxm +
1− α
α

∫ ∞
xm−1

xkm[1− F (xm)]Rm+1dxm.
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Integrating the last equation by parts, substituting the result in Eq. (18), we
simply have

µ(R1,R2,...,Rm)(k)

m:m:n =
−1

k + 1
(n−R1 − ...−Rm−1 −m+ 1)µ

(R1,...,Rm−2,Rm−1+Rm+1)(k+1)

m−1:m−1:n

+
Rm + 1

k + 1
µ(R1,R2,...,Rm)(k+1)

m:m:n

− (1− α)

(k + 1)α

A(n,m− 1)

A(n+ 1,m− 2)
µ
(R1,...,Rm−1+Rm+2)(k+1)

m−1:m−1:n+1

+
(Rm + 2) (1− α)

(k + 1)α

A(n,m− 1)

A(n+ 1,m− 1)
µ
(R1,...,Rm−1,Rm+1)(k+1)

m:m:n+1 ].

(19)

The result follows from Eq. (19).

Remark 2.1 One can use these derived relations to obtain the single moments
of the progressive type-II right censored order statistics for some sample sizes
and some censoring scheme (R1, ..., Rm) ,m ≤ n in a simple recursive manner.

3 Recurrence Relations for Product Moments

In this section, we establish some recurrence relations for product mo-
ments of the progressive type-II right censored order statistics from the MOE
distribution. The (i, j)th product moment of the progressive type-II right cen-
sored order statistics can be written as

µ
(R1,R2,...,Rm)
i,j:m:n = E[X

(R1,R2,...,Rm)
i:m:n X

(R1,R2,...,Rm)
j:m:n ]

= A(n,m− 1)0<x1<...<xm<∞xixjf(x1)[1− F (x1)]
R1f(x2)[1− F (x2)]

R2

×...f(xm)[1− F (xm)]Rmdx1...dxm, (20)

where f(.) and F (.) are given respectively in Eqs. (2) and (3) and A(n,m−1)
is defined in Eq. (1). Then the product moments of the progressive type-II
right censored order statistics given in Eq.(20) satisfy the following recurrence
relations.
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Theorem 3.1 For 1 ≤ i < j ≤ m− 1, m ≤ n we have

µ
(R1,...,Rj−1,Rj+1,Rj+1,...,Rm)
i,j:m:n+1 =

α

(1− α) (Rj + 2)

A(n+ 1, j − 1)

A(n, j − 1)
[µ

(R1,R2,...,Rm)
i:m:n

− (Rj + 1)µ
(R1,R2,...,Rm)
i,j:m:n

+ (n−R1 − ...−Rj−1 − j + 1)µ
(R1,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)
i,j−1:m−1:n

− (n−R1 − ...−Rj − j)µ
(R1,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)
i,j:m−1:n

−1− α
α

A(n, j)

A(n+ 1, j − 1)
µ
(R1,...,Rj−1,Rj+Rj+1+2,Rj+2,...,Rm)
i,j:m−1:n+1

+
1− α
α

A(n, j − 1)

A(n+ 1, j − 2)
µ
(R1,...,Rj−2,Rj−1+Rj+2,Rj+1,...,Rm)
i,j−1:m−1:n+1 ],

α > 0, α 6= 1. (21)

Proof. From Eq. (20) and Eq. (4) we have for 1 ≤ i < j ≤ m − 1, m ≤ n
and α > 0, α 6= 1

µ
(R1,R2,...,Rm)
i:m:n = E[X

(R1,R2,...,Rm)
i:m:n

(
X

(R1,R2,...,Rm)
j:m:n

)0
]

= A(n,m− 1)0<x1<..<xj−1<xj+1<...<xm<∞xiL(xj)f(x1)[1− F (x1)]
R1

×...f(xj−1)[1− F (xj−1)]
Rj−1f(xj+1)[1− F (xj+1)]

Rj+1

×...f(xm)[1− F (xm)]Rmdx1...dxj−1dxj+1...dxm, (22)

where

L(xj) =

∫ xj+1

xj−1

[1− F (xj)]
Rj+1dxj +

1− α
α

∫ xj+1

xj−1

[1− F (xj)]
Rj+2dxj.

(23)
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Integrating by parts Eq.(23) and substituting the result in Eq. (22), we obtain

µ
(R1,R2,...,Rm)
i:m:n = (Rj + 1)µ

(R1,R2,...,Rm)
i,j:m:n

+
(1− α)

α
(Rj + 2)

A(n, j)

A(n+ 1, j − 1)
µ
(R1,...,Rj+1,...,Rm)
i,j:m−1:n+1

− (n−R1 − ...−Rj−1 − j + 1)µ
(R1,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)
i,j−1:m−1:n

+ (n−R1 − ...−Rj − j)µ
(R1,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)
i,j:m−1:n

+
(1− α)

α

A(n, j)

A(n+ 1, j − 1)
µ
(R1,...,Rj−1,Rj+Rj+1+2,Rj+2,...,Rm)
i,j:m−1:n+1

−(1− α)

α

A(n, j − 1)

A(n+ 1, j − 2)
µ
(R1,...,Rj−2,Rj−1+Rj+2,Rj+1,...,Rm)
i,j:m−1:n+1 .

The result follows by re-arranging the last equation.

Corollary 3.1 For α = 1, we have

µ
(R1,R2,...,Rm)
i,j:m:n =

1

Rj + 1
[µ

(R1,R2,...,Rm)
i:m:n

− (n−R1 − ...−Rj − j)µ
(R1,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)
i,j:m−1:n

+ (n−R1 − ...−Rj−1 − j + 1)µ
(R1,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)
i,j−1:m−1:n ].

Corollary 3.2 For α = 2, we have

µ
(R1,R2,...,Rj+1,...,Rm)
i,j:m:n+1 =

2

(Rj + 2)

A(n+ 1, j − 1)

A(n, j − 1)
[(Rj + 1)µ

(R1,R2,...,Rm)
i,j:m:n − µ(R1,R2,...,Rm)

i:m:n

− (n−R1 − ...−Rj−1 − j + 1)µ
(R1,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)
i,j−1:m−1:n

+ (n−R1 − ...−Rj − j)µ
(R1,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)
i,j:m−1:n

− A(n, j)

A(n+ 1, j − 1)
µ
(R1,...,Rj−1,Rj+Rj+1+2,Rj+2,...,Rm)
i,j:m−1:n+1

+
A(n, j − 1)

2A(n+ 1, j − 2)
µ
(R1,...,Rj−2,Rj−1+Rj+2,Rj+1,...,Rm)
i,j−1:m−1:n+1 ].
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Theorem 3.2 For 1 ≤ i ≤ m− 1, m ≤ n and α > 0, α 6= 1, we have

µ
(R1,R2,...,Rm+1)
i,m:m:n+1 =

α

(1− α) (Rm + 2)

A(n+ 1,m− 1)

A(n,m− 1)
[µ

(R1,R2,...,Rm)
i:m:n

− (Rm + 1)µ
(R1,R2,...,Rm)
i,m:m:n

+ (n−R1 − ...−Rm−1 −m+ 1)µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)
i,m−1:m−1:n

+
1− α
α

A(n,m− 1)

A(n+ 1,m− 2)
µ
(R1,R2,...,Rm−2,Rm−1+Rm+2)
i,m−1:m−1:n+1 ].

(24)

Proof. From Eq. (20) and upon using Eq. (4), we get for 1 ≤ i ≤ m − 1,
m ≤ n and α > 0,

µ
(R1,R2,...,Rm)
i:m:n = E[X

(R1,R2,...,Rm)
i:m:n

(
X(R1,R2,...,Rm)

m:m:n

)0
]

= A(n,m− 1)0<x1<...<xm−1<∞xiH(xm)f(x1)[1− F (x1)]
R1

×...f(xm−1)[1− F (xm−1)]
Rm−1dx1...dxm−1, (25)

where

H(xm) =

∫ ∞
xm−1

[1−F (xm)]Rm+1dxm +
1− α
α

∫ ∞
xm−1

[1−F (xm)]Rm+2dxm. (26)

The integration by parts of Eq. (26), leads to

I(xm) = −xm−1[1− F (xm−1)]
Rm+1 − 1− α

α
xm−1[1− F (xm−1)]

Rm+2

+(Rm + 1)

∫ ∞
xm−1

xm[1− F (xm)]Rmdxm +

(Rm + 1)
1− α
α

∫ ∞
xm−1

xm[1− F (xm)]Rm+1dxm. (27)

Upon substituting Eq. (27) in Eq. (25) and simplifying the result, we get

µ
(R1,R2,...,Rm)
i:m:n = − (n−R1 − ...−Rm−1 −m+ 1)µ

(R1,R2,...,Rm−1+Rm+1)
i,m−1:m−1:n

+ (Rm + 1)µ
(R1,R2,...,Rm)
i,m:m:n

−1− α
α

A(n,m− 1)

A(n+ 1,m− 2)
µ
(R1,R2,...,Rm−1+Rm+2)
i,m−1:m−1:n+1

+
1− α
α

(Rm + 2)
A(n,m− 1)

A(n+ 1,m− 1)
µ
(R1,R2,...,Rm+1)
i,m:m:n+1 .

Obviously the result follows.
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Corollary 3.3 For α = 1, we have

µ
(R1,R2,...,Rm)
i,m:m:n =

1

(Rm + 1)
[µ

(R1,R2,...,Rm)
i:m:n +(n−R1 − ...−Rm−1 −m+ 1)µ

(R1,R2,...,Rm−1+Rm+1)
i,m−1:m−1:n ].

Corollary 3.4 For α = 2, we have

µ
(R1,R2,...,Rm+1)
i,m:m:n+1 =

2

(Rm + 2)

A(n+ 1,m− 1)

A(n,m− 1)
[−µ(R1,R2,...,Rm)

i:m:n + (Rm + 1)µ
(R1,R2,...,Rm)
i,m:m:n

− (n−R1 − ...−Rm−1 −m+ 1)µ
(R1,R2,...,Rm−1+Rm+1)
i,m−1:m−1:n

+
A(n,m− 1)

2A(n+ 1,m− 2)
µ
(R1,R2,...,Rm−1+Rm+2)
i,m−1:m−1:n+1 ].

Remark 3.1 Using these recurrence relations, one can obtain the product mo-
ments of the progressive type-II right censored order statistics for some sample
sizes and some censoring schemes. Furthermore, it is possible to note that
the recurrence relations for the standard exponential distribution and the half
logistic distribution can be obtained as special cases when α = 1, and α = 2,
respectively.

Remark 3.2 For the special case R1 = R2 = ... = Rm = 0 so that m = n
in which the progressively censored order statistics become the usual order
statistics X1:n, X2:n, ..., Xn:n whose single and product moments are as defined
in Salah, et al. [6], the recurrence relations established in Sections 2 and 3
are reduced to the following:

(a) From Eq. (8): For k > 0,

µ
(1,0,...,0)(k+1)

1:n:n+1 =
(n+ 1)α

2n (1− α)
[(k + 1)µ

(k)

1:n − µ
(k+1)

1:n − (n− 1)µ
(1,0,...,0)(k+1)

1:n−1:n ]

−n− 1

2
µ
(2,...,0)(k+1)

1:n−1:n+1 .

(b) From Eq. (14): For 2 ≤ i ≤ n− 1 and k ≥ 0, we have

µ
(0,...,1,...,0)(k+1)

i:n:n+1 =
α

1− α
1

2

A(n+ 1, i− 1)

A(n, i− 1)
[(k + 1)µ

(k)

i:n

+(n− i+ 1)µ
(0,...,1,...,0)(k+1)

i−1:n−1:n

−µ(k+1)

i:n − (n− i)µ(0,...,1,...,0)(k+1)

i:n−1:n

−1− α
α

A(n, i)

A(n+ 1, i− 1)
µ
(0,...,2,...,0)(k+1)

i:n−1:n+1

+
1− α
α

A(n, i− 1)

A(n+ 1, i− 2)
µ
(0,...,2,...,0)(k+1)

i−1:n−1:n+1 ],

α > 0, α 6= 1,
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while, in the superscript of the term on the left hand side, the 1 is in the i− th
position, in the superscript of the second term on the right hand side, the 1
is in the (i − 1) − th position, in the third term, however, 1 is in the i − th
position, in the forth term, 2 is in i − th position, finally, in the fifth term, 2
is in the (i− 1)− th position.

Remark 3.3 One can easily deduce some of the recurrence relations which
derived in Salah, et, al. [6] from the recurrence relations given in the last two
sections, for example when R1 = R2 = ... = Rm−1 = 0, so that there is no
censoring before the time of the m − th failure, then the first m progressively
type-II censored order statistics are simply the first m usual order statistics.
Based on such censoring scheme, we deduce the following: (1) From Eq. (8):
For n ≥ 1, k ≥ 0, α > 0 and α 6= 1

µ
(k+1)
1:n+1 =

α

2 (1− α)

n+ 1

n
[(k + 1)µ

(k)
1:n − µ

(k+1)
1:n − (n− 1)µ

(k+1)
1:n ]− n− 1

2
µ
(k+1)
1:n+1.

(28)
Re-arranging Eq. (28) to get

µ
(k+1)
1:n+1 =

α

1− α

[
k + 1

n
µ
(k)
1:n − µ

(k+1)
1:n

]
, n ≥ 1, k ≥ 0, α > 0, α 6= 1.

This recurrence relation is equivalent to that established in Salah, et, al.[6],
Theorem(1).

(2) From Eq. (14): For 2 ≤ i ≤ n− 1, k ≥ 0 and α > 0, we have

(k + 1)µ
(k)
i:n =

1− α
α

n− i+ 1

n+ 1
[
α

1− α
(n+ 1)µ

(k+1)
i:n − (n− i+ 2)µ

(k+1)
i−1:n+1]

+
1− α
α

(n− i+ 1) (n− i+ 2)

n+ 1
µ
(k+1)
i:n+1 − (n− i+ 1)µ

(k+1)
i−1:n .

(29)

From Relation 3.3.1 see, Balakrishnan and Cohen [9], p. 24,

iµ
(k)
i+1:n + (n− i)µ(k)

i:n = nµ
(k)
i:n−1,

we have the following two equations

α

1− α
(n+ 1)µ

(k+1)
i:n =

α

1− α
iµ

(k+1)
i+1:n+1 +

α

1− α
(n− i+ 1)µ

(k+1)
i:n+1 , (30)

(n+ 1)µ
(k+1)
i−1:n = (i− 1)µ

(k+1)
i:n+1 + (n− i+ 2)µ

(k+1)
i−1:n+1. (31)

By adding Eq. (30) to Eq. (31), we obtain

α

1− α
(n+ 1)µ

(k+1)
i:n + (n+ 1)µ

(k+1)
i−1:n =

α

1− α
iµ

(k+1)
i+1:n+1 + (n− i+ 2)µ

(k+1)
i−1:n+1

+[
α (n− i+ 1)

1− α
+ i− 1]µ

(k+1)
i:n+1 . (32)
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Substituting Eq. (32) into Eq. (29), we simply have

µ
(k+1)
i+1:n+1 =

1

i
[
(n+ 1) (k + 1)

n− i+ 1
µ
(k)
i:n −

n− αi+ 1

α
µ
(k+1)
i:n+1

+
n+ 1

α
µ
(k+1)
i−1:n ], 1 ≤ i ≤ n, n ≥ 1, k ≥ 0, α > 0.

This recurrence relation is equivalent to that established in Salah, et, al.[6],
Theorem(2).

(3) From Eq. (21): The same arguments can be done as above to get

µi,j:n+1 = µi,j−1:n+1 +

(
α

1− α

)(
n+ 1

n− j + 2

)[
µi,j−1:n − µi,j:n +

1

n− j + 1
µi:n

]
,

1 ≤ i < j ≤ n, j − i ≥ 2, α > 0, α 6= 1.

This recurrence relation is equivalent to that established in Salah, et, al. [6],
Theorem(5).

4 Recursive Algorithm

Using the recurrence relations established in Section 2 and 3 the means, vari-
ances and covariances of progressive type-II right censored order statistics from
the standard MOE distribution can be readily computed as follows: Setting
first k = 0 and n = 1, 2, ... in Eq. (11), to get

µ
(n)
1:1:n+1 =

α

1− α

[
1

n
− µ(n−1)

1:1:n

]
, α > 0, α 6= 1. (33)

Eq. (33) can be computed recursively by using

µ
(0)
1:1:1 = −α lnα

1− α
, α > 0, α 6= 1.

Second, setting k = 1 in Eq. (11), we obtain

µ
(n)(2)

1:1:n+1 =
α

1− α

[
2

n
µ
(n−1)
1:1:n − µ

(n−1)(2)
1:1:n

]
, α > 0, α 6= 1. (34)

Also Eq. (34) can be done recursively by using Eq. (33) and with the help of

µ
(0)(2)

1:1:1 = 2α
∞∑
j=1

(1− α)j

(j + 1)2
.



Moments from Progressive Type-II... 785

Finally, one can obtain all the first and the second moments with m = 1 for all
sample sizes n. Using Eq. (8) with the help of Theorem 2.3 see, Balakrishnan

and Aggarwala [11], p. 12, we can evaluate all moments of the form µ
(R1+1,R2)
1:2:n+1

for all R1, R2, n = 2, 3, ..., which can in turn be used, with Eq. (8) to determine

all moments of the form µ
(R1+1,R2)(2)

1:2:n+1 , n = 2, 3, .... Eq. (17) can be used to

compute µ
(R1,R2+1)
2:2:n+1 for all R1, R2 and n = 2, 3, ..., these values can be used

also to obtain all moments of the form µ
(R1,R2+1)(2)

2:2:n+1 . For n ≥ 2 use Eq. (17)

again. µ
(R1+1,R2,R3)
1:3:n+1 and µ

(R1+1,R2,R3)(2)

1:3:n+1 can be computed from Eq. (8) for all

R1, R2, R3 and n ≥ 3. Similarly for µ
(R1,R2+1,R3)
2:3:n+1 and µ

(R1,R2+1,R3)(2)

2:3:n+1 can be

determined from Eq. (14). Finally, µ
(R1,R2,R3+1)
3:3:n+1 and µ

(R1,R2,R3+1)(2)

3:3:n+1 can be
determined from Eq. (17). This process can be continued until all the desired
first and second moments are obtained for all sample sizes and all censoring
schemes.

The product moments of the form µ
(R1,...,Rm+1)
m−1,m:m:n+1, m = 2, 3, ..., n can be

determined from Eq. (24). Also µ
(R1,...,Rm+1)
i−1,i:m:n+1 , 2 ≤ i ≤ m can be computed

from Eq. (24). Using Eq. (24) we can obtain some of the moments of the

form µ
(R1,...,Rm+1)
m−2,m:m:n+1, m = 3, 4, ..., n and subsequently Eq. (21), moments of the

forms µ
(R1,...,Rm)
i−2,i:m:n+1, 3 ≤ i ≤ m can be determined. Continuing this process, the

desired product moments can be obtained.
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